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ABSTRACT 

Computing the structural stresses induced during 
vibration qualification tests in a space equipment is a 
difficult task, as the finite element codes have to use 
time-varying loads. Alternative methods are proposed 
for the stress evaluation during vibration tests. Effective 
modal parameters are used to identify 3 types of 
stresses: static stresses, quasistatic stresses from base 
acceleration and dynamic stresses resulting from modal 
development. These stresses can be simply evaluated by 
static and modal analyses with FEM. Their combination 
and summation with the proposed formulation yields the 
real structural stresses produced during the vibration 
test. 
Effects of truncature of the modal series are considered 
and several methods are proposed to evaluate the 
different types of structural stresses. These methods are 
tested with the study of the optical system of the Optical 
Monitoring Camera (OMC) of the INTEGRAL 
spacecraft. 

1. INTRODUCTION 

The structural design of subsystems for space 
instruments is based on specifications on the 
environmental conditions that will be seen by the 
equipment. The design is then verified by analyses and 
qualification on structural models. Generally, the 
mechanical environment is specified in terms of static 
loads called design loads, and uniaxial vibrations 
applied on the mounting interface through a rigid 
fixture. The qualification test can then easily be 
performed with a shaking machine whose interface 
represents the rigid fixture. Sine and random tests are 
often specified. For space equipments, the static load 
specification generates generally lower stress levels than 
the ones produced with the dynamic environment. In 
some frequency ranges, or in flexible structures, the 
stresses in the vibration tests can exceed the static 
stresses. Therefore, the dynamic stresses can become 
the driving parameter in the design phase. It means that 
the vibration loads become the dimensioning loads for 
the equipment. For this reason, we emphasize the need 

to evaluate efficiently the dynamic stresses resulting 
from vibration tests. 
This driven-base dynamic environment allows the 
decoupling of junction degrees of freedom (dof) from 
the other structural dof. Using a dedicated formulation 
[1], one can derive the effective parameters of the 
dynamic model. These parameters play a significant role 
in the system response. A very first approach using the 
effective masses of a dynamic system is the well known 
concept of dynamic mass. It can be used [ref 2 and 4] to 
derive a first evaluation of an equivalent dynamic force 
on the interface dof. This approach is also very useful 
for the dimensioning of the fixtures at the base junction. 
To evaluate formally the dynamic stresses, the concept 
of effective parameters will be used to derive the stress 
equation. With this formulation, 3 types of stresses will 
be well identified. They all can be computed with 
standard FE softwares, with a simple static analysis and 
a single modal analysis. After performing these 
analyses, our original formulation of the stress equation 
can be used to any type of uniaxial driven-base 
vibration environment. The junction dof can be 
submitted to sine acceleration, shock acceleration as 
well as random excitation defined by a PSD. 

2. THE GENERALIZED DIRAC NOTATION 

Structural analyses lead to use non square matrices of 
various sizes: m x n, (m + n) x n, ... In order to clearly 
identify the matrix size, we will use an extension of the 
Dirac notation. In this formalism, the symbols (table 
2.1) are written before and after the matrix name to 
identify the number of lines (left symbol) and columns 
(right symbols).  
 
Left Right Size Left Right Size 

| | m + n < > 1 (one) 
[ ] n « » n (non symmetric)
{ } m ◀ ▶ m + n (non symm.) 
   ‡ ‡ N (non symmetric)

Table 2.1: matrix symbols 

It means that the matrix |A| is a (m+n).(m+n) symmetric 
matrix, [p> is a n components column vector, <q} is a m 



components line vector, |B▶ is a (m+n).(m+n) non 
symmetric matrix. 
When two matrices are associated, adjacent symbols 
must be identical. The meaning of this association is the 
product of the 2 matrices. When several matrices are 
multiplied, the final result has the size determined by 
the external symbols (for example <A| |B} {C] [D> is 
the product of 4 matrices and the result is a scalar). 
The transposition operation consists in inverting the 
symbols [A}T = {A]. When the matrix is composed of 
sub-matrices, this operation is defined by inverting all 
symbols and transposing the main matrix. 
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Using this notation, the dynamic equilibrium equation 
of the dof of a given structure can be written as 

 |M| | q&& > + |C| | q&  > + |K| |q> = |F> (2.1) 

with |q> the displacements, |M|, |C|, and |K| respectively 
the associated mass, damping and stiffness matrices. 
Let [q> be the n internal dof, {q> the m junction dof (6 
for an isostatic mount, 1 when using a shaker with a 
rigid interface). The equation can then be written:  
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 (2.2) 

3. RESOLUTION OF THE EQUILIBRIUM 
EQUATION 

3.1. Rigid modes. 
The rigid mode matrix is defined to be the result of the 
equation |K| |φ} = |F’}. In the solution we impose an 
unitary displacement of each junction dof, one by one 
without applying any force on the internal dof. By this 

way we obtain a solution of the type  |φ} =


φ

}I{
}[ . 

If, as in our application, the support is infinitely rigid or 
isostatic, the force will be null (|F} = |0}) and the rigid 
modes (m = 6) will be defined as [φ} = - [K]-1[K} if 
[K]-1 exists. In this case, we can also observe than {K}-
{K][K]-1[K} is null. 
 

3.2. Elastic modes 
The elastic modes |φ» (» because non-symmetrical) 
corresponding to the structure clamped at the junction 
dof can be written as  |φ» = »

»0{
»[φ . The matrix [φ» is 

square but non symmetric and is composed of the n 
eigenvectors of the [M] [K] system and defined by 

[ [–diag(ωk²)][M] + [K] ] [φ»= 0 k = 1,2,…n 

By this way, [φk> (each column of [φ») diagonalizes 
simultaneously [M] and [K] : 

kk = <φk] [K] [φk> are the modal stiffness and  
mk = <φk] [M] [φk> are the modal masses. 

Note that the eigenvectors are defined with a free 
normalization and so the modal parameters have no 
physical meaning. Nevertheless, their ratio, equal to ωk² 
represents the pulsation of the eigenmode (2π fk where 
fk is the frequency of mode k). 
All theses modes (rigid and elastic) will be grouped in 
the (m + n)x(m + n) non symmetric matrix  |φ▶ which 
constitutes a complete basis on which the solution of the 
dynamic equation can be developed. 

3.3. Computation of miscellaneous matrices 
 Using these definitions, we can compute the following 
expressions: 

{ φ | K | φ } = {K} – {K] [K]-1[K}      if   [K]-1     exists 
{ φ | M | φ } = {K][K]-1[M][K]-1[K} – {M][K]-1[K} –   
                        {K][K]-1[M}+{M}    if   [K]- 1 exists 
                    =  {M0} 

This matrix {M0} represents the masses and inertia of 
the structure and is generally named Guyan mass 
matrix. 

« φ | K | φ » = « diag(… kk …) » 
« φ | M | φ » = « diag( … mk … ) » 

{ φ | M | φ » ≡ {L» = {M][φ» + {φ][M][φ»  
« φ | M | φ } ≡ «L} = «φ][M} + «φ][M][φ} 

These two last matrices are the coupling matrices 
between junction modes and eigenmodes (also called 
participation factors). 

{ φ | K | φ » = { 0 » 
« φ | K | φ } = « 0 } 

3.4. Variable transformation. 
For further analysis, we will develop the solution on the 
rigid/elastic modes basis: 

 |q(t)>  =  |φ▶◀τ(t) >  =  |φ}{τ(t)> + |φ» «τ(t)>  (3.1) 

Resulting from this, {q(t)> = {τ(t)>, the displacement at 
the junction. The internal displacements are defined by 
[q(t)> : 

 [q(t)> = [φ}{τ(t)> + [φ»«τ(t)> = [φ} {q(t)> + [φ»«τ(t)> 
    (3.2) 

The equilibrium equation can be rewritten 

 |M| |φ▶◀τ(t)>’’ + |K| |φ▶◀τ(t)> = |F(t)>   (3.3) 

Pre-multiplying this equation by |φ▶T = ◀φ|, we obtain 

 ◀φ|M|φ▶◀τ(t)>’’ +◀φ|K|φ▶◀τ(t)> = ◀φ | F(t) > (3.4) 

Where the unknowns are  «τ(t)> and {F(t)>. 
Let's analyze the new matrices: 



◀φ | M | φ▶ = ◀ 







}M{»L{

}L«»...)m(...diag«

0

k  ▶ 

◀φ | K | φ▶ = ◀ 







φφ }K{»0{
}0«...)»k(...diag« k ▶ 

And in the case of a rigid/isostatic mounting, we 
showed earlier that {φ|K|φ} = {0}. 
 

3.5. Damping 
The damping of the structure is a quite difficult 
parameter to evaluate. It will not be discussed here and 
we will only use the assumption of small diagonal 
structural damping, meaning that we can introduce the 
matrix ◀φ|C|φ▶ in the equilibrium equation with the 
following definition: 

◀φ | C | φ▶=◀ 







}0{»0{
}0«...)»c(...diag« k ▶ 

Where ck = 2 εk mk ωk , εk being the damping factor of 
the mode k. 

3.6. Results computation 
Let's the excitation be described by [F(t)> = [F0> eiωt 
and {q(t)> = {q0> eiωt. In this case the answer has the 
same layout «τ(t)> = «τ0> eiωt and {F(t)> = {r(t)> = 
{R0> eiωt. 
The solution becoms  

«diag( -mkω² + iω 2εkωkmk + kk)» «τ0> =  «φ][F0> 
 + ω² «L}{q0> 

so that 

«τ0> = «diag(…Hk(ω)/kk…)»  «φ][F0> + ω² «L}{q0> 
  (3.5) 

with 

k
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is called the dynamic amplification factor. 
The [q0> and {R0> definitions are thus 

 [q0> = [ [φ} + [φ»«diag(…ω²Hk/kk…)»«L}  }{q0>  
+ [φ»«diag(…Hk/kk…)»«φ] [F0> (3.6) 

and  

{R0> = -ω² {L»«τ0> -ω²{φMφ}{q0>+{φKφ}-{φ][F0> 
  ={-{L»«diag(…ω²Hk/kk…)»«φ] – {φ]][F0> 

+ { -ω²{L»«diag(…ω²Hk/kk…)»«L} 
                 - ω²{φMφ} + {φKφ}  } {q0>   (3.7) 

3.7. Introduction of the dynamic matrices. 
We introduce the following dynamic matrices: 

[G(ω)] = [φ»«diag(…Hk/kk…)»«φ] 

the dynamic flexibility matrix, 

{M(ω)} = {L»«diag(…Tk/mk…)»«L} 

the dynamic mass matrix, 

[T(ω)} = [φ»«diag(…Tk/mk…)»«L} 

the dynamic transmissibility matrix, with  
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Using these new matrices, the answer can be written as : 
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3.8. Effective modal parameters 
These matrices can be deduced from simple modal 
parameters that are often really useful. 

[G(ω)] = Σk Hk(ω) [Gk] 
{M(ω)} = {MB} + Σk Tk(ω) {Mk} 
[T(ω)} = Σk Tk(ω) [Tk} 

where  
{MB} = {M} – {M][M]-1[M} is the mass affected to the 
junction (often small, null in continuous system). 
[Gk] = [φk> 1/kk <φk] is the effective flexibility matrix of 
mode k. 
{Mk} = {Lk> 1/mk <Lk} is the effective mass matrix of 
mode k. 
[Tk} = [φk> 1/mk <Lk} is the effective transmissibility 
matrix of mode k. 
Note that these expressions have a physical significance 
and represent for each dof the part of the total 
mass/rigidity/transmissibility affected to the mode. It 
can be verified that  

Σk [Gk] = [G] = [K]-1 
Σk {Mk} = {M0} – {MB} 
Σk [Tk} = [φ} + [M]-1[M} 

4. INTRODUCTION OF EFFECTIVE MODES 

First of all, we will assume that the movement only 
occurs along a single direction. It means that the {q0> 
vector has only one non-null component. In this case 

 «L}{ω²q0>=«1k kk,eff mm >ω²q0 (4.1) 

where the scalar q0 defines the amplitude of the shaker 
movement and 1k is ±1 depending on the mode, then 

 «diag(…Hk/kk…)»«1k kk,eff mm >ω²q0=  

«
2
k

kH
ω

 ±
k

k,eff

m
m > ω² q0 = « (Tk-1) . 1k

k

k,eff

m
m > q0    (4.2) 

The factor 1k

k

k,eff

m
m  is non-dimensional factor that can 

be inserted in the eigenmodes matrix. The sign (1k) of 



this parameter must be defined in order that the center 
of gravity of each mode or the reaction implied by each 
mode on the support has the same sign.  So we define 

the new vectors [φeff,k> = [φe,k> . 1k

k

keff

m
m ,  that will be 

called effective elastic modes for the specific direction 
of excitation. It can be verified that the modal masses 
and the participation factors in this new basis are equal 
to the effective mass. The displacement can be written 

 [q0> = [ [φ}{ω²q> + [φeff»«Hk/ωk²> ω²q0 > (4.3) 

5. EXACT STRESS COMPUTATION 

We define ‡σ(t)>as a list of selected linear combination 
of the stress tensor components calculated or 
interpolated at any point of the structure (mainly at 
these parts where these stresses are supposed to reach a 
maximum). The number of elements of this vector is 
arbitrary (N≠n). The equation 

 ‡σ(t)> = ‡S| |q(t)> (5.1) 

simply states that these linear combinations of the stress 
tensor elements is a linear relation of displacements in 
the approximation of the linear finite element model, 
assuming small deformations. 
‡S| is a Nx(m + n) matrix. Using the definition of |q(t)>, 
we can write 
 ‡σ(t)> = ‡S| |φ▶◀τ(t)> 

            ‡σ> =  ‡S| |φ}{q0> 
                      + ‡S] [φ»«diag(…ω²Hk/kk…)»«L} {q0> 
                  + ‡S] [φ»«diag(…Hk/kk…)»«φ][F0> (5.2) 

The first term ‡S| |φ}{q0> represents the hyperstatic 
stress, which is null in our application due to the 
isostatic/rigid mount. The second term is the dynamic 
stresses produced by the junction movement {q0> and 
the third term represents the dynamic stresses resulting 
from the internal forces [F0>. 
In the frame of driven-base environments we impose 
only a junction displacement. So the stresses can be 
simply expressed as   

 ‡σ> = ‡σe»«diag(…Hk/kk…)»«L} {ω²q0> (5.3) 

The ‡σe,k> vectors will be called stress modes. As the 
eigenmodes, the stress modes are defined with a free 
normalization. 
Similarly to the effective elastic modes, we define the 
effective modal stresses with: 

 ‡σeff,k> = ‡σe,k> .±
k

k,eff

m
m  (5.4) 

By this way, the stresses in the structure for a base-
driven excitation in the x-direction can be obtained by 
equation (5.5) where a0 is the shaker acceleration. 

‡σ> = Σk ‡σeff,k> 
2
k

kH
ω

ω² q0  = Σk ‡σeff,k> 
2
k

kH
ω

 a0  (5.5) 

Note that in the case of static loading (ω = 0), the stress 
in the structure when applying a volumic acceleration a0 
is equal to 
 ‡σstatic> = Σk ‡σeff,k> a0/ωk² (5.6) 

6. APPROXIMATIONS FOR STRESS 
EVALUATION 

6.1. Limitation to the useful modes 
The equation (5.5) is exact if we use all the modes to 
evaluate the stresses. In practical applications, only the 
first modes are correctly known after a finite element 
model analysis. We have to deal with a finite set of 
modes. 
A first approach is to use only the first modes and to 
neglect the effect of the high frequency modes. If the 
stress is evaluated at eigenfrequencies far lower than 
ωK, we can approximate the Hk>K by 1. It means that the 
σresidual is equal to the static contribution of the high 
frequency modes.  

To improve the result, we propose to extract the static 
contribution from each term of the sum (5.5). This 
solution is formally exact and is best suited for 
truncature with small values of ω (ω<ωK’) . Therefore, if 
we want to limit the number of modes involved in the 
development, we must use the next equation resulting 
from the "summation rules of the stresses":  

‡σ> = ‡σstatic (volumic acceleration = ω² q0) >  
                   + Σk≤K’ [σeff,k> 

2
k

k 1H
ω
−  ω² q0 (6.1) 

where K’≤ K. In this case, limω→∞ (Hk(ω)-1) = 0 for 
large k, this minimizes the truncature error. The static 
stresses can then be computed by a simple static FEM 
analysis or by formula’s table. 

6.3. Practical use 
The expression (6.1) must be compared with the 
following approximation, often made in a preliminary 
stage of the study. The approximation method, which is 
faster to apply, is very useful at a preliminary stage of 
the study with a rough model of the structure: 
- to verify the integrity of the primary structure; 
- to evaluate roughly the acceleration at the center of 

gravity corresponding to qualification tests, which 
should be compared to the flight; 

- to identify which qualification test is the most 
stringent and on which the design should be 
optimized. 

In a preliminary stage, we proceed with the computation 
of the acceleration at the instantaneous center of gravity 



provided with the help of the dynamic mass (ref [1] and 
[2]). This acceleration at the center of gravity is used as 
a general acceleration statically applied to the whole 
structure. The stresses obtained under these assumptions 
are given by 

‡σapproximated(ω)> = ‡σstatic;ω²q=I> q0(ω) ω² Mdyn(ω) 

  =‡σstatic;ω²q=I> q0(ω) ω² (1 + Σk meff,k,x/Mstat Hk ω²/ωk² ) 
 (6.2) 

to be compared with (6.1). As it can readily be seen, 
theses two formulations are equivalent for low values of 
ω but they are quite different at the first resonances of 
the structure. 

6.4. Approximation by the deformation energy 
We propose here a simple way to make a preliminary 
evaluation of the mean stress in a vibrating structure. 
During vibrations, there is an exchange between 
deformation energy and kinetic energy. When the 
structure reaches a non-deformed state, the velocities 
are the highest and when the structure stops its 
movement (the center of gravity speed is null), the 
deformations are the highest (note that at this moment, 
the work of the shaker is non-null). The kinetic energy 
can be written with (6.3) where Mstat is the static mass of 
the equipment, 

 K(ω) = ½ Mstat . vcog(ω)²  = ½ Mstat . acog(ω)²/ω² (6.3) 

acog is given by  

 
base

stat
cog a

M
)(Ma ω

=  (6.4) 

The deformation energy can be written 
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σ
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The work performed by the shaker can be written 

 T (ω) = - ½  Mstat.acog.abase /ω² (6.6) 

We can write that the maximum deformation energy is 
equal to the maximum kinetic energy plus the shaker 
work. So 

K(ω) + T (ω) = D(ω) 

Mstat . acog²/ω² - Mstat.acog.abase.1/ω² = σaver² .V/E     (6.7) 

and,   

 σaver(ω)² = ρaver E (acog – abase) acog /ω² (6.8) 

This average value on the volume can be used as a 
rough estimation of the maximum stress. For example in 
a cantilever beam, σmax = 6 σaver . 

7. EXTENSION TO RANDOM VIBRATIONS 

7.1. Effective modes combination in random 
vibration. 

We have seen (eq 5.5) that stresses can be expressed as 

 ‡σ> = Σk ‡σeff,k> a0 Hk/ωk² (7.1) 

It can also be written ‡σ> = ‡σ(ω)> a0 where ‡σ(ω)> is 
a transfer function. 
The random vibrations tests are defined by they power 
spectral density (PSD). It is well known that in a linear 
system the PSD of the response is linked to the 
excitation PSD by the product of the conjugate of the 
transfer function with the transfer function itself. So 

 ‡PSDσ‡= ‡σ(ω)*>PSDa0 <σ(ω)‡ (7.2) 
       PSDσi² = ||σ(ω)i||² PSDa0 (7.3) 

where ||σ(ω)i || is the modulus of the ith component of the 
vector. 
Statistical computation shows us that the integral of the 
PSD on all frequencies is the square of the RMS value 
of random variable. So, 

  .dPSD)( 0a
2

i
2

RMS,i ∫
+∞

∞−

ωωσ=σ  (7.4) 

The evaluation of this expression leads to equation (7.5) 
when eigenfrequencies are in the frequency range of the 
PSD. 

  σi,RMS² ≈ Σk |σeff,k,i|²/ωk
4 

2
π .

k2
1
ε

.fk.PSD a0 (fk)  (7.5) 

When there are no eigenfrequencies in the range, the 
solution of (7.4) is defined by equation (7.6)  

 σi,RMS² ≈  σstat,i² abase,RMS² (7.6) 

 

7.2. Deformation energy formula in random 
vibration. 

The same operation can be performed on the 
deformation energy formula. The transfer function from 
(6.7) is 

  ∑ ω
ω

ρ
k stat

k,eff
aver

)(T
M
m

E  (7.7) 

 so  

 PSDσaver = 
2

k stat

k,eff
aver

)(T
M
m

E ∑ ω
ω

ρ PSDa0 (7.8) 

And the integration on all frequency gives  

σRMS,moy² = ρaver.E.Σk (meff,k/Mstat)².
kk f16

1
πε

 PSDa0(fk) 

 (7.9) 



8. TEST ON SIMPLE STRUCTURE 

The different approximations proposed to evaluate the 
stress are tested here on a simple system. This system 
consists in a cantilever beam, 150 mm long, 5 mm thick 
and 10 mm large. This beam is made of Aluminium 
with a volumic mass of 2700 kg/m³ and a Young 
modulus of 72500 MPa.  The modal analysis with FEM 
code, gave the results of table 8.1: 

Frequency Effective mass along x Modal mass 
187 Hz  1.238 10-2 (61.1 %) 5.054 10-3 

1165 Hz  3.817 10-3 (18.8 %) 5.085 10-3 
3241 Hz  1.321 10-3 (6.5 %) 5.120 10-3 
6304 Hz  6.845 10-4 (3.4 %) 5.149 10-3 

Table 8.1: Beam analysis result 

Assuming a damping factor of 2% on each elastic mode 
and acceleration at the clamping junction of 119 m/s², 
we perform different computations that we detail 
hereafter. 

8.1.  Sinusoidal excitation 

8.1.1. Reference computation 
The reference computation for the sinus loading will be 
performed with a dynamical analysis FEM software 
using time varying loads. The maximum value is 
located at the clamping area and is 105.1 MPa. 
8.1.2. Elastic energy 
Using the formula (6.13), the mean σis 21.1 MPa, to 
obtain the maximum stress, we can multiply this value 
by 6 and we obtain 126.6 MPa.  
8.1.3. Comparison between static stress and modal 

sum of stress 
It was demonstrated earlier that the static stress for an 
unitary volumic acceleration must be identical to the 
sum of the effective stress modes divided by the square 
of their pulsation. 
8.1.4. Stresses modes combination 
Using the stress vectors given by FE modal analysis, we 
can derive the effective stress vectors. The addition of 
all vectors with their adequate multiplicative coefficient 
would lead to the exact solution if the modes were 
correctly estimated (which is not the case in FEM). It 
was seen that, at the first eigenfrequency, the first mode 
represents almost all the total maximum stress.  
At the second frequency, the second mode is dominant 
and at low frequency, several modes are needed to reach 
the correct value. 
8.1.5. Static constraint and addition of stress modes. 
It was shown in paragraph 6.1 that computing the static 
stress with a unitary volumic acceleration could 
improve the results of the computation. This was 
applied to our test model. On this simple model, the 
difference is not obvious but it was observed that the 
error made on higher modes are suppressed. 

8.2. Random excitation 

8.2.1. Reference computation. 
The use of a FEM code dedicated to random vibrations 
can give us the PSD of the stress at different location of 
the system. From this we can compute the RMS value 
of the stress. This will be the reference for the following 
comparison. This computation will be performed along 
two axes (lateral and axial) in order to have two cases: 
with and without eigenfrequencies in the excitation 
range. 
8.2.2. Elastic energy 
The use of the simple elastic energy formula leads to a 
RMS maximum stress of 29 MPa for the lateral 
direction and ??? MPa for axial direction.  
8.2.3. Stress modes combination 
Formulas ??? were used to evaluate the rms stress in the 
beam. The following values were observed: for lateral, 
using formula 7.5 and for axial using formula 7.6: 

9. TESTS ON OMC LENS BARREL 

The Optical Monitoring Camera (OMC) is an 
instrument that will be mounted on the INTEGRAL 
spacecraft. Its goal is to observe the visible counterpart 
of what will be observed by the gamma and X rays 
telescopes. Optical subsystem of the camera, which 
consists in a 6-lens system, is designed and 
manufactured under CSL responsibility. The lenses are 
mounted in a titanium lens barrel. The goal of the study 
is to verify that the maximum stress is lower than the 
elastic limit of titanium during qualification vibration 
test. 
Using the methods developed in this article, the 
maximum estimated stress is ??? what is largely lower 
than the elastic limit. 

10. CONCLUSIONS 

This paper presents a new way to evaluate the effects of 
mechanical tests on equipments mounted on vibration 
machines.  This was tested on a simple model 
(cantilever beam) and than applied on the OMC optical 
subsystem. 
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