

New insights for an old topic: seagrasses as bioindicators of coastal trace element (TE) pollution.

J. Richir, P. Lejeune and

S. Gobert

Olhão, Portugal 03-2014 Another title could be: An attempt to communicate TE results to managers

Pollution by TE is still a topical subject

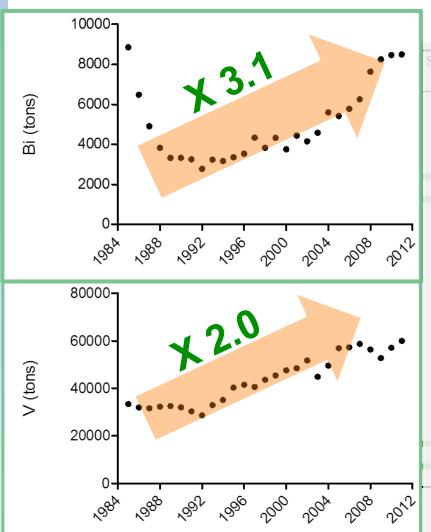
World production of 19 trace elements

TE	Symbol		Y	ear		
		1990	2000	≯ ₍₁₉₉₀₎	2010	≯ ₍₁₉₉₀₎
Aluminum	Al	17.817	24.400	37%	40.800	129%
Antimony	Sb	83,2	122,0	47%	167,0	101%
Arsenic	As	47,6	36,9	-23%	52,8	11%
Beryllium	Be	0,286	0,226	-21%	0,203	-29%
Bismuth	Bi	3,333	3,752	13%	8,467	154%
Cadmium	Cd	20,16	20,23	0%	21,40	6%
Chromium	Cr	12.846	4.320	-66%	7.290	-43%
Cobalt	Co	37,1	33,3	-10%	89,5	141%
Copper	Cu	8.815	13.200	50%	16.000	82%
Iron	Fe	543.000	1.061.148	95%	2.590.000	377%
Lead	Pb	3.367	3.100	-8%	4.140	23%
Manganese	Mn	27,2	20,2	-26%	42,7	57%
Molybdenum	Mo	112	129	16%	242	117%
Nickel	Ni	1.029	1.250	21%	1.590	54%
Selenium	Se	1.789	1.460	-18%	2.120	19%
Silver	Ag	17,7	18,4	4%	23,1	31%
Tin	Sn	219	238	9%	265	21%
Vanadium	V	31,0	43,0	39%	57,6	86%
Zinc	Zn	7.325	8.730	19%	12.000	64%

After suffering a slight slowdown at the end of the 90s.

Monitoring of TE: a topical subject

World production of 19 trace elements


TE	Symbol		Y	ear		
		1990	2000	≯ ₍₁₉₉₀₎	2010	Z ₍₁₉₉₀₎
Aluminum	Al	17.817	24.400	37%	40.800	129%
Antimony	Sb	83,2	122,0	47%	167,0	101%
Arsenic	As	47,6	36,9	-23%	52,8	11%
Beryllium	Be	0,286	0,226	-21%	0,203	-29%
Bismuth	Bi	3,333	3,752	13%	8,467	154%
Cadmium	Cd	20,16	20,23	0%	21,40	6%
Chromium	Cr	12.846	4.320	-66%	7.290	-43%
Cobalt	Co	37,1	33,3	-10%	89,5	141%
Copper	Cu	8.815	13.200	50%	16.000	82%
Iron	Fe	543.000	1.061.148	95%	2.590.000	377%
Lead	Pb	3.367	3.100	-8%	4.140	23%
Manganese	Mn	27,2	20,2	-26%	42,7	57%
Molybdenum	Mo	112	129	16%	242	117%
Nickel	Ni	1.029	1.250	21%	1.590	54%
Selenium	Se	1.789	1.460	-18%	2.120	19%
Silver	Ag	17,7	18,4	4%	23,1	31%
Tin	Sn	219	238	9%	265	21%
Vanadium	V	31,0	43,0	39%	57,6	86%
Zinc	Zn	7.325	8.730	19%	12.000	64%

After suffering a slight slowdown at the end of the 90s.

Experiencing new growth as a result of the emergence of all a series of nations

Monitoring of TE: a topical subject

83	100					
Bi		Y	ear			
208.9804	1990	2000	≯ ₍₁₉₉₀₎	2010	7 ₍₁₉₉₀₎	
Al	17.817	24.400	37%	40.800	129%	
metallu	rgical ac	dditives,	electro	nic and		
Α	17.6	application	220/	52,8	11%	
Ве		0 226		0,203	-29%	
Di	- 5,555			e <mark>nts in co</mark>		Š,
pharma	ceutical	s, and in	dustria	l <mark>chemica</mark>	als 6%	
Cr	12.846	4.320		7.290	-43%	
Со	37,1	33,3	-10%	89,5	141%	
Cu	8.815	13.200		16.000	82%	
Fe	543.000	1.061.148		2.590.000	377%	
Pb	367	3.100		4.140	23%	
Mn 23	1 2	20,2	-26%	42,7		
Mo Va	madium	129	16%	242	117%	
Ni 50.94	115	1.250	21%	1.590	54%	
Se	1.789	1.460	-18%	2.120	19%	
Ag	17,7	18,4	4%	23,1	31%	
Sn tro	219	238	9%	265	21%	
V	31,0	tool stee	is, cata	Hysts, to		
aerospa	ce _{7:325}	8.730		12.000	64%	

P.o. is well known as a TE bioindicator

organism accumulating pollutants to levels representative of their habitat pollution status

Monitoring of TE: a topical subject

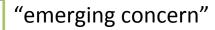
Number of references (1975-2012) on trace elements studied in Posidonia oceanica

TE	Cd	Pb	Cu	Zn	Cr	Fe	Ni
# ref.	34	29	27	25	22	14	13

TE	As	Se	Ag	Со	Mn	Al
# ref.	3	3	2	2	2	1
TE	Ве	Bi	٧	Мо	Sn	Sb
# ref.	0	0	0	0	0	0

"Classical"

widely used since the mid-70th: Cr, Ni, Cu, Zn, Cd, Pb and/or Fe.



Monitoring of TE: a topical subject

Number of references (1975-2012) on trace elements studied in Posidonia oceanica

TE	Cd	Pb	Cu	Zn	Cr	Fe	Ni
# ref.	34	29	27	25	22	14	13

TE	As	Se	Ag	Со	Mn	Al
# ref.	3	3	2	2	2	1
TE	Ве	Bi	٧	Мо	Sn	Sb
# ref.	0	0	0	0	0	0

widely used since the mid-70th: Cr, Ni, Cu, Zn, Cd, Pb and/or Fe.

As, V, Ag, Be, Al, Mn, Co, Se, Mo, Sn, Sb and Bi have been subject to nearly no ecotoxicological survey

Since some years, we monitor

P. oceanica

(Cr, Ni, Cu, Zn, Cd, Pb, As, Ag, V, Be, Al, Fe, Mn, Co, Se, Mo, Sn, Sb and Bi). along the French coasts of the Mediterranean Sea

Data:

Different spatial scales

April 2007: 18 sites along French coats (PACA and Corsica) May 2010: 9 stations along a 3 km transect in Ajaccio Bay June 2010: 4 stations remote from 1-3 km in Calvi Bay

+

Temporal scales (seasonnal, interannual)

March, June, November 2008, 2009, 2010

+

Specific compartment instead of entire organisms

+

M galloprovincialis

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Original article

The effect of size, weight, body compartment, sex and reproductive status on the bioaccumulation of 19 trace elements in rope-grown *Mytilus galloprovincialis*

J. Richir*, S. Gobert

Contents lists available at SciVerse ScienceDirect

Aguatic Toxicology

As we would like to define "A mean to communicate TE results to managers"...

ate/aquatox

Experimental *in situ* exposure of the seagrass *Posidonia oceanica* (L.) Delile to 15 trace elements

J. Richir^{a,*}, N. Luy^a, G. Lepoint^a, E. Rozet^b, A. Alvera Azcarate^c, S. Gobert^a

Contents lists available at SciVerse ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Chemical contamination along the Mediterranean French coast using *Posidonia* oceanica (L.) Delile above-ground tissues: a multiple trace element study

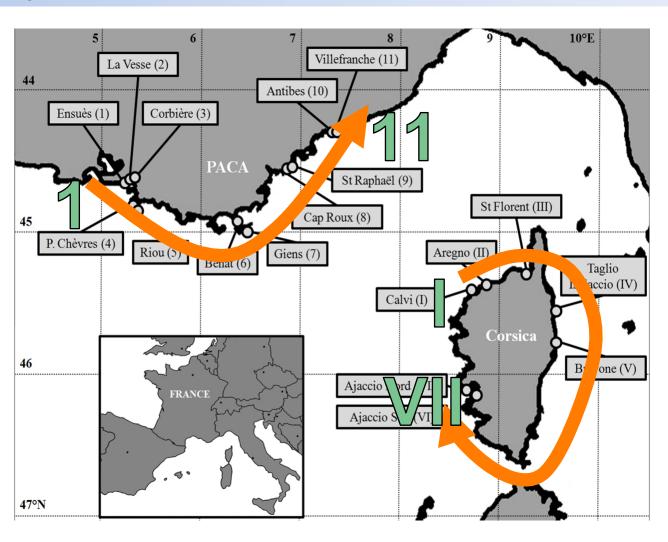
Nicolas Luy^{a,*}, Sylvie Gobert^a, Stéphane Sartoretto^b, Renzo Biondo^a, Jean-Marie Bouquegneau^a, Jonathan Richir^a

trace element pollution

Mediterranean

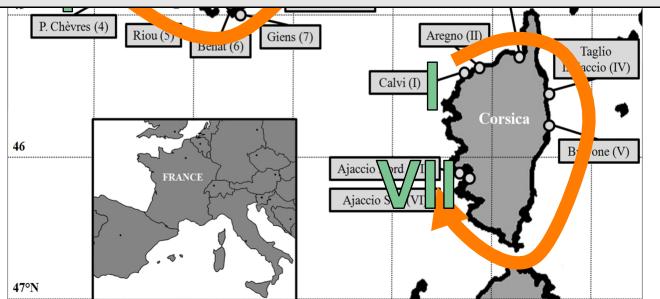
Evaluation of the effect of data pre-treatment procedures on classical pattern recognition and principal components analysis: a case study for the geographical classification of tea

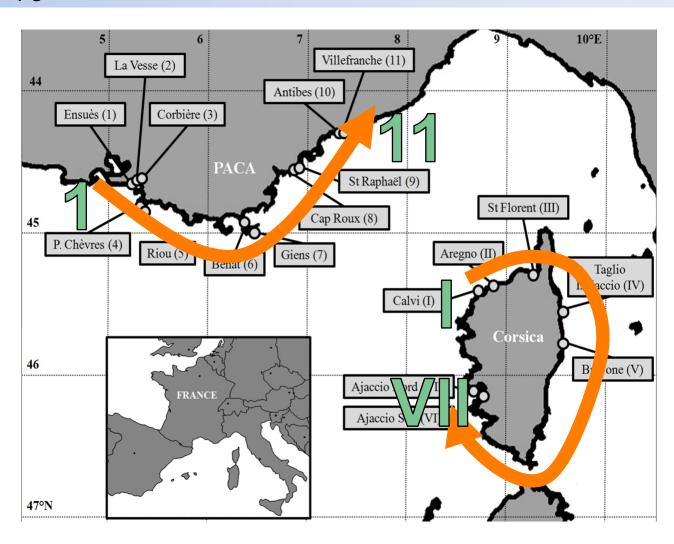
Antonio Moreda-Piñeiro, Ana Marcos, Andrew Fisher and Steve J. Hill*


Two indices

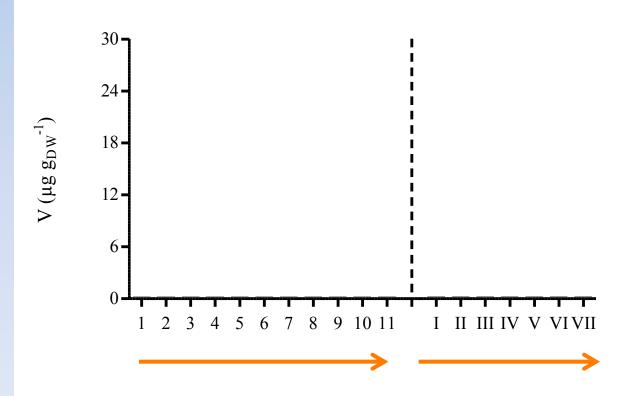
- (i) the TESVI (Trace Element Spatial Variation Index), to give a general overview of the TEs spatial variability through a studied area
- (ii) the TEPI (Trace Element Pollution Index), a weighted version of the metal pollution index MPI (Usero et al. 1996) allowing the reliable comparison of global pollution levels in TEs between several monitored sites

- P. oceanica sampled in 18 sites at 15 m depth
- 19 TEs analysed (Be, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sn, Sb, Pb, Bi)
- Anthropgenic activities

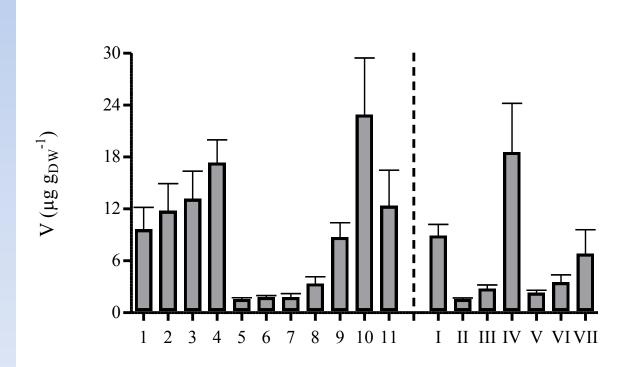



- P. oceanica sampled in 18 sites at 15 m depth
- 19 TEs analysed (Be, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sn, Sb, Pb, Bi)
- Anthropgenic activities

R Impact factors	Criteria
Fish farming	Number, production
lndustrial development	Type, zoning
^s Agriculture	Exploited surface, type of exploitation
Tourism	Number of camping, marina, beach and second home; tourism fluxes (airport, ferries)
Fishing	Fishing, fleetfishing port, employment, type of activity (artisanal, deep-sea)
Commercial port	Harbour traffic, type of activities
Urbanization	Sewer, population density

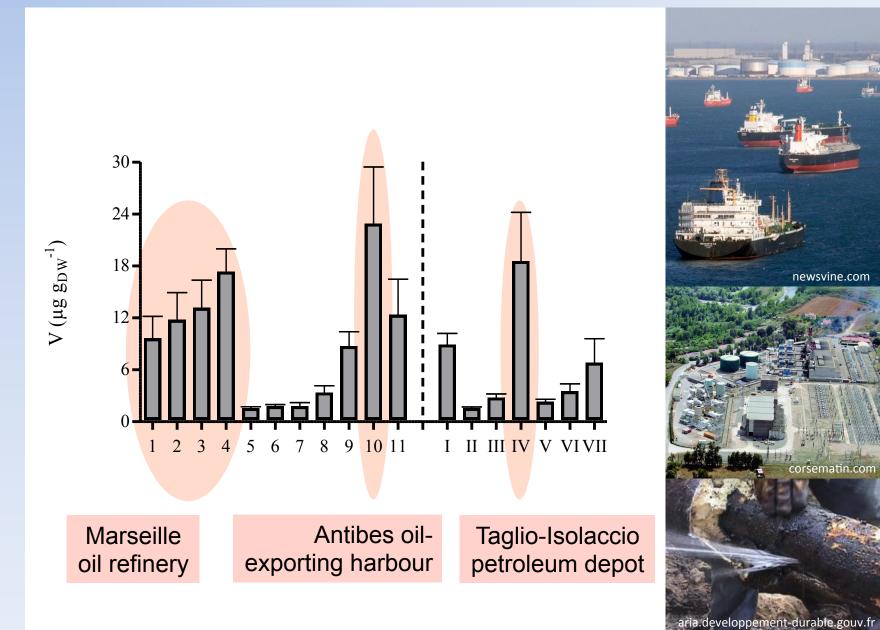


- P. oceanica sampled in 18 sites at 15 m depth
- 19 TEs analysed (Be, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sn, Sb, Pb, Bi)
- Anthropgenic activities

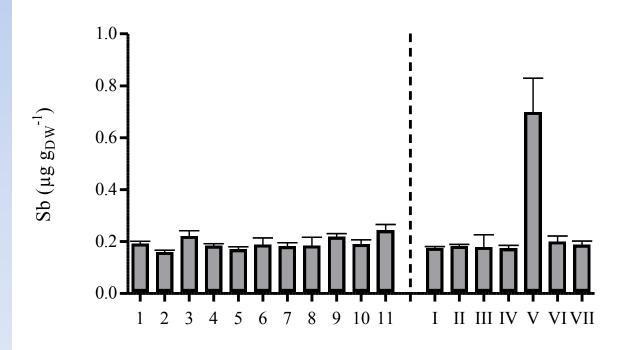

e.g. 1 - Vanadium pollution

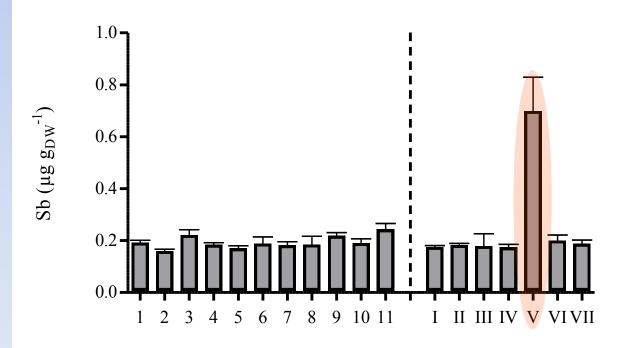
V is a tracer of oil spill (hydrocarbon) pollutants

e.g. 1 - V pollution



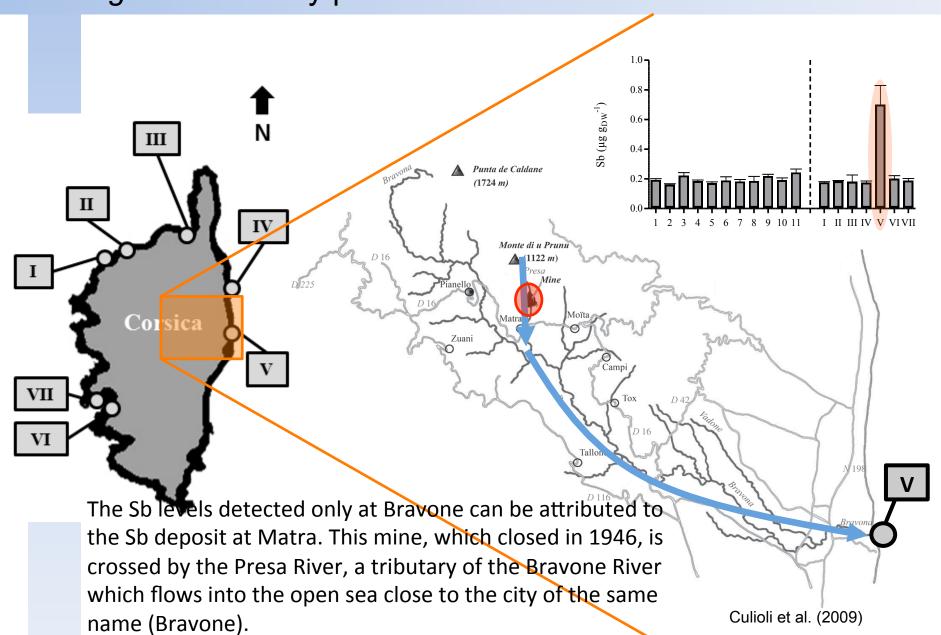
V is a tracer of oil spill (hydrocarbon) pollutants


e.g. 1 - V pollution

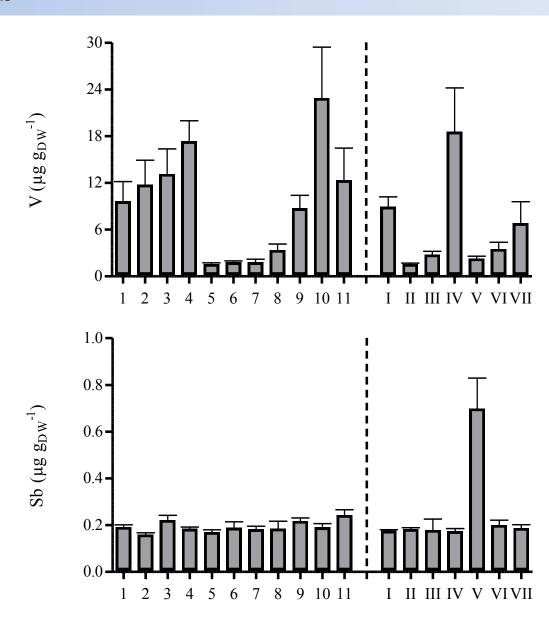

newsvine.com

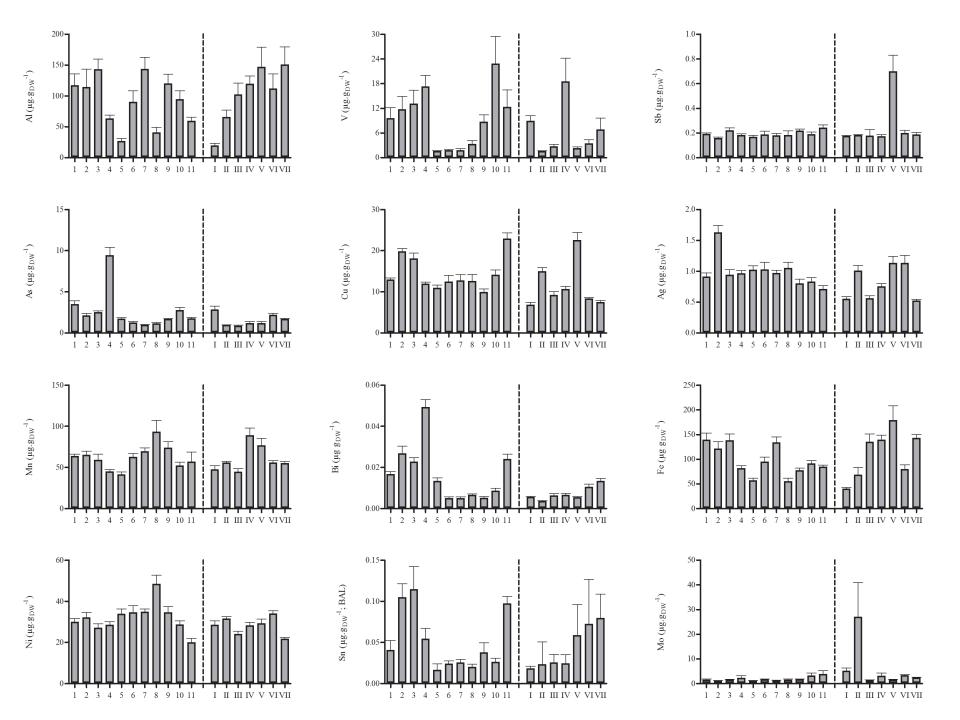
corsematin.com

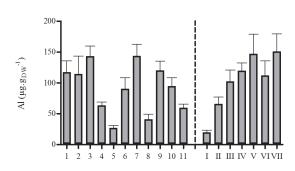
e.g. 1 - Sb pollution

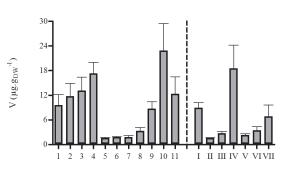


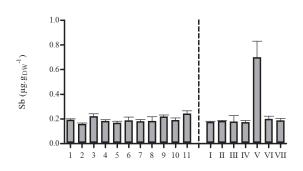
e.g. 1 - Sb pollution

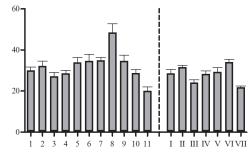

*

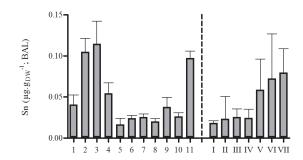

e.g. 1 - Antimony pollution

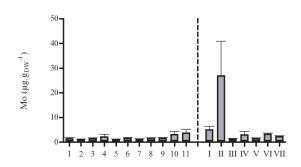





V vs. Sb

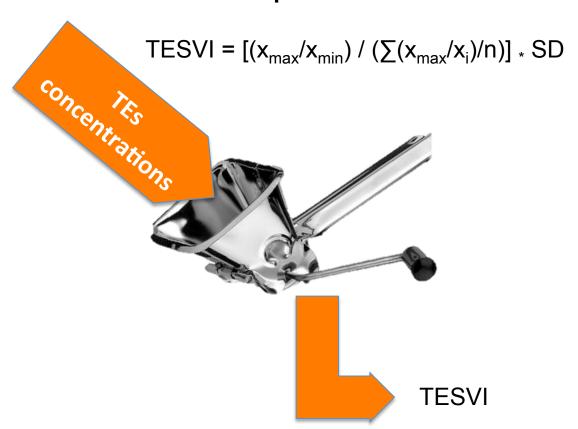






1. How to compare TEs according to the overall spatial variability?

 $\mathrm{Ni}\,(\mu g.g_{\mathrm{DW}}^{\text{-}1})$



How to compare TEs according to the overall spatial variability?

Trace Element Spatial Variation Index (TESVI)

Trace Element Spatial Variation Index (TESVI)

TESVI =
$$[(x_{max}/x_{min}) / (\sum (x_{max}/x_i)/n)] \cdot SD$$

where:

- x_{max} and x_{min} are the maximum and minimum mean concentrations recorded among the n sites,
- x_i are mean concentrations recorded in each of the n sites,
- SD is the standard deviation of the weighted sum $\sum (x_{max}/x_i)/n$.

The environmental levels of a TE have a high spatial variation on the studied area.

Trace Element Spatial Variation Index (TESVI)

TESVI =
$$[(x_{max}/x_{min}) / (\sum (x_{max}/x_i)/n)] \cdot SD$$

where:

- x_{max} and x_{min} are the maximum and minimum mean concentrations recorded among the n sites,
- x_i are mean concentrations recorded in each of the n sites,
- SD is the standard deviation of the weighted sum $\sum (x_{max}/x_i)/n$.

For one TE, a high the index value

The environmental levels of a TE have a high spatial variation on the studied area.

Ring the alarm bells

A. TEs broadly monitored with P. oceanica

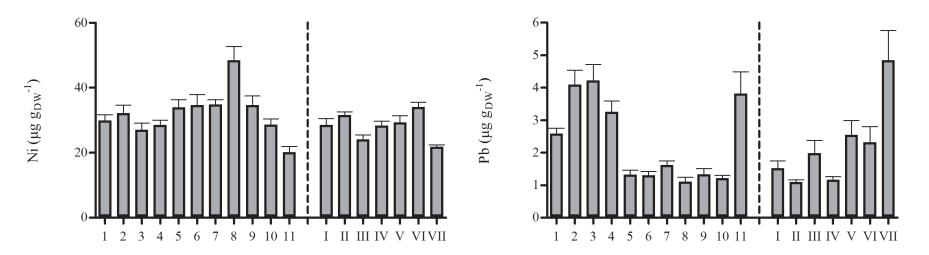
	x _{max} /x _{min}	$\sum (x_{\text{max}}/x_i)/18 \pm SD$	TESVI
Cr	6.0	3.6 ± 1.3	2.2
Fe	4.4	2.0 ± 0.9	1.9
Ni	2.4	1.6 ± 0.3	0.5
Cu	3.4	1.9 ± 0.7	1.2
Zn	19.6	13.3 ± 4.4	6.5
Cd	3.9	1.9 ± 0.7	1.4
Pb	4.4	2.7 ± 1.2	2.0

B. TEs little monitored with P. oceanica

	x_{max}/x_{min}	$\sum (x_{\text{max}}/x_i)/18 \pm SD$	TESVI
Be	3.1	1.6 ± 0.6	1.0
Al	7.5	2.2 ± 1.8	6.1
V	14.5	5.9 ± 5.0	12.3
Mn	2.2	1.6 ± 0.4	0.5
Co	2.9	1.8 ± 0.5	0.7
As	10.6	5.9 ± 2.7	4.9
Se	1.7	1.3 ± 0.2	0.3
Мо	22.8	13.6 ± 6.2	10.5
Ag	3.1	1.9 ± 0.6	0.9
Sn (BA	6.9	3.5 ± 1.9	3.8
Sb	4.4	3.6 ± 0.7	0.9
Bi	13.6	6.1 ± 3.5	7.9

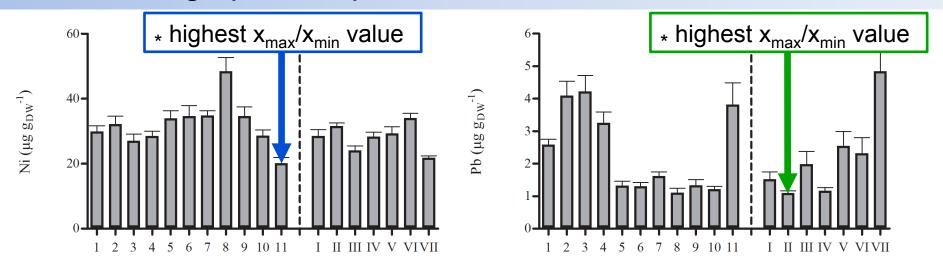
A. TEs broadly monitored with P. oceanica

	x_{max}/x_{min}	$\sum (x_{max}/x_i)/18 \pm SD$	TESVI
Cr	6.0	3.6 ± 1.3	2.2
Fe	4.4	2.0 ± 0.9	1.9
Ni	2.4	1.6 ± 0.3	0.5
Cu	3.4	1.9 ± 0.7	1.2
Zn	19.6	13.3 ± 4.4	6.5
Cd	3.9	1.9 ± 0.7	1.4
Pb	4.4	2.7 ± 1.2	2.0


B. TEs little monitored with P. oceanica

	x_{max}/x_{min}	$\sum (x_{\text{max}}/x_i)/18 \pm \text{SD}$	TESVI
Be	3.1	1.6 ± 0.6	1.0
Al	7.5	2.2 ± 1.8	6.1
V	14.5	5.9 ± 5.0	12.3
Mn	2.2	1.6 ± 0.4	0.5
Co	2.9	1.8 ± 0.5	0.7
As	10.6	5.9 ± 2.7	4.9
Se	1.7	1.3 ± 0.2	0.3
Мо	22.8	13.6 ± 6.2	10.5
Ag	3.1	1.9 ± 0.6	0.9
Sn (BAL)	6.9	3.5 ± 1.9	3.8
Sb	4.4	3.6 ± 0.7	0.9
Bi	13.6	6.1 ± 3.5	7.9

TESVI values were listed in ascending order: Se, Ni, Mn, Co, Sb, Ag, Be, Cu, Cd, Fe, Pb, Cr, Sn, As, Al, Zn, Bi, Mo, V


TESVI graphical representation

TESVI values were listed in ascending order: Se, **Ni**, Mn, Co, Sb, Ag, Be, Cu, Cd, Fe, **Pb**, Cr, Sn, As, **AI**, Zn, Bi, Mo, **V**

*

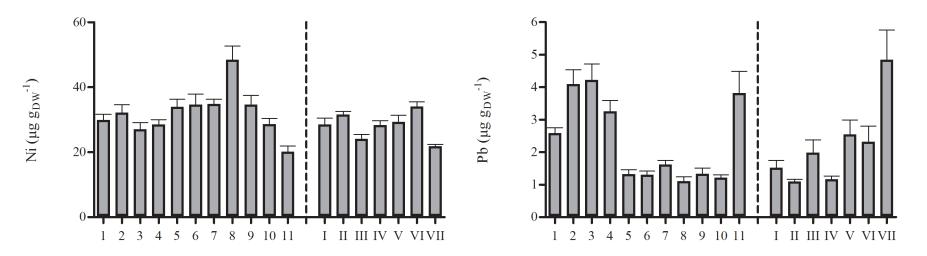
TESVI graphical representation

The graphical comparison of the overall spatial variability of trace element (TE) concentrations is based on the use of a proportional ordinate scaling between TEs, obtained by multiplying the minimum recorded mean concentration of each TE by the highest xmax/xmin mean concentration ratio (22.8 for Mo) calculated among the 19 studied TEs.

TESVI values were listed in ascending order: Se, **Ni**, Mn, Co, Sb, Ag, Be, Cu, Cd, Fe, **Pb**, Cr, Sn, As, <u>Al</u>, Zn, Bi, Mo, <u>V</u>

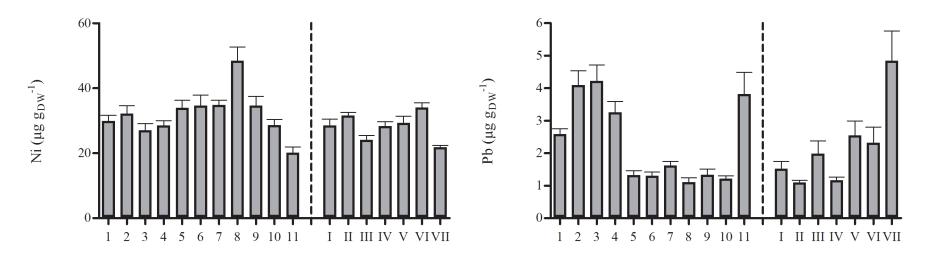
A. TEs broadly monitored with P. oceanica

	x _{max} /x _{min}	$\sum (x_{max}/x_i)/18 \pm SD$	TESVI	Site x _{max}
Cr	6.0	3.6 ± 1.3	2.2	St Florent
Fe	4.4	2.0 ± 0.9	1.9	Bravone
Ni	2.4	1.6 ± 0.3	0.5	St Raphaël
Cu	3.4	1.9 ± 0.7	1.2	Villefranche
Zn	19.6	13.3 ± 4.4	6.5	Bravone
Cd	3.9	1.9 ± 0.7	1.4	St Raphaël
Pb	4.4	2.7 ± 1.2	2.0	Ajaccio N.

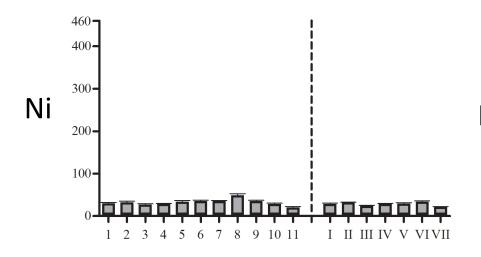

B. TEs little monitored with P. oceanica

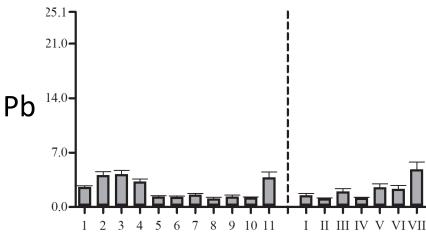
	X _{max} /X _{min}	$\sum (x_{max}/x_i)/18 \pm SD$	TESVI	Site x _{max}
Be	3.1	1.6 ± 0.6	1.0	Ajaccio N.
Al	7.5	2.2 ± 1.8	6.1	Ajaccio N.
V	14.5	5.9 ± 5.0	12.3	Antibes
Mn	2.2	1.6 ± 0.4	0.5	St Raphaël
Co	2.9	1.8 ± 0.5	0.7	St Raphaël
As	10.6		4.9	P. des Chèvres
Se	17		0.3	Calvi
Mo	22.8	22.8	10.5	Aregno
Ag	3.1	ZZ.U /	0.9	La Vesse
Sn (BAL)	6.9		3.8	Corbière
Sb	4.4	3.6 ± 0.7	0.9	Bravone
Bi	13.6	6.1 ± 3.5	7.9	P. des Chèvres

TESVI values were listed in ascending order: Se, Ni, Mn, Co, Sb, Ag, Be, Cu, Cd, Fe, Pb, Cr, Sn, As, Al, Zn, Bi, Mo, V

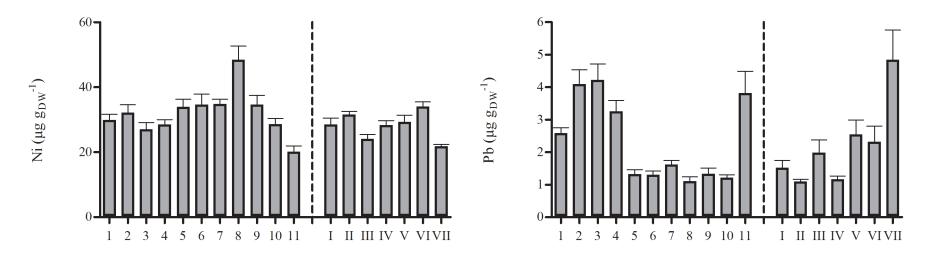


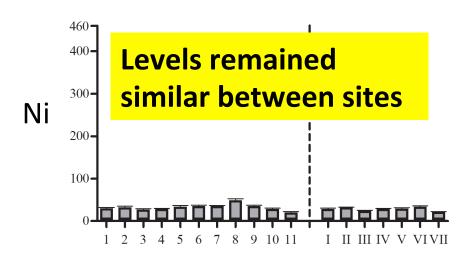
Classic graphical representation

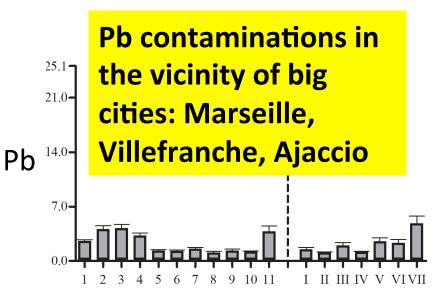


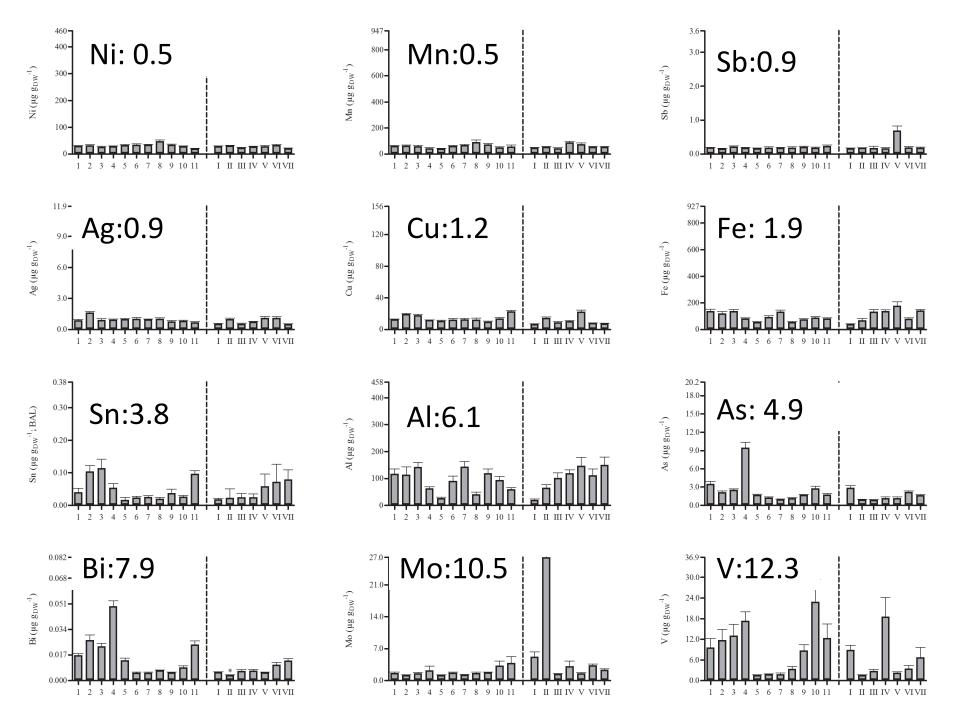

Classic graphical representation

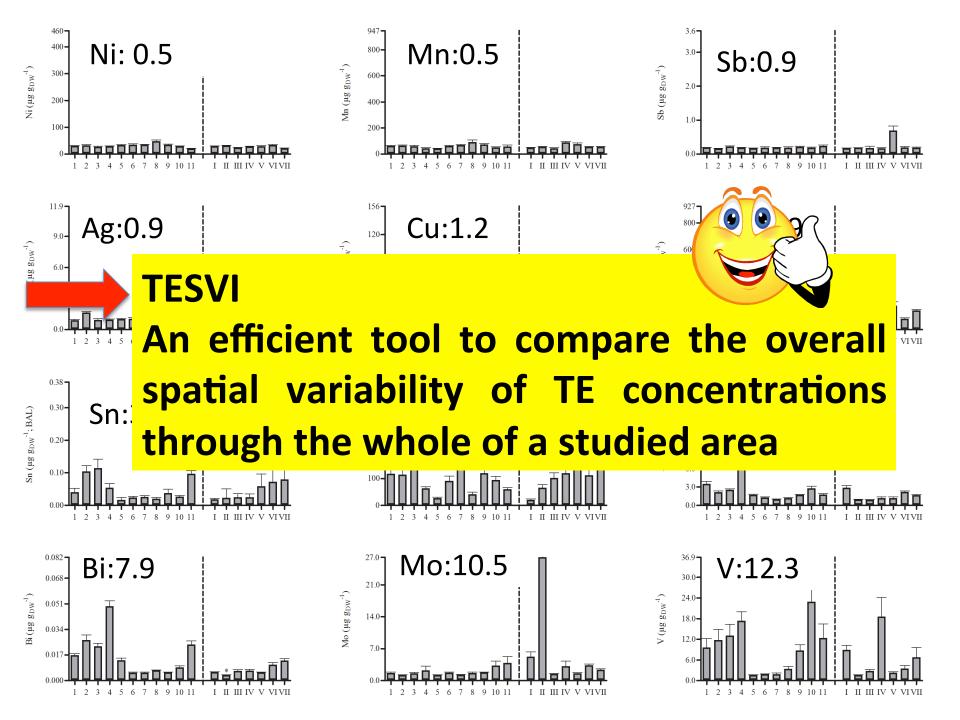
TESVI graphical representation

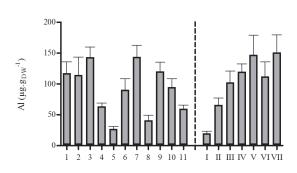

(a proportional ordinate scaling)

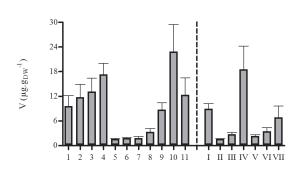


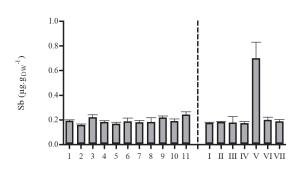


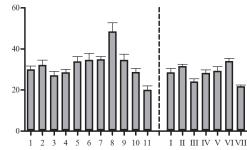

Classic graphical representation

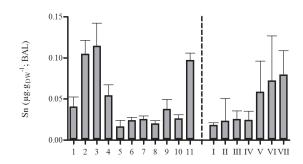


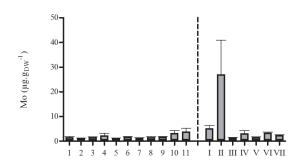

TESVI graphical representation





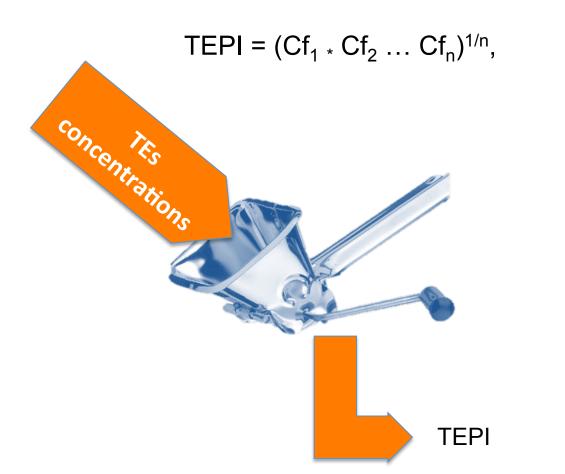






2. How to compare global pollution levels in TEs between several monitored sites?

 $\mathrm{Ni}\,(\mu g.g_{\mathrm{DW}}^{\text{-}1})$



Trace Element Pollution Index

How to compare global pollution levels in TEs between several monitored sites?

Trace Element Pollution Index (TEPI)

How to compare global pollution levels in TEs between several monitored sites?

Trace Element Pollution Index (TEPI)

TEPI =
$$(Cf_1 * Cf_2 ... Cf_n)^{1/n}$$
,

a weighted version of the Metal Pollution Index (MPI) of Usero et al. (1996, MPB)

where:

Cf_n is the mean normalized concentration of the TE n in a given monitored site.

The highest the index value, the more the monitored site is globally contaminated in TEs compared to the others.

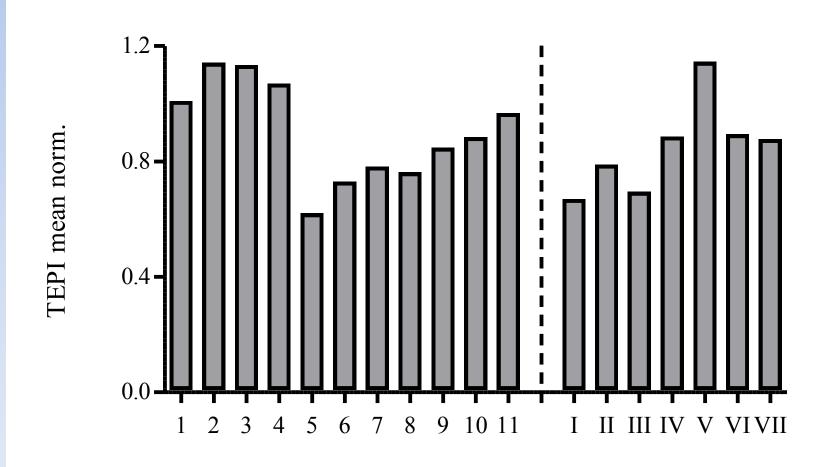
How to compare global pollution levels in TEs between several monitored sites?

Trace Element Pollution Index (TEPI)

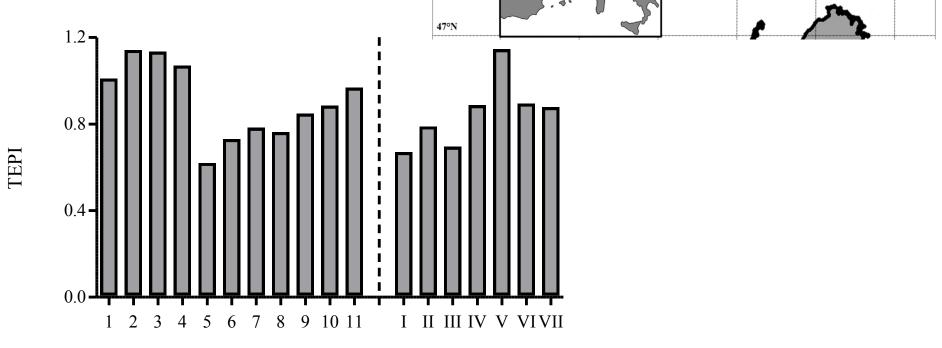
TEPI =
$$(Cf_1 * Cf_2 ... Cf_n)^{1/n}$$
,

a weighted version of the Metal Pollution Index (MPI) of Usero et al. (1996, MPB)

where:


• Cf_n is the mean normalized concentration of the TE n in a given monitored site. (divise la moyenne en 1 ET d'un site par la moyenne des moyennes des 18 sites échantillonnés)

The highest the index value, the more the monitored site is globally contaminated in TEs compared to the others.


STARESO Salon di Richardos Saus Mones

TEPI for the French Mediterranean littoral

P. oceanica

La Vesse (2)

Corbière (3)

Riou (5)

Bénat (6)

44

45

46

Ensuès (1)

P. Chèvres (4)

10°E

Taglio Isolaccio (IV)

Bravone (V)

St Florent (III)

Corsica

Aregno (II)

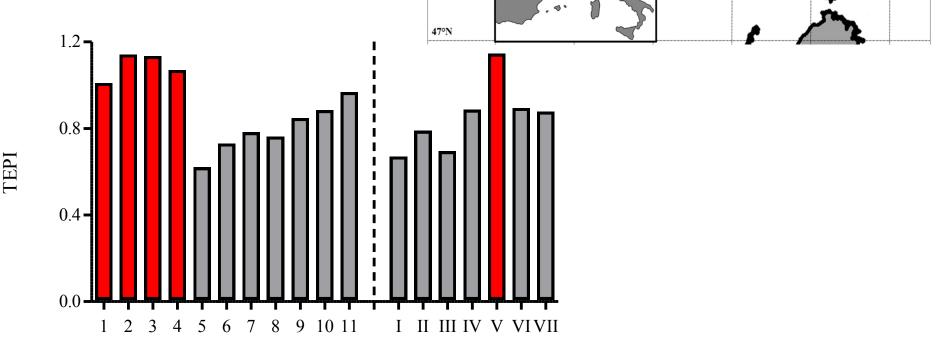
Villefranche (11)

St Raphaël (9)

Calvi (I)

Ajaccio Nord (VII)

Ajaccio Sud (VI)


Cap Roux (8)

Antibes (10)

Giens (7)

P. oceanica

La Vesse (2)

Corbière (3)

Riou (5)

Bénat (6)

44

45

46

Ensuès (1)

P. Chèvres (4)

Villefranche (11)

St Raphaël (9)

Calvi (I)

Ajaccio Nord (VII)

Ajaccio Sud (VI)

Cap Roux (8)

St Florent (III)

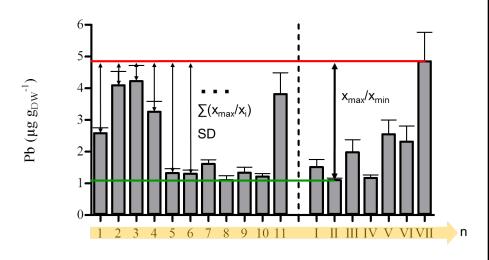
Corsica

Taglio Isolaccio (IV)

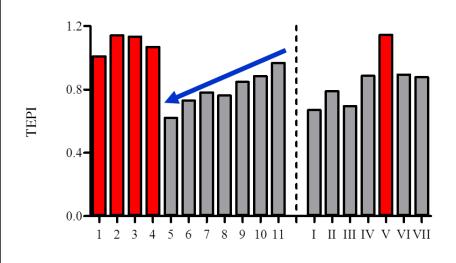
Bravone (V)

Aregno (II)

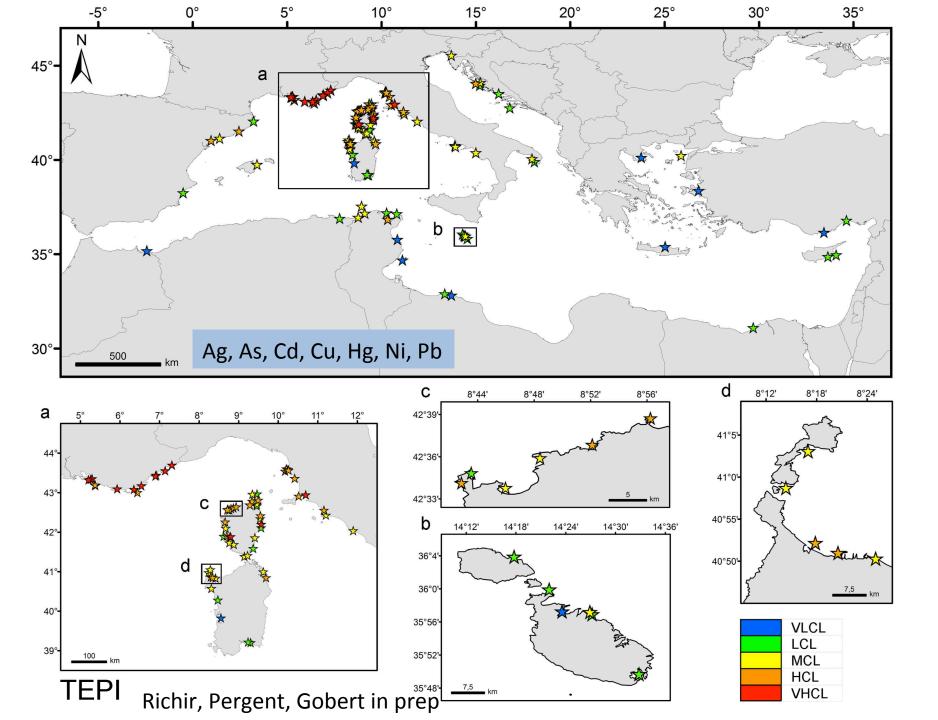
Antibes (10)


Giens (7)

Conclusion


Trace Element Spatial Variation Index

TESVI =
$$[(x_{max}/x_{min}) / (\sum (x_{max}/x_i)/n)] \cdot SD$$


Trace Element Pollution Index

TEPI =
$$(Cf_1 * Cf_2 ... Cf_n)^{1/n}$$

For A TE
High TESVI
A problem with a TE
At your spatial studied area

For a site
High TEPI
A problem on a site in comparison with the others

