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Summary - This paper presents a general error bound theory
for linear elliptic problems, which constitutes an extension of

particular .results obtained earlier by B. Fraeijs de Veubeke,

1. INTRODUCTION

The dusl analysis technique, which was mainly developed by

Praeijs de Veubeke and his collegas /1 to 9/ s congists in a double
computation of the same linear elliptic problem by two different
ways. The first or primal one is based on displacement models
while the second ore= dual one makes use of equilibrium models,
Undef certain conditions, such a dual analysis leads to an useful

energetic measure of the discretization errors of both approaches.

Up to now, the applicability of this dual error bound tech-
nique seemed to be restricted to two particular cases correspon-
ding, if we take stress analysis as an example, to zero applied

loads or zero imposed displacements,

In this paper, an analysis is proposed, which proves the
possibility to generalize dual analysis concepts to all cases
of boundary conditionsgiby a slightly different evaluation of
the error bounds. The theory is developed in a general abstract
frame and includes as particular cases the two classical results
due to Praeijs de Veubeke /3,6/. The last section iliustrastés

these concepts in the case of linear elasticity.



2. VARIATTONAL PROBLEMS

Let B be a Hilbert space and EO a closed subspace of E,

A bilinear form a(p,q) is given on E, which verifies the follo=-

wing conditions:

la (p,a)l € ¢ lplly Wallg (boundedness) (1)
a(psq) = al(q,p) (symmetry) - (2)
2
alp,p) 3 Aol , p>0, ¥pe E
(an ellipticity) (3)
As usual, gymbol E' will denote the dual space of E.

In what follows, we will be concerned by variational problems

which have the following general form:

V.P. = Let be given qDGE and f &€B', Pind § E_ such that

alg+ &, ¢ ) =1(q) (4)
whatever g gLEOa

The existence and unicity of the solution of such a problem
is guaranteed by lax-Milgram®’s theorem /10,13/. Moreover, taking
g = § in (4) leads to

a(g, §) = £(8) - a (g, §) »
which implies by the properties of the bilinear form

Wally ¢Z CUslig + ¢ llagll 50 (5)

an inequality which proves that this problem is a well-posed one,

We emphasize that most interest is in gemneral devoted %o

the complete solution

f= q, + 4 (6)
In this view,; note that there are a lot of different qéswhich lead
to the same complete solution. Consider for instance qu# g ~e With

02
Aot s the variational equation will be

alq,+ 84, a) = £(q) ¥ g €.
With q_,, it will be
a(q02'+ 629 Cl) = f(q> V q e EOO

Taking the difference betwwen these two equationis, one obtaing
al a4+ 8,) = (a,+ 8,y ) =0 VaeE.
Under the condition
(g4t 44) = (g + 4,) € B, (7)
this element itself may be taken as a particular ¢. This implies

by (3)
0 = al (ggq* 83) = (agp+ 85)5 (agq+ &) = (gpo+ 85) )



~ ~ 2
Z’p ”(q01+ qgf.) - (q02 + q2) H ] 9
that is to say

Qo1 * 9q = Q2™ Gp -
As condition (7) is equivalent to
Q%1 ~ 992 € Eo‘9

Wé ghail say that two elements 409 and PR of E are EU= equivalent

if they differ only by an element of EQ0 Thus, two variational problems

involving the same bilinear form, the same f and two Eo=equiva1ent

q,°'s lead to the same complete solution.

"Now, a very simple lemma which will be useful in the following:

Suppose that £(E )_# { o} unless £ = 0, Then, among all qﬁ which

are Eumequivalent to a given s it is possible to select (at least)

one particular ﬂ; verifying f( a; ) = 0.

Remark fisst that if £(E) = {0} , f is equivalent to zero in
Eo’ and may be replaced by zero without change of the solution. Our
restriction is thus natural,

If £ = 0 , the lemma is of trivial nature. In other cases, con-
sider peE_ such that f(p) # O. Taking

t(q,)

G, =9 " Ty P (9)

leads the announced result.

As is well known, every symmebtric variational problem of the
form V.,P. 1is equivalent to the minimization of the functional
R (a+ a) =+ a (q+ a5 g+ a) = £(a+a)
among all qel%)or, in other words, to the following minimization

problem:
M,P, - Find f & q.* EO which minimizes in this linear manifold the

functional

R (x) = & alz,r) - £(2). (10)

3. RAYILETGH~-RITZ APPROXTMATIONS

The basis of Rayleigh-Ritz approximations (including conforming
finite element techniques) is to replace the space E by g finite
dimensional subspace Eh° Subspace Eo is then replaced by EO

- Ehf\Eo.

It is necessary to make the three following restrictions:

R, : By # {0}



R, ¢ The given q, is Eon equivalent %o some;O e E

3 h®

Conditions R1 and RE', which only exclude "foo 1little" subspaces

leading to meaningless solutions, are fulfilled in all reasonable
3

idealizations. In contrast, condition R, is a real restriction. Its

purpose is to preserve the inclusion

4, + th c oq, + Eo o
. Rayleigh-Ritg' technique consistsvtb*miﬁimizecﬁg(r) ona0 + th o
If the three preceeding conditions are verified, this approximate

problem will be called in the following a regular internal approxima-

tion. For simplicity, overbars on 4, will be omitted.

The approximate solution fh =q  + &h verifies
alq+ G5 q) = £(q) (11)
whatever 9, € tha Since q,* th < g, + Eo’ one has the inequality
A1) - mn £ ) 3 wan Fw =A@

rp€ayt By requt B, (12)

Now, the quantity

) A ay Amn\ Lo S g

d(rh9 P) = ( a(fh B, B £) )
will be called the energetic distance bhetween # and fh, The word
distance is justified by the fact that, since £ - Ah e B,

28 & 2 a [I2
a= (%, rh)ZP "r - B ”E .
Calculating this digtance, one has

?(2, 8) =a ((a,+ &) - (a+ D , (a8 - (a .+ )

L

alqu+ &5 a+ §) + alq+d, q+ Q)
-2 a(qo+ d, q+ qh),
Noting that
Za(q0+ 69 q0+ ﬁh)

i

2alq+ 4, q + @) + 2alq + 4, & - &)

2a(qo+ a, .+ §) + 2f(§h - q),
where account has been taken of relation (4) and that §h= § e E s

one obtains
2 ” o N N ~ ‘ N
a“(f, rh) = a(qo+ & gt qh) -2 f(q0+ qh) + 2 f(qo+ q)
- a(qo+ as q0+ a)s

l1.e., the following fundamental result:



a2, 2,) =2 ( & (2) - £@). (13)

Note finally that the three resirictions R1 to R3 permit to
suppose, as in the undiscretized problem, that f(qo) = 0, 4 being
in tho
4, GENERAL DUAL ANALYSIS SITUATIONS

7

The general dual analysis frame may be described as follows., Let

V and H be two Hilbert spaces, equipped with scalar products (u,v)V
and ( E’OT)H » Let @ be a linear operator from V to H, which is
bounded,
<
oull, < 1w, Hull, (14)

Let now Vo be a closed subspace of V, in which the following

ellipticity condition is verified
(du, du), > & uuufr Yuev, , ®>0 (15)

This inequality implies that the image bVo of Vo in H is a closed
subspace of H.
Finally, let C be a linear operabtor from H to H which exhi-
bits the following properties:
. Noell & MylEl ;  (bowidedness) | (16)

- (ce ,m); = (€, Cm)y (hermiticity) 17)

2
- (CE & )y2 ¥ HE Nz sy>0 (e11ipticity) (18)

These conditions implie the existence of an inverse operator C"JI
which is also bounded, hermitic and elliptic on H., In fact, for a

given O € H, the equation

_ CeE =0 ' (19)
corresponds to seeking an element € & H such thab

(CE»O’,/Q)H=0 VmeHn
or equivalently,
(Ce,m)y = (0,m)y ¥mesn

By virtue of Lax-Milgram's theorem, this problem admits an unique

solution Verifying

“5"}1 Sjg— "(T”H ’
that is to =zay
‘IC°10’||H s%—IIO’IIH . (20)

Now, taking € = ¢’ in (16) leads

- 3
IIc G'MHZ -‘-I\";I';”C'” H



and this implies by (18) the ellipticity relation
-1 -1 -1 ~1q 2 P
(G, ca),=(cc o, c o)y lic ol o = M;——HO'”H

(21)

Now, by setting €& = C’10' and "I = C°1t in (17), one obtains

(a,c¢'t )= (cTle,T), (22)

that is,the hermiticity relation for C“1a

5. THE PRIMAT, PROBLEM

The primal problem consists ag follows

P.Po - u € V andf €V being given, find i e V -—such that

., (c(dus 2B, du)y = £(w) (23)
whateer u € VO

It is easy to see that this problem is a particular form of
problem V.,P, described in section 2. This results from the inequa-
lities

l(cdu, dv) | < m,lRull, Movll < Mo

o M llu"v Hvﬂv

©du, Du)y, FyRulZzay a2  Yuev

The primal problem is also equivalent to the minimization of

 the primal functional

dg 1(W) = J_i_‘ (C bW, Bw) - 'f(w)

on the linear manyfold U+ Voe Consequently, any regular internal
approximation of thils problem will lead to

2 N ~ A ) N N Pl N

a3 (wh, ®) = (C(awh=» oy, awh—bw) = 2 ((721(wh) - & 1(w) )

. (25)
6., THE DUAT, PROBLEM

Let us introduce the subspace SO9 defined as the orthogonal

subspace of BVO in H,
s, =f{oen| (o, =0 VYvev | . (26)

This is naturally a closed subspace., Owing the fact that bVo is

also closed, one concludes to the interrelations

8o = Vs 'avoj_ = 8. (21)
FPor any arbitrary fionctional f € V', it is possible %o find an

element (G o € 1 such that

(05 Dv)y = £(v) 14 vev, . (28)

In fact, any




0 =C¢(Qu+ O8) + T
0 o

where (uo + ) is the solution of the primal problem and € &€ SO

visibly satisfies to condition (28).

Now, the dual problem is as follows
D.P. = A functional £ € V' and an element u.OE.V being given, let
_go be such that
(0,,0v); = £(v) Vvev,.

Ping O € 5,0 verifying

(cNo +G), Oy = (du,0), (29)

whatever 0 & S\J

This problem is also a particular form of problem V.P. descri-

bed in section 2, since

o, Tl <€ 5=ty 1Ty

clo, 0) ;-—‘)—)-——ucruz Voe uo s .
H MZ ‘ H 0
e
The fact that the solution & verifies

-1 A

(c™ (0 +0T) - ou_, 0 )y =0 Vdeso

implies

¢cNT +T)-du € 5 ;. =3V

* Y o o ol 7 o®

[« 3
that is to say, there exists'v Vv, such that

- A
C “(GO+ T )= du + Ov,
or
P
a +0 = C(buo+ Ov).
o~
It follows from the definition of Uo and O that

flu) = (O'o +a9 bu)H. = (C‘(buo-f- Dv), O u)H ~VKM€.V0

A

and this proves that v is precisely the solution 4 of the primal

problem. In other words, the primal and the dual problem lead to

two different forms of the same solution.

The dual problem is equivalent to the minimization of the dual

functional

-1
ﬁz(f))”%(c PPy (9 ugpy (30)
on the linear manyfold 0’0+ So" Conbsequ.ently, any regular internal

approximation of this problem will lead to the following error bound:




2, -~ A -1, ~ -~ -~ A A ' A

5P P )= (€T (PP Py Py =2 (0P - PN
(31)

7. DUAL ERROR BOUNDS

It is possible to uniformize the two distances d1 and d2 by

noting that
a2(a, #) = (C(DH - DM, DA -M), = (¢ 'C(Df - OM),C( DR -0)),
= a(cdw,, cOR ). (32)

Now, the fact that F’: coO# implies

0 = ag(ﬁ, cd #) (c“‘"((:— cOw), {5«. cdM),

(c™'p LB g+ (3, B, -2 ( F> . COR),

The last term may be transformed as follows:
-2(p,CO%). ==2 (G +0, du +df), =
Z(F COWy = o ? ol T H T

1
]

2 (0T, du)y-2 (0 +T, D)y

|
i

2 (0 +T, du )y~ £(8)

fond Py
2 (@ ,+T, Ouyly= £(u+ &),
where account has been taken to (28) and the fact that one may always

assume that f(uo) = 0. As a result, one obtains

k(o) + E P =0 (33)

h
A K
The fact that f = cO® implies'

Fal ~
Lat now #,_ and th be regular internal approximations of # and f o

2B, 000) = (TP~ cRa), P - cd),
(€™ (Py-P+ 0% - cD0), P-P 4008 - cR8),

a5 (PP ) + 45 (038, €O + 2 (P =P, D8-0%,),

Given that
~ P fond -
Ph“’P =Uh-—0‘ € S,
of, -0 = bu.h—bué:bvo=sol .

the last term vanisches, so that

]

é(ph, com) = a (Ph,P ) + a2 (%, f)

2( (P - AP N+ 2tk @ - )

and from (33), we find the following expression for the distance




(P, 009 =2 ( & (@) + (P (34)

0f course,

200, 0) €a2( 0, 0) +a (5, =2k, a) + & (P (35)
and similarly,

2(F,p,) <2 @)+, (B (36)

Results (34) to (36) form the basis of a general dual error

bound analysisg, For: thé same physical situation,perform two compu-

tations, the first ons being a regular inbternal approximation of the

primal problem, and the second one,a regular internal approximation

of the dual problem. Then, inequalities (35) and (36) provide error

bounds for both discretization errors., This result, obtained here

in the general inhomogeneous case, is of great interest at a prac-
tical point of view, from it permits a secure evaluation of the

actual error, independently of any convergence result. In order to

qualify a given analysis, the above error bounds may be compared 1o
/ﬁ

P,h)H and (CO®W ,Ewh)H,,

the computed energetic norms, i.e. (Cé1FIﬁ

Two pérticular results of this type were obtained by Fraegs de
Veubeke /1,2,3,6/ and widely used by his collegas{ 4,5,7,8/. They
correspond to the following situations

a) u, =0 . In this case, % = 0, Wh =@ and, by(4) ,

B () =1 (DR, DRy - 2 = = H(CBH, D)y

and similarly,

R0 =-3 (coh, D), ,
while . . » o .
LR B =t @ Py Py o P =t @R LP
so that % . .
a§<f>h, com) = (€7 Py Py - (€ of, ), (37)

From equations (25), (31) and (33), one can deduce
o~ A~ ""1A -~ "1A 5
(€d4,,08), € €OHDMy, = (TP Py (€ Puu Py
(38)

p) O =0 . Here, the situation is reversed. One has
0

-lr A

#2(,[511)’"%(0_1?511" Prla - ‘féz(F)="%(C PP Ja

R 0) =% (Cof, D)y , dE.() =% (CO8 D@



so that
2, A - ‘ ,
d2( Fh, Cawh) = (wa bw ) Ph, Fh - (39)
and
"B P € @B LBy = (0B9, DAY, < (cDA, D8,

(40)
Relations (38) and (40) are known by structural analysts as

bounds on the direct influence coefficients.

8. APPLICATION T0O STREBS ANALYSIS

Let £) be an open set of R

Ve @ @) = {us o, u) | yet?@), puetf}
(41)

, and define

equipped with the sealar product

(u,,v)V = f (u v+ DJ 1 Djvi) dx (42)

where repeated 1ndlces implie summation over the three wvalues 1,2,3.

The boundary T of €1 consists of two parts i", and f_', in such

1 2
a manner that
L U
(43)
fd, , [ as =0
(» nan
Let V be the subspace of dlsplacement whose traces on f"
vanische
={uév| ulr.1=0} (44)
The operator O is defined as
blau = 5(D1u3+ Daul) (45)
to
and transforms V invthe space given by
5 \
H ~{eij} £y 5= 5319 ;€L (_Q)} (46)

Prom Korn's inequality /11,13/ , any u € v, verifies
2
L o;m dgm  ax palully , d>o (47)

Pinally, let the operator C be defined by ite 21 independent

components (which may depend upon x)

Cs 01 (B = Cyq59 (8) = G490 () = € () € L? (), (48)
with an uniform positive definiteness condition on £L :
Cisn(®) €435 €y 3y €55 &5 » Y> O (49)

The classical formulation of elasticity problems consists to

solve (in the distributional sense) the following equations:

10



11
R 2
Dj(c'jkl 'bklu) +f, =0 in 0, f, €L )

i
. i
— 2
15005 5 Opq®) = %y on T, t; e® () (49)
L w—— ——y 4%_
u; = oug on r’1, uieﬂ( FT)

1 -1
(For the definition of H? (I ) and H 2([ ), see e.g. /10,11/)

The primal formulation consists to solve this system in the virtual

work sense., Let firt u° € V be such that

0’ _ -z
b T I (51)
Asg pointed in section 2, one may assume that
(o] r [e] =
in ug dx o+ jti ug ds =0 ‘ (52)

n r~

‘In the primal formulation, the-functional to minimize is
g, () = 3 fcijkl ?;50 Dqu ax ._'r[_fi w, dx Ftiui as  (53)

-2 2
This minimization has to be performed in the manifold u® + VO°

Tt is the well-~knovm total energy principle.

In the dual formimlation, our first task is to seek a particular 1
field O° & H such that

o sl

Jo‘ij 0, u dax = ffiui dx + ftiui as Yuev =~ (54)
N ol r

i.e. verifying the equilibrium conditions in the virtual work sense.

. B
Noting that the space @())" of smooth displacements with compact

support within £ is contained in Vs, one can see that (54) implies

° o« o= i
rDjO.ji + £ 0 in 0 (55)
in the distibutional sense, Therefore, the vectors

Gy = (0935 Ops» T3y)
are elements of the space
2 . 2
On this space, it is possible /11/ to define boundary traces
1
n,O.. H?
;0 €53 (r)
which, by virtue of (54) and (55), will here verify
njgji =ti on Fz . (56)
as . can.be-verified by a formal integration by parts.

Subspace So is defined as

S, = V{O'éH‘ jcrij biju dx = 0 Vuevo} (57)
-
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By a similar argument as for O°. , each (7_ EQSO verifies

= (55 Opys Tg3)  Hyy ()

- s o)X
Djaji = 0 in (58)

n.g,, =0 on [
J o ai 2

The dual problem consists thus in the minimization in 0° + SO of

the dual fanctional

=1 o
(]ﬁz(c) =1 fc.. 0,.0,, ax - jO‘ij Biju dx
—a N

ijkl ij
£
This expression may be reduced to a more familiar one by transforming

the last term in the following way. First, an integration by parts

gives

jgij B .u° dx = JG’ (D u°+ Dau° ) dx =
ij i i

jkT n.ul 4s - ‘{(Dj Osi) u; dx

Recalling that CTij€C7° + 8 and taking account to relations (55) to
(58), one obtains
° o o - o
f’ci ug as + f]_anjiui dS+ffi ug dx fnjgji ug as,
I Iy

-4
the last expression resulting from assumption (54). Finally,
o ‘,f o as .
/3 ,(T) = Jz. 3 3k1 ijO”kl dx n, Oy ug ds (59)

The reader will recognize the complementary energy principle.

We now turn our attention on finite element approximations
of these two problems. The case of the primal problem (displace-
ment modél ) is rather simple. Condition th:V is the well-known

conformity conflition. Restriction R, of section 3 means that the

3
Dirichlet conditions on F1 have to be taken in account exactly

in the finite elemént model.

The dual problem requires somewhat more care, Condition HhC:H

requires only

0,17,
a condition which is fulfilled by all local polynomial approximations
on a bounded set. The necessity of ensuring interelement transmissions

appears from the definitions of g° and SOe If T. is the set of finite

h
elements K, one may write



2

joi"j 0, ju dx = 2 f 0g, biju dx =

n KeTh X
e fncr° u, 4S - =z f (D, %) u, dax
Jraii R s B e A i
KéT Kemh K

the integration by parts being justified by the fact that @°%. is

smooth in each element, The conditions are:now

D.09%, +f., =0 in each KeT
J7 Jt

i h
'nj Gsi, - equilibrated at interelement boundaries
‘ : (60)
°o r
nJCTji ti on 1,

By a similar way, one finds that a stress field O is contained

in SO if the preceeding relations are verified with fi= 0 and ti=

These are the c¢lassical relations for equilibrium elements. Restric-
tion RB has here the meaning that equations (60) can be solved
exactly by the finite element model.

Under these conditions, if ah and 8H’are the finite element
solutions of a same elastic problem whose exact gsolution is given
by @ and G s the dual error bounds are

Ay s Al
a) j 131{1(0 - :Lqu 2)pqu )(le - Cklrsbl ) dx =
e

2( @+ £,0FH)Y (6D

v [efl (BE - T O(EE - ) axgad @« (M)
A c
(62)
c) Jcijkl(aijﬁh = 0y 50 aklﬁh = 08 ax

P

2 () + (5" - (63)

9., CONCLUSION

A general dual error bound theory has been presented, which
works in all inhomogeneous problems and includes earlier results
due to Praeijs de Veubeke,

Presented in a general abstract frame, this theory is appli-
cable to many physical situations inecluding, among others, elambti-
city, thermal conduction problems, diffusion, electrostatics, in-
oomprefsible lubrication, etc. The application to elasticity has

been egated as an illustration.
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