INTRODUCTION & BURDEN

Perinatal Group B Streptococcal Disease

Pierrette Melin
Belgian National Reference Centre for GBS
Microbiology, University of Liège, Belgium
Clinical Microbiology, University Hospital of Liège

Content

- History and historical context of perinatal GBS disease
- Early and contemporary epidemiology
- Pathogenesis and risk factors
- Prevention strategies through
 - Maternal intrapartum chemoprophylaxis
 - Evolution of policies, effectiveness and concerns
 - Towards European consensus
- Maternal immunization

Streptococcus agalactiae or GBS

Gram positive cocci
- Encapsulated
- Catalase +
- β-hemolytic
- CAMP test +
- Hippurate +
- Esclunie-
- Orange pigment

Rebecca Lancefield
1895-1981

10 capsular serotypes (Ia, Ib, II-IX)

1887, Noccard-Mollereau, bovine mastitis
1933, Group B Antigen
1964, severe neonatal sepsis, Eschloff et al N Eng J Med
> 1970, N°1 in neonatal infections
Group B streptococcal diseases in neonates

- Since the 1970s, leading cause of life-threatening infections in newborns
 - Neonatal illness/death
 - Long-term disabilities

- Maternal morbidity
 - Along pregnancy
 - Peripartum

- Serious diseases among elderly and adults with underlying diseases
 - Significant mortality

GLOBAL public health major concern! Also in developing countries

GBS Neonatal Infections
A. Schuchat, Clin Microb Rev 1998;11:497-513

- EOD: 80-90 % occur before 24 h

GBS Neonatal Infections
A. Schuchat, Clin Microb Rev 1998;11:497-513

- Incidence per 1,000 live births
 - EOD: 0.3 – 3
 - LOD: 0.5

- Onset
 - 0 – 6 days (or 0-72 hrs)
 - 1 week – 3 months (up to 1 y)

- Mean age at onset
 - 12 hrs
 - 1 month

- Transmission
 - Vertical
 - Intrapartum
 - Horizontal (vertical?)
 - At delivery
 - Nosocomial
 - In the community

- Portal of entry
 - Inhalation ➔ pneumonia ➔ translocation into bloodstream ➔ Likely intestinal

- Clinical presentation
 - Respiratory distress with fulminant pneumonia
 - Septicemia
 - Meningitis (25-70%)
 - Cellulitis, osteomyelitis

- Mortality
 - < 10 %
 - 0 - 6%

- Capsular serotypes
 - All (Ia, III, V)
 - III, mainly
 - Hypervirulent clone ST17 /meningitis
INTRODUCTION & BURDEN

- **GBS colonized mothers**
 - 60 - 40 %
 - 40 - 60 %

- **Non-colonized newborns**
 - 96 - 98 %

- **Colonized newborns**
 - 96 - 98 %

GBS EOD vertical transmission

- **Asymptomatic**
 - 96 - 98 %

GBS EOD colonized mothers

- 60 - 40 %
- 40 - 60 %

GBS EOD non-colonized newborns

- 2 - 4 %

GBS EOD long term sequelae

- Sepsis
- Pneumonia
- Meningitis
- Long term sequelae

GBS EOD horizontal transmission

- CDC

Risk factors

Airborne spread

- GBS EOD

GBS EOD screening

- 96 - 98 %

GBS EOD vaccine

- 96 - 98 %

GBS EOD conclusion

- 96 - 98 %

Distribution (%) of capsular types of GBS isolated in Belgium from different groups of patients (1998-2007)

- Type III Hypervirulent clone ST17
- EOD → meningitis

- 236 neonatal EOD; 64 neonatal LOD; 721 adults
GBS maternal colonization

Risk factor for early-onset disease (EOD):

- **vaginal GBS colonization at delivery**

- **GBS carriers***
 - 10 - 35 % of women
 - Clinical signs not predictive
 - **Dynamic** condition
 - Intestinal reservoir
 - Prenatal cultures late in pregnancy can predict delivery status

GBS EOD - Belgian data

- Incidence
 - 1985-1990: 3/1000 live births
 - 1999, estimation: 2/1000 live births
 - 2010, estimation: < 1/1000 live births
- Meningitis: 10 %
- Mortality: 5 - 10 %

- 60 % EOD (130 cases) : WITHOUT any maternal/obstetric risk factor except colonization

- Prenatal screening
 - Recto-vaginal cultures: 13 - 35 % GBS Positive

Additional Risk Factors for Early-Onset GBS Disease

- Obstetric factors***:
 - Prolonged rupture of membranes,
 - Preterm delivery,
 - Intrapartum fever
- **GBS bacteriuria***
 - Previous infant with GBS disease***
 - Immunologic:
 - Low specific IgG to GBS capsular polysaccharide
 - No difference in occurrence either in GBS Positive or Negative women, except intrapartum fever

Stages in the pathogenesis of GBS neonatal EOD: **Bacterial & individual factors**

- **Colonization**: adhesion to epithelial cells
different virulence factors (pili, scpB, ...)

- **Blood Brain barrier**
 - Pili, III ST-17
 - β-hemolysin,

- **Bacteria**
 - Peptidoglycan
 - β-hemolysin, ...

- **Sepsis**
 - IL1, IL6, TNF α,
PGE2, TxA2,

- **Resistance to phagocytosis**
 - Capsule
 - CSa peptide

- **Phagocytes cells, CPS**
 - Antibodies
 - Complement

GBS pathogenesis

- Ascendant transmission (amnionitis)

*Carriage not restricted to women!

Loquet S., Melin P. & al. J Gynecol Obstet Biol Reprod 2005
GUIDELINES FOR PREVENTION OF GBS PERINATAL DISEASE

- Universal prenatal screening-based strategy
- Risk-based strategy
- No guideline

Stages in the pathogenesis of GBS neonatal EOD: Bacterial & individual factors

- Colonization: adhesion to epithelial cells different virulence factors (pili, scpB, ...)
- GBS pathogenesis
- Intrapartum antibioprophylaxis > 4 (2) hours before delivery

Stages in the pathogenesis of GBS neonatal EOD: Bacterial & individual factors

- GBS vaccine « still expected » Nearly within reach

Which prevention strategy for GBS perinatal diseases?

- Intrapartum antibioprophylaxis (IAP)
- Immunoprophylaxis

GBS pathogenesis

- Ascendant transmission (amnionitis)
- Resistance to phagocytose
- Capsule - C5a peptidase
- Antibodies, Complement

GBS vaccine

- Phagocytes cells, CPS (& pili)

β-hemolysin, invasins

GBS vaccine « still expected » Nearly within reach
Prevention of perinatal GBS EOD

- Intrapartum antibiotics
 - Highly effective at preventing EOD in women at risk of transmitting GBS to their newborns (≥ 4 h) (clinical trials in late 80s)

Who is the women at risk?

Risk-based strategy or Screening-based strategy

Impact of prevention practices
Early- and Late-onset GBS Diseases in the 1990s, U.S.

- Group B Strep Association formed
- 1st ACOG & AAP statements
- CDC draft guidelines published
- Consensus guidelines: Screening -Risk-based
- Screening >50% more effective than RF

Why is Screening more protective than the risk-based approach?

- Broader coverage of « at-risk » population
 - Captures colonized women without obstetric RF
 - High level of compliance with recommendations
 - Enhanced compliance with risk-based approach cannot prevent as many cases as universal screening

Prevention of perinatal GBS EOD

- Screening-based strategy

INTRAPARTUM ANTIMICROBIAL PROPHYLAXIS

Main goal:
- To prevent 70 to 80 % of GBS EO cases
- Secondary:
 - To reduce peripartum maternal morbidity
INTRODUCTION & BURDEN

VACCINE

CONCLUSION

Impact of prevention practices
Early- and Late-onset GBS Diseases, U.S.

European strategies for prevention of GBS EOD

Intrapartum antibioprophylaxis recommended

Screening-based strategy
- Spain, 1996, 2003, revised 2012
- France, 2001
- Belgium, 2003, revision ongoing 2013
- Germany, 1996, revised 2008
- Switzerland, 2007

Risk-based strategy
- UK, the Netherlands, Denmark

No guidelines
- Bulgaria, …

CDC, USA, MMWR, Vol 59 (RR-10) August 2010
Endorsed by
- AAP
- ACOG

SHC, Belgium July 2003
Revision ongoing

Universal screening-based strategy for prevention of GBS perinatal disease

Vagino-rectal GBS screening culture at 35-37 weeks of gestation

For ALL pregnant woman

GBS Neg
- Not done, incomplete or unknown GBS result

GBS POS
- Facultative Intrapartum rapid GBS test**

> 1 Risk factor:
- Intrapartum fever > 38°C**
- ROM > 18 hrs

Intrapartum prophylaxis NOT indicated

GBS Neg
- Intrapartum prophylaxis NOT indicated

GBS POS
- Intrapartum antibioprophylaxis indicated
INTRODUCTION & BURDEN

Adhesion to a common protocol is a key of success
Multidisciplinary collaboration is mandatory

GUIDELINES

SCREENING

VACCINE

CONCLUSION

Intrapartum IV Antibio-Prophylaxis
(CDC 2010, Belgian SHC 2003)

- **Penicillin G**
 - 5 millions U, IV initial dose, then 2,5 to 3 millions U IV every 4 hours until delivery.

- **Ampicilline**
 - 3 g IV initial dose, then 1 g IV every 4 h until delivery.
 - Acceptable alternative, but broader spectrum, potential selection of R bacteria

- **If penicillin allergy**
 - **Patients at low risk for anaphylaxis**
 - Cefazolin, 2 g IV initial dose, then 1g IV every 8 h until delivery.
 - **Patients at high risk for anaphylaxis**
 - Clindamycin, 900 mg IV every 8 hours until delivery.
 - If GBS resistant to clindamycin : use vancomycin

Duration of antibiotherapy

Threatened preterm delivery

Planned caesarean delivery for GBS colonized women
Concerns about potential adverse / unintended consequences of prophylaxis

- Allergies
 - Anaphylaxis occurs but extremely rare
- Changes in incidence or resistance of other pathogens causing EOD
 - Data are complex …
 - BUT Most studies: stable rates of « other » sepsis
- Changes in GBS antimicrobial resistance profile

Concerns: Clinically relevant antimicrobial resistance

- Increase of resistance to erythromycin and clindamycin
- Susceptibility to penicillin
 - Very few « not S » isolates recently characterized in Japan
 - Mutation in pbp genes, especially pbp2x
 - MIC= 0.25 -1 mg/L
 - No clinical impact?
 - Very few in the U.S.
 - All labs should send to reference lab
 - Any « non-S » isolate for confirmation
 - All invasive isolates for resistance surveillance

Erythromycin and clindamycin resistance among clinical isolates of GBS (Belgian data)

- Resistance to erythromycin: Constitutive + Inducible R (≥ 75% CR / 25% IR)
 - D-Test recommended

Concerns about potential adverse / unintended consequences of prophylaxis

- Management of neonates
 - Increase of unnecessary evaluation
 - Increase of unnecessary antimicrobial treatments

 ➔ Algorithm for secondary prevention of EOD among newborns
 - Symptoms; maternal chorioamnionitis; prophylaxis; gestational age; time of rupture of membrane

Rem.: 80-90 % of GBS EOD are symptomatic < 24 h of life
Secondary prevention of GBS EOD among newborns

Improved management according to clinical signs and risks

- **Among remaining cases of EOD**
 - Some may be preventable cases
 - Missed opportunities for (appropriate) IAP
 - False negative screening

CDC revised guidelines 2010
DEVANI project, unpublished data 2011*

Remainning burden of GBS EOD Missed opportunities

In spite of universal screening prevention strategy
In spite the great progress
Cases still occur

SCREENING FOR GBS COLONIZATION

WHEN?

HOW?

IMPACT?
Antenatal GBS culture-based screening

Goal of GBS screening
To predict GBS vaginal (rectal) colonization at the time of delivery.

- Critical factors influencing accuracy
 - Anatomic sites
 - Timing of sampling
 - Screening methods
 - Culture
 - Procedure
 - Media
 - Non-culture

Crucial conditions to optimize SCREENING

- **WHEN** 35-37 weeks
- **WHO** ALL the pregnant women
- **Specimen** Vaginal + rectal swab(s)
- **Collection** WITHOUT speculum
- **Transport** Transport/collection device/condition (non nutritive medium: Amies/Stuart or Granada like tube) (type of swab)(Length and T°)
- **Request form** To specify prenatal « GBS » screening
- **Laboratory procedure**

From direct plating on blood agar
Evolution of culture methods

Use of selective enrichment broth
- To maximize the isolation of GBS
- To avoid overgrowth of other organisms

Use of differential agar media
Recommended by some European guidelines (+ CDC 2010)

- **GRANADA** (M.de la Rosa,CM)
- **Strepto B Select**
- **Strepto B ID**

Which agar or which combination?

+ Blood agar

Workload - costs - extra-testing - non β-hemolytic GBS detection to be considered
Prenatal culture-based screening: Limiting factors

- **Positive and negative predictive values**
 - False-negative results
 - Failure of GBS culture (oral ATB, feminine hygiene) or new acquisition
 - Up to 1/3 of GBS positive women at time of delivery
 - Continuing occurrence of EO GBS cases
 - False-positive
 - Positive prenatal screening /negative at time of delivery
 - Unnecessary IAP

Need for more accurate predictor of intrapartum GBS vaginal colonization

Alternative to GBS prenatal screening: intrapartum screening

- Theranostic approach
 - Turnaround time
 - Optimal management of patient
 - Collect specimen at admission
 - Specimen analysis
 - “POCT”?
 - Results
 - 30-45 minutes, 24 hrs/7 d, robust

Benitz et al. 1999, Pediatrics, Vol 183 (6)

Intrapartum screening theranostic approach: expected advantages

- Inclusion of women without prenatal screening/care
- Identification of women with change of GBS status after 35-37 wks gestation
- Increased accuracy of vaginal GBS colonization status at time of labor & delivery

IAP addressed to right target
- Reduction of inappropriate/unnecessary IAP
- Broader coverage of « at GBS risk women »

Improvement of prevention
Real Time PCR for intrapartum screening

- Advance in PCR techniques & development of platforms
 - BD GeneOhm™ Strep B Assay (+/- 1 hr) (in laboratory)
 - Xpert GBS, Cepheid (35-45 min) (can be performed as a POCT)

Real-time PCR, very promising, BUT ...

- Rapid, robust & accurate technology
- Still an expensive technology (specific equipment)
 - Cost effective?
 - Need for more cost-effective clinical study
- Logistic
 - 24 hours 7 days
 - In the lab?
 - In the obstetrical department as a POCT?
- In combination with prenatal screening strategy?
 - CDC 2010: for women with premature delivery or no prenatal care
- No antimicrobial result
 - In the future detection of R genes, but mixed microbiota!

Background

- Correlate between maternal low level off CPS type Ab at time of delivery and risk for development of GBS EOD

 Baker C et Kasper D, 1976, NEJM

Prevention of GBS EOD and LOD

Prevention of maternal diseases

VACCINE

Likely the most effective, sustainable and cost effective approach
INTRODUCTION & BURDEN

GBS Vaccines, since the 1980s Challenges

- Capsular polysaccharide vaccines
 - 10 serotypes
 - Different distributions
 - EOD, LOD, invasives infections in adults
 - Geographically and along time
 - Conjugated vaccines
 - Multivalent vaccines Ia, Ib, III, V
 - Clinical studies
 - Immunogenicity
 - Safety
 - Efficacy: scheduled/ongoing (Phase 3 studies)

GBS Protein-based Vaccine

- Ag = Surface proteins
 - Cross protection against different serotypes
 - Better immunogenicity
 - Humoral response T-cell dependent
 - Long lasting immunity

VACCINE

Protein-based Vaccines

<table>
<thead>
<tr>
<th>Protein</th>
<th>Protective Ab</th>
<th>associated serotypes (in mouse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-like proteins</td>
<td>Alpha</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Alp1</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Rib</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Alp2</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Alp3</td>
<td>Yes</td>
</tr>
<tr>
<td>Beta C protein</td>
<td>Yes</td>
<td>Ib</td>
</tr>
<tr>
<td>C5a peptidase</td>
<td>Yes</td>
<td>All</td>
</tr>
<tr>
<td>Sip (1999)</td>
<td>Yes</td>
<td>All</td>
</tr>
<tr>
<td>BPS</td>
<td>Yes</td>
<td>All</td>
</tr>
</tbody>
</table>

Sip = Surface Immunogenic Protein (Brodeur, Martin, Québec)
BPS = Groupe B Protective surface Protein

Protein-based Vaccines

Reverse vaccinology approach
Knowledge of complete GBS genome

- Comparison of genomes from 8 different GBS serotypes
 - 312 surface proteins were cloned
 - 4 Provide a high protective humoral response in mouse
 - Sip and 3 others
 - The 3 other proteins = « pilus like structures »
GBS « pilus like structure »
- Highly immunogenic proteins
- Elicit protective and functional antibodies
- Virulence factor
 - Adhesion
 - Transcytose through cells

CONCLUSION

Take home messages

Summary

“Screening” Prevention strategies
- Culture-based GBS prenatal screening
 - To optimize critical factors
 - Improved by selective differential agars
 - False + / False - !
 - Expected improvement from transport system
- Rapid intrapartum screening
 - Real time PCR
 - Yes but costs, logistic, ...
 - Need for more clinical and cost effectiveness trials

In Europe, as globally
- Neonatal GBS diseases
 - EOD and LOD, a public health concern
 - IAP efficient for prevention of EOD
 - Best strategy still a matter of debate
 - Not 100% efficient
 - No effect on LOD
 - IAP not widely recommended
 - Need better data assessing more accurately the true burden
- GBS vaccine eagerly expected
 - Appears to be within reach