Wastes of banana’s lignocellulosic biomass: a sustainable and renewable source of biogas production

Irénée Kamdem, Serge Hiligsmann, Caroline Vanderghem, Igor Bilik, Michel Paquot, Philippe Thonart

Walloon Centre of Industrial Biology (CWBI), Université de Liège, Bd du Rectorat, 29, B40-P70, 4000 Liège, Belgium

INTRODUCTION

As a renewable energy source in a context of sustainable development, discarded banana’s lignocellulosic biomass (balicebiom) could be used efficiently to produce biogas in general and CH₄ in particular.

RESULTS 1

% of balicebiom DW: 11 11.5 17 40.5 7 11

C/N: 45 57 130 18 28 21

m³ CH₄/ton DW: 150 140 98 162 144

RESULTS 2

Biogas production during 188 d

RESULTS 3

VFA concentrations after 14 d

<table>
<thead>
<tr>
<th>VFA</th>
<th>Konjac</th>
<th>Propionate</th>
<th>Butyrate</th>
<th>Glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration (g/L)</td>
<td>8 7 6 5 4 3 2 1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS

Our results show that:
- An efficient transformation of balicebiom into a clean energy vector, biomethane is possible.
- An agro-industrial banana producing company such as CDC-Del Monte in Cameroon could generate an important income from this energy (about 10 million kWh which would be worth 0.8–1.6 million € in the current market).
- Further studies need to be performed to improve the biogas productivity.
- Pre-treatments and co-biomethanation of all the six MPs studied in this work need to be investigated in order to reduce the digestion time and to optimize the production of CH₄.