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INFLUENCE OF FOAM MORPHOLOGY OF MULTI-WALLED 

CARBON NANOTUBES/POLY (METHYL METHACRYLATE) 

NANOCOMPOSITES ON ELECTRICAL CONDUCTIVITY 

 

Abstract 

 

Polymer/multi-walled carbon nanotubes (PMMA/MWNTs) nanocomposites 

foams are widely investigated during the last decade thanks to their potential 

applications as electromagnetic interferences shielding (EMI) materials. 

Electrical conductivity of the nanocomposite is a key parameter for these 

applications. In the frame of this work, we aim at establishing relationships 

between the foams morphology and their electrical conductivity. We 

therefore first design nanocomposite foams of various morphologies using 

supercritical carbon dioxide (scCO2) as physical foaming agent. The 

nanocomposites based on poly(methyl methacrylate) (PMMA) and different 

carbon nanotubes loadings are prepared by melt-mixing and foamed by 

scCO2 in various conditions of pressure, temperature and soaking time. The 

influence of these foaming conditions on the morphology of the foams 

(volume expansion, pore size, cell density, cell-wall thickness) is discussed. 

After measuring the electrical conductivity of the foams, we establish 

structure/properties relationships that are essential for further optimizations 

of the materials for the targeted application. 

 

 

Tran, M.-P., Detrembleur, C., Alexandre, M., Jerome, C., Thomassin, J.-M., 

Polymer, 2013, 54, 3261-3270. 
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I. Introduction 

Foams are considered as microcellular foams when the cell density is 

greater than 10
9
 cells per cm

3
 of solid polymer and the average cell diameter 

is in the order of  0 μm.
1
 In recent decades, nanocomposite microcellular 

foams have attracted a great interest thanks to their high toughness, high 

stiffness, high thermal stability and low dielectric constant.
2, 3,4  

In addition to 

their lightweight, microcellular foams have a great potential in many 

applications such as in aerospace, automotive, home construction, 

telecommunication, sporting equipment, insulation, food packaging and 

electromagnetic interference shielding (EMI shielding).
5
 

Since their discovery by S. Iijima,
6
 the helical microtubules of 

graphitic carbon, named carbon nanotubes (CNTs), became quickly a key 

figure in thousands of studies. In contrast to carbon black, CNTs show an 

exceptional combination of mechanical and electrical properties such as very 

high strength (100-300 GPa), high stiffness (elastic modulus can reach 

1TPa),
7
 high aspect ratio, high thermal and electrical conductivity.

8,9
 

Therefore, CNTs are widely used as conductive fillers within polymer 

matrices such as polypropylene (PP),
10,5 

 polyurethane (PU),
 11

 poly(pyrrole) 

(PPy),
12

 polystyrene (PS),
13,14

 polycaprolactone (PCL)
15,16

 and polycarbonate 

(PC)
17,18

 to cite only a few.  However, CNTs usually appear as agglomerated 

bundles because of their high Van Der Waals interactions via the aromatic 

system on their tubular surface. Therefore, the dispersion method must be 

appropriately chosen to achieve good CNTs dispersion, a mandatory 

requirement for the achievement of good electrical conductivity and good 

mechanical reinforcement of the polymer matrix. 

The combination of these two concepts, microcellular foams and 

carbon nanotubes are very promising for the design of materials for EMI 

shielding applications. Indeed, the dispersion of CNTs to a polymer matrix 

imparts it the required electrical conductivity that is essential for the 

interaction of the material with the electromagnetic radiation. The foaming 

of the nanocomposite ensures the preservation of a low dielectric constant 

that limits the reflection of EM radiation at the material interface. Indeed the 

reflectivity is proportional to the mismatch between the wave impedances for 
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the signal propagating into air and into the absorbing material, respectively. 

The introduction of air into these nanocomposites by the formation of foam 

therefore limits this mismatch and improves the EM absorption.
11

 Foaming 

polymer/CNTs nanocomposites is therefore a route toward the formation of 

EMI absorbers. 

Various foaming methods are reported in the scientific literature to 

form nanocomposite foams with pore size varying from nanometric to 

micrometric scale including: thermally induced phase separation (TIPS) 

process,
19, 20

 chemical foaming agent (CFA),
21, 22 

 casting and leaching of 

physical foaming agents (nitrogen, carbon dioxide)
23

. Importantly, CO2 is an 

important physical foaming agent because it is environmentally friendly, 

nontoxic, nonflammable, easily recyclable, abundant and cheap. Many 

researchers have used it for the foaming of different nanocomposites such as 

polymer/clay 
24,25, 26

 and polymer/CNTs.
16,27,28,29,30,31

 In the latter, Thomassin 

et al.. has demonstrated the interest of foaming poly(-caprolactone)/CNTs 

nanocomposites for preparing EMI absorbers. Chen et al. studied the 

influence of the aspect ratio 
29

 and the surface modification 
27

 of CNTs on 

the foam morphology of poly(methyl methacrylate) (PMMA)/CNTs 

nanocomposites. They also investigated the compression properties 
28

 of the 

foams but did not consider the electrical conductivity of the foams vs their 

morphology. 

In this work, we aim at designing a large panel of nanocomposites 

foams based on carbon nanotubes (CNTs) loaded poly(methyl methacrylate) 

(PMMA) using the supercritical carbon dioxide (scCO2) technology. The 

ultimate goal is to establish important relationships between the foam 

morphology (cell density, pore size, cell density, cell-wall thickness) and 

their electrical conductivity.  
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II. Experimental part 

II.1 Materials 

  Poly(methyl methacrylate), PMMA, was purchased at Lucite® 

Diakon® Frost (weight-average molecular weight Mw = 51600 g/mol, 

polydispersity Mw/Mn = 1.70) and used as received.    

 Multi-walled carbon nanotubes (MWNTs) thin (average outer 

diameter: 10nm, average length: 1.5 microns, surface area: 250-300 m
2
/g, 

carbon purity 90%) were supplied by Nanocyl
TM

, Belgium and produced by 

Catalytic Carbon Vapor Deposition (CCVD).  

 Carbon dioxide was purchased from Sigma® with purity 99.8%, 

501298 cylinder 48L. CO2 was introduced into the stainless steel vessel by 

syringe pump TELEDYNE ISCO Model 260D.  

 Different weight percentages of MWNTs were dispersed in 

poly(methyl methacrylate) (PMMA) by Brabender® Mixer 50E (Model 

835205-002) Roller Slade twin-screws at 180
o
C using 60 rotations per 

minute (rpm) during 5 minutes. The nanocomposites were then put into Hot 

Press (Fortune SRA100) at 200
o
C for 5 minutes and mold into disk with a 

diameter of 12 mm and a thickness of 3.0 mm. 

II.2 Foaming of MWNTs/PMMA nanocomposites in scCO2 

  MWNTs/PMMA foams were prepared using a batch process. Three 

samples were separately placed into the stainless steel vessel. Subsequently, 

CO2 was pressurized into the vessel by using syringe with high pressure-

liquid pump to get the supercritical state of CO2. When the required pressure 

was achieved, the system was kept at a given pressure and temperature 

during    hours to ensure the sufficient s tur tion’s  mount of CO2 and to 

reach its thermodynamic solubility.
32

 After the soaking time, a rapid 

depressurization (1-2 seconds) was applied. The vessel was then put 

immediately into a water/ice bath in order to stabilize the foams. Samples 
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with 1wt%, 2wt%, 4wt%, and 8wt% of MWNTs were used as starting 

materials for foaming. 

II.3 Characterizations 

 Nanocomposites samples were cut into thin films 60-70 nanometers 

by LEICA Microtome EM UC6 at ambient temperature. Subsequently, the 

dispersion of MWNTs in PMMA matrix was characterized by Transmission 

Electronic Microscopy (TEM) – Philips CM100 (100 kV, Canon Tungsten). 

 The foam structure was observed by scanning electron microscopy 

(SEM) using a JEOL JSM 840-A microscope after metallization with Pt (30 

nm).  

 The gravimetric method was applied to study the quantity of 

absorbed and desorbed CO2. The sample was weighed immediately after 

saturating the sample at a given pressure and temperature and rapid 

depressurization on a METTLER TOLEDO XS 204 balance (error of device: 

d = 0.1mg/1mg) at ambient temperature. The following formula was used to 

calculate the quantity of absorbed CO2: 

.

2

( )
*100%

after soaking initial

absorption

initial

m m
mCO

m




   

(1)

 

 However, unavoidable fluid escapes from the samples during the time 

transport from taking off the vessel to balance. A more precise determination 

of the amount of absorbed CO2 is obtained by measuring desorption of CO2 

as a function of time. If the Fickian diffusion is assumed, the initial part of 

the desorption curves in function of square root time is linear following 

equation 2.  

,

, 0

4 *d t

gas t

M Dd td

M l 

  (2)  While Md,t = Mgas,t=0 – Mgas,t (*) 

  This formula relies on three following assumptions: (1) the diffusion 

coefficient is fluid concentration independent, (2) the concentration is 
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uniform throughout the sample, (3) the diffusion occurs exclusively in one 

direction, perpendicular to the sample surface (flat disk).
33

 

 This formula can be simplified (from equation 2 and (*)): 

, , 0 , 0

4 *
gas t gas t gas t

Dd td
M M M

l 
     (3) which allows us to determine the 

quantity of absorbed CO2 at t = 0. 

 The morphology of the foamed nanocomposites was analyzed by the 

program ImageJ 1.45 using a running Macro to characterize the pore size, 

standard deviation pore size, the number of pores on a surface image, and 

pore size distribution. The presented results were c lcul ted by the SEM’s 

images of three different sites of foam and then the average value was 

determined. Cell-density was then obtained by the formula: 
34

 

3/2
2.

* solid
cell

foam

pn M
N

A p

 
  
 

 (4), where Ncell is the number of cells in a volume 

unit (cell/cm
3
), n is the number of cells in a 2-dimension (2D) SEM image, 

M is the magnification, A is the surface area of SEM (cm
2
), psolid  and pfoam 

are solid and foams density, respectively. 

The cell-wall thickness was estimated by 1
1

1 /foam solid

d
 

 
  
   35

 (5), 

where δ is the cell-w ll thickness (µm)  d is the pore size  nd ρfoam/ρsolid is the 

ratio of foam density and solid density. 

  The density of multi-walled carbon nanotubes can be calculated by 

equation 6: 
36

 
 

2 2

2

( )g i

CNTs

d d

d







     (6) where ρg is the density of fully 

dense graphite which is equal to 2.25g/cm3, d and di are outer diameter and 

inner diameter of carbon nanotube, respectively. The theory of percolation 

threshold is considered as a volumetric phenomenon. Therefore, by knowing 

the ρCNTs, the weight percentage of MWNTs can be now transformed into 
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vol% MWNTs in order to be coherent with the interpretation in the part of 

the electrical conductivity. 

The electrical conductivities of MWNTs/PMMA foams were 

measured by the method of volume resistivity with KEITHLEY 617 

PROGRAMABLE ELECTROMETER. The volume resistivity was 

measured by applying a voltage across the sample and measuring the 

resulting current. The resistivity is calculated from the geometry of the 

electrodes and the thickness of the sample. To ensure the good contact 

between electrodes and samples, two copper threads of electrodes (purchased 

from FILSSYNFLEX Thernko 300H DrADEN, d = 0.3mm, nominal 

resistance 0 Ohm at 20
o
C) were stuck on the sample surfaces by silver paint 

(AGAR Scientific G3649 Electrodag 1415).  

III. Results and Discussion 

III.1 Dispersion of MWNTs in PMMA matrix 

To be efficient, nanocomposites must exhibit an adequate dispersion 

of the nanofillers. However, MWNTs tend to entangle into bundles due to 

their high aspect ratio (the ratio between tubular length and diameter) and 

intensive π-π inter ctions between their constitutive  rom tic systems. The 

term of “ dequ te-dispersion” h s two different me nings: (i) the 

disentanglement of MWNTs bundles or agglomerates to give a uniform 

dispersion of individual MWNTs throughout the polymer matrix, and (ii) the 

preservation of enough MWNTs-MWNTs contacts to allow the 

transportation of electrons within the polymer matrix. In Figure 1, the TEM 

micrographs show that a homogenous dispersion of MWNTs in the PMMA 

matrix is achieved by simply mixing MWNTs with PMMA in an internal 

mixer at 200
o
C during 5 minutes. The bundles are not observed anymore and 

MWNTs  ppe r sep r tely to e ch other’s (Figure 1 (b) and (c)). The main 

problem of this dispersion method is that MWNTs are strongly cut, and thus 

shortened, by the high shear-force during melt-mixing. Their length varies 

from 50 to 200 nm (Figure 1 (c)). Therefore, longer mixing time will be 

unfavorable because a further decrease of the MWNTs length will occur that 
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is detrimental to the electrical conductivity and therefore to the EMI 

shielding performances.
37,38 

III.2 Adsorption and desorption of CO2 in nanocomposites 

In our study, CO2 is used as a physical foaming agent. Therefore, the 

amount of CO2 that is absorbed within the polymer samples plays a decisive 

role in the foaming process. Indeed, high amounts of absorbed CO2 are 

expected to increase the number of nucleation sites inside the sample, and 

consequently the cell density. Therefore, a complete study of the different 

parameters that affect this CO2 amount is first envisioned. The percentage of 

CO2 in neat PMMA is slightly higher than in PMMA loaded by MWNTs 

(1wt% to 8wt%) because neat PMMA possesses ester chemical groups that 

has a great chemical affinity for CO2.
39

 As a result, the substitution of part of 

PMMA by CNTs decreases the total affinity of the samples for CO2 and 

therefore slightly reduces its adsorption (Figure 2). 

 As an illustration, at 40°C, about 25wt% CO2 is absorbed in PMMA 

loaded with 1wt% MWNTs while this amount drops to about 15wt% at 95°C 

(Figure 2). This trend is the same for all the samples whatever the MWNTs 

content. The decrease of CO2 density, when the temperature increases at a 

given pressure, accounts for this observation.
40

 A lower amount of CO2
 

molecules are indeed available in the reactor.  

The influence of the soaking time on the amount of absorbed CO2 is 

then studied. A pressure of 200 bar and a temperature of 120
o
C were 

arbitrary selected to start these studies. Under these conditions, the amount 

of absorbed CO2 is logically increased for longer soaking times, 

independently of the amount of nanofiller. Therefore, in the following 

experiments, the soaking time has been set to 16h in order to ensure a high 

amount of absorbed CO2 (Figure 3). 

 Desorption coefficient (Dd) of CO2 in the PMMA matrix (loaded or 

not with MWNTs) is then evaluated by weighting the amount of absorbed 

CO2 vs desorption time, thus when the CO2 absorbed sample is exposed to 

ambient  atmosphere. By  plotting  the  weight  of  absorbed CO2 (Mgas, t) in 
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afunction of square root desorption time ( ,

, 0

4 *d t

gas t

M Dd td

M l 

  (Equation 

2)) (see in Figure 4) for the different samples, we can extract the diffusion 

coefficient of CO2 in the nanocomposites from the plot slope.
33

 Moreover, by 

extrapolating the plot at time zero, the weight of absorbed CO2 at time zero 

is obtained. The amount of absorbed CO2 is consistent with our previous 

observations: the neat PMMA shows a slightly higher quantity of absorbed 

CO2 compared to MWNTs loaded PMMA matrices.  

     

Figure 1: TEM images of PMMA matrix loaded by 4wt% MWNTs, (a) 

magnification of 29000 (100nm sample thickness), (b) magnification of 

50000 (100nm of sample thickness), (c) magnification of 100000 (80nm of 

sample thickness). 

 

Figure 2: Weight percentage of absorbed CO2 in MWNTs/PMMA 

nanocomposite in function of the MWNTs loading and for different soaking 

temperatures (conditions: 180 bar, 16 h).  

(a) (b) (c) 
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Figure 3: Influence of soaking time on the weight percentage of CO2 

absorbed in PMMA matrices loaded with different amounts of MWNTs 

(conditions: 120
o
C, 200 bar).  

 

 Figure 4: Weight percentage of absorbed CO2 in MWNTs/PMMA 

nanocomposite in function of square root time (t
1/2

) (conditions: 120
o
C, 280 

bar, 16h). 

The neat PMMA has also the highest diffusion rate (Dd = 2.23*10
-2

 

cm
2
/min) compared to 1.01 10

-2
 cm

2
/min and 6.75 10

-3
 cm

2
/min for PMMA 

loaded with 4wt% and 8wt% MWNTs, respectively (Table 1). A gradually 

decrease of the coefficient diffusion (Dd) is noted when increasing the 

content of MWNTs in PMMA matrix. The drop of diffusion coefficient (Dd) 

at higher content of MWNTs is explained by the fact that each MWNT can 
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be considered as a barricade to the diffusion of CO2. The MWNTs network 

therefore increases the tortuosity of the system, slowing down the diffusion 

of CO2. Similarly to clay of layered silicates, the platelets alignment 

enhances their effectiveness in gas barrier properties in creating a more 

tortuous path that prevents the gas molecules to cross the sample in a 

perpendicular direction to platelet orientation.
41,42,43

   

Table 1: Diffusion of CO2 in MWNTs/PMMA nanocomposites after soaking 

at 120
o
C, 280 bar for16h.  

Samples %wt Mgas, t=o a 
(1) 

L
(2) 

(cm)
 

Dd (cm
2
/min) 

Neat PMMA 18.6 -0.634 0.3 2.23*10
-2 

PMMA – 2wt%CNTs 18.3 -0.466 0.3 1.21*10
-2 

PMMA – 4wt%CNTs 18.1 -0.427 0.3 1.01*10
-2 

PMMA – 8wt%CNTs 17.6 -0.348 0.3 6.75*10
-3 

(1) a was calculated from the slope of linear graph of desorption -4.l
-1
.   .π

-

1
)
1/2

, (2) L is the thickness of sample (cm); Dd is the diffusion coefficient 

(cm
2
/min), Mgas, t=0 is the amount of CO2 absorbed at time zero. 

III.3 Influence of foaming conditions on foams morphology 

III.3.1 Temperature  

 The influence of temperature on the foam parameters such as the pore 

size, the cell density, the volume expansion and the cell wall thickness is first 

considered. 

 For neat PMMA, the increase of temperature leads to the raise of 

pore size from  .  μm  t 80
o
C to  0.5 μm  t   0

o
C. The same trend is 

observed for PMM  cont ining MWNTs: from 0.8 μm  t 80
o
C to  .  μm  t 

120
o
C Figure 5 (a). It is important to note that although the pore size is 

slightly affected by the amount of MWNTs in the nanocomposite, foams of 

nanocomposites have smaller pore size than neat PMMA prepared under the 

same foaming conditions. Figure 6 illustrates the SEM micrographs of neat 

PMMA and PMMA filled with 2, 4 and 8wt% of MWNTs foamed at 80
o
C, 
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100
o
C and 120

o
C. Although the increase of temperature favors the formation 

of larger pore size, the homogeneous morphology of closed-cells is 

maintained over this temperature range. Importantly, the foams morphology 

is also homogeneous at low MWNTs content as the result of the good 

MWNTs dispersion. In contrast Zeng et al.
44

 who studied the foaming of 

PMMA/MWNTs prepared by the anti-solvent precipitation method, a 

bimodal cell size distribution was observed at low MWNTs content (1wt%). 

This observation is the result of the poor nanofillers dispersion and the 

presence of large MWNTs aggregates 

         
  (a)      (b) 

     
 (c)       (d) 

Figure 5: Evolution of (a) pore size, (b ) cell density, (c) volume expansion, 

and (d) cell-wall thickness of PMMA foams loaded or not with MWNTs with 

the temperature (conditions:280 bar, 16h). 

. A good homogeneity of pentagonal cells was only achieved at higher 

concentration of MWNTs ( 2wt%). The increase of pore size with 

temperature observed in our nanocomposites is in line with the theory of 

nucleation and related articles: 
2, 26,45 

*

1 1 1 exp
het

crit

B

G
N C f

k T

 
  

 
  (7), where N1 



 Chapter 2  

Page | 72  

 

is the number of nuclei generated per cm
3
, f1 is the frequency factor of gas 

molecules joining the nucleus, C1 is the concentration of heterogeneous sites, 

kB is the  oltzm nn const nt   nd ΔG*crit is the work of forming a critical 

nucleus. 

Adversely to the pore size, the cell density decreases with the 

foaming temperature for both neat PMMA and the nanocomposites (Figure 

5 (b)). For instance, the cell density of foams (PMMA/8wt% MWNTs) 

decreases from 1.39  10
12

 cells/cm
3
 at 80

o
C to 1.38  10

10
 cells/cm

3
 at 

120
o
C. The neat PMMA also shows the same trend with the cell density that 

decreases from 2.8 x 10
10

 to 1.9 x 10
9 

(cells/cm
3
)
 

by increasing the 

temperature from 80
o
C to 120

o
C. The decrease of the cell density with the 

temperature increase is in agreement with the theory of nucleation 
46,47

  
*

1 1 1 exp
het

crit

B

G
N C f

k T

 
  

 
    

The CO2 density decreases when increasing the temperature, which 

lowers the f1 value, consequently decreasing the cell density.   

Another important characteristic of the foam is the volume expansion 

compared to the starting un-foamed material (Figure 5 (c)). Similarly to the 

pore size, the volume expansion steadily increases with the foaming 

temperature. This increase follows the same trend whatever the MWNTs 

content. At 80
o
C, the volume expansion is about 2.6, while at 120

o
C, the 

highest volume expansion is 7.5 for the nanocomposite containing 4wt% 

MWNTs. Higher amounts of MWNTs do not affect further the volume 

expansion. Indeed the volume expansion is directly related to two main 

factors: pore size and number of nucleation sites. An increase of these 

characteristics will obviously be in line with an increase in volume 

expansion. Therefore, when MWNTs are incorporated into the polymer 

matrix, these nanofillers are acting as nucleating agents. The cell density and 

volume expansion are thus increased when the amount of MWNTs is 

increased. However, at high nanofiller loading (8wt%), too many 

heterogeneous sites lead to a competitive nucleation of embryos, resulting in 

the coalescence of lateral cells.  
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80
o
C, 280 bar, 16h 100

o
C, 280 bar, 16h 120

o
C, 280 bar, 16h 

   

   

   

   

Figure 6:  SEM micrographs of PMMA foams prepared at different 

temperatures and various MWNTs loadings: (a) foaming at 80
o
C; (b) 

foaming at 100
o
C; (c) foaming at 120

o
C. Conditions: 280 bar, 16h. 

Finally, the influence of the temperature on cell-wall thickness is 

investigated. As shown in Figure 5 (d), it can be seen that the cell-wall 

thickness for neat PMMA slightly decreases when increasing the temperature 

from 100
o
C to 120

o
C. The cell-wall thickness of PMMA filled CNTs is 

much lower in direct relation with smaller pore size. A slight increase with 

(a1) 0wt%CNTs (b1) 0wt%CNTs (c1) 0wt%CNTs 

(a2) 2wt%CNTs (b2) 2wt%CNTs (c2) 2wt%CNTs 

(a3) 4wt%CNTs (b3) 4wt%CNTs (c3) 4wt%CNTs 

(a4) 8wt%CNTs (b4) 8wt%CNTs (c4) 8wt%CNTs 
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the temperature is observed which is more pronounced when the CNTs 

content is very high (8wt%) due to smaller increase in volume expansion 

with the temperature in this case. 

III.3.2 Pressure 

The influence of pressure on foam morphology is studied by keeping 

the temperature around the glass transition temperature (Tg) of PMMA 

(120
o
C). As evidenced in Figure 7 (a) and Figure 8, an increase of pressure 

from 150 to 280 bar induces a considerable decrease of the cell size for both 

neat PMMA and PMMA loaded with MWNTs, while uniform and 

homogenous cells are maintained over the whole pressure range. For neat 

PMMA, the pore size decreases from 29.4 to 12.  μm when incre sing the 

pressure from 150 to 200 bar. Similarly, a significant decrease of the pore 

size was observed for PMMA loaded with 2 and 4wt% of MWNTs in the 

range of 150 to 200 bar. The reduction of pore size becomes less important 

upon further increase of the pressure. The cell-wall thickness of the 

nanocomposite foams is also reduced when the pressure is increased but in a 

much less extent than for neat PMMA (Figure 8 (d)). The phenomenon of 

decreasing the cell-wall thickness by increasing the pressure can be 

attributed to the decrease of both the pore size and volume expansion of 

foams. 

In contrast to the pore size, a significant increase of cell density was 

observed when the pressure increases from 150 to 280 bar. For neat PMMA, 

the cell density increases from 1.07 x 10
8
 cell/cm

3
 at 150 bar to a value of 1.9 

x 10
9 

cell/cm
3 

at 280 bar. A maximum of cell density is observed at 250 bar 

for PMMA samples filled with 4wt% and 8wt%MWNTs corresponding to 

1.9 x 10
10

cell/cm
3
 and 6.6 x 10

10 
cell/cm

3
, respectively. The decrease of cell 

density when the pressure is further increase is due to the coalescence of 

lateral cells, which decreases the total number of individual cells.
48 
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(a)             (b) 

     
(c)             (d) 

Figure 7: Evolution of (a) pore size, (b ) cell density, (c) volume expansion, 

and (d) cell-wall thickness of PMMA foams loaded or not with MWNTs with 

the pressure (conditions:120°C, 16h).  

Generally, the cell density of the neat PMMA foam is smaller than 

the cell density of the PMMA filled CNTs.
44

 It can be assumed that the 

different nucleation mechanisms, homogeneous in neat PMMA and 

heterogeneous in the nanocomposites, are responsible for this observation 

and are in agreement with Lee et al.
45

 and with the nucleation theory. When 

the same foaming conditions are used for both samples (neat PMMA and 

PMMA loaded with MWNTs), the nanofiller is acting as heterogeneous 

nucleating agent in the nanocomposites, thus increasing the cell density 

compared to neat PMMA. The volume expansion of neat PMMA 

continuously decreases with the applied pressure from 9.4 at 150 bar to 5.6 at 

280 bar (Figure 7 (c)). In the same tendency, the volume expansion varies 

around 6-7 when the polymer is filled with 2 and 4wt% of MWNTs. It is 

slightly lower for PMMA loaded with 8wt% MWNTs due to the high 

viscosity of the nanocomposite that limits the foam expansion. 
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Figure 8: SEM micrographs of PMMA foams prepared at different 

         :     SE ’         w                  X300    150        200      

   280    ;      SE ’         w                  X3000     150          200 

bar, (f) 280 bar. 

        
  150 bar        170 bar    180 bar            

     
  200 bar        250 bar                280 bar 

Figure 9: SEM micrographs of PMMA foams loaded with 8wt% MWNTs 

prepared at different pressures. Conditions: 120°C, 16h.  

(a) (b) (c) 

(d) (e) (f) 
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A further increase of applied pressure over 280 bar is not favorable 

because it leads to heterogeneous foams as exemplified in Figure 9 for 

PMMA filled with 8wt% MWNTs. Coalescence of lateral cells seems to 

occur that contributes to the formation of interconnected cells.   

III.4 Electrical conductivity 

The electrical conductivity of PMMA/MWNTs solid samples is first 

investigated Figure 10. As expected, the increase of the amount of MWNTs 

in the PMMA matrix leads to the sharp raise of conductivity from 8.95 x 10
-5 

S/m at 0.49 vol% MWNTs to 311.5 S/m at 5.56 vol% MWNTs in the matrix. 

At this stage, it has to be noted that since the electrical measurements are 

performed on a given volume of sample, the electrical conductivities of the 

samples are compared for MWNTs loaded samples (foamed or non-foamed) 

with a MWNT content expressed in vol%.  

 In the case of foamed samples, the electrical conductivities also 

strongly depend on the content of the conductive nanofiller Figure 10. 

Importantly, for the same MWNT content, foamed nanocomposites present a 

much higher conductivity compared to solid ones. For instance, a 

conductivity of 1.7 S/m is measured for the foams containing 0.69 vol% 

MWNTs compared to less than 0.02 S/m for the solid sample with the same 

nanofiller content. A lower percolation threshold is therefore expected for 

the foams.  

σ α (p – pc)
t  

for p>pc              (8) 

 The value of this percolation threshold pc is found by the scaling 

theory in which the conductivity varies in function of log(p – pc); in which p 

is the concentration of MWNTs and pc is the critical concentration of 

MWNTs at percolation threshold. The exponent t is identical and 

independent of the concentration of conductive charge, and t depends only 

on the dimension of the matrix (2D or 3D) with the values typically around 

1.3 and 2.0 for two and three dimensions, respectively.
49

 As evidenced in 

Figure 11, the best fit of the conductivity corresponding to the scaling theory 

gives a percolation threshold pc at 0.29 vol% MWNTs for the foams and an 
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exponent t = 2.1. In the case of the solid samples, an increase of three orders 

of magnitude (8.95 x 10
-5 

S/m at 0.49 vol% MWNTs to 1.56 x 10
-2 

S/m at 

0.69 vol% MWNTs) was observed. Therefore, the value of electrical 

percolation threshold of solid PMMA is located between 0.49 and 0.69 vol% 

MWNTs. In comparison to PMMA solid, PMMA foams has lower electrical 

percolation threshold. 

   

 

Figure 10: Electrical conductivity of PMMA/MWNTs nanocomposites 

foamed and not foamed in function of MWNTs content: (a) full range of 

MWNTs content and (b) zoom of the 0 – 2 vol% MWNTs range. 

The important difference in percolation threshold between foamed 

and un-foamed nanocomposites is explained by the selective localization of 

MWNTs inside the cell walls of the foam that induces a significant decrease 

(a) 

(b) 
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of the average distance between them as illustrated in Figure 12. Thus, an 

effective electrical network can be formed at lower MWNTs concentration 

compared to solid sample. It is in agreement with the work of Thomassin et 

al.
16

. Increased volume expansion (for the same MWNTs loading) leads 

therefore to higher conductivities as shown in Figure 13. 

To highlight further the influence of the morphological parameters of 

the foam on the electrical conductivity, foams with similar contents of 

MWNTs but different pore sizes, cell densities and cell wall thicknesses are 

selected and compared Figure 14. 

At low vol% of MWNTs (0.42 and 0.66 vol%), a strong decrease of 

conductivity is recorded when increasing the pore size (Figure 14 (a)) while 

the conductivity significantly raises with the increase in cell density (Figure 

14 (b)). This phenomenon can be explained by the theory developed by Xu 

et al.
50

 Upon foaming, MWNTs preferentially localize in the cell-struts, the 

inter-connecting point of three surrounding bubbles. Consequently, the 

electrical conductivity is strongly depending on the ability of the foams to 

keep an electrical network between these struts. The increase in pore size 

results in increasing the distance between adjacent struts and then increases 

the probability to break the conductive network. 

 

Figure 11:                                                    w       σ 

(conductivity) was plotted against log (p – pc) with pc = 0.29% and t = 2.1.  
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Figure 12:  Distribution of MWNTs in nanocomposties (a) in unfoamed 

nanocomposites, (b) in foamed nanocomposites. 

 

Figure 13: Dependence of the volume expansion on the electrical 

conductivity for a PMMA/MWNTs foam containing 1 vol% MWNTs. 

A sharp decrease of conductivity is also observed when increasing 

the cell-wall thickness. The advantage to reduce the cell wall thickness 

comes from the fact that MWNTs are more confined in thin cell wall 

therefore increasing the probability of effective MWNTs-MWNTs contacts 

that are essential for the establishment of an electrical network. However, the 

cell wall thickness cannot be decreased indefinitely due to the risk of 

breaking this network by the cell-wall rupture. 

At higher content of MWNTs (1.3vol%), the conductivity 
51

 is high 

and also decreasing with the pore size but in a more marginal way. The same 

trend is observed for cell-wall thickness.
52

 At this MWNTs loading, the 

preservation of the electrical network between the struts is more probable, 

and the effect of the morphological parameter on the conductive properties is 

lower. 
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Figure 14: Evolution of electrical conductivity of PMMA/MWNTs foams of 

different MWNTs loadings with the (a) pore size,(b) cell density, (c) cell-wall 

thickness. 

(a) 

(b) 

(c) 
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Table 2: Comparison of the electrical conductivity of PMMA/MWNTs 

nanocomposites foamed and non-foamed with different MWNTs loadings 

Sample 

solid 

vol%CNTs 

Conductivity 

(S/m)-Solid 

Foams 

vol% 

CNTs 

Conductivity 

(S/m)-Foams 

Foaming 

conditions 

0.21 X (>200G.Ohm) 0.21 6.78 x 10
-7

 
120

o
C, 280 

bar, 16h 

0.35 X (>200G.Ohm) 0.35 1.02 x 10
-3

 
120

o
C, 150 

bar, 16h 

0.49 8.95 x 10
-5

 0.49 1.93 x 10
-2

 
120

o
C, 200 

bar, 16h 

0.56 3.44 x 10
-3

 0.54 0.38 
100

o
C, 150 

bar, 16h 

0.69 1.56 x 10
-2 

0.66 1.69 
110

o
C, 280 

bar, 16h 

1.39 12.7 1.40 4.58 
100

o
C, 150 

bar, 16h 

IV. Conclusion 

Conductive homogeneous microcellular foams of poly(methyl 

methacrylate)/carbon nanotubes
 
nanocomposites were prepared by using 

supercritical carbon dioxide as a physical foaming agent. The effect of the 

foaming conditions (pressure and soaking temperature) on the foams 

morphology (pore size, cell density, volume expansion cell-wall thickness) 

was first investigated in order to produce a large variety of foams with 

different morphologies. Then their electrical conductivity was studied and 

compared to unfoamed samples with the same volume content of the 

conductive nanofiller. A lower percolation threshold was observed for the 

foams as the result of the selective localization of CNTs inside the cell walls 

of the foams that induces a significant decrease of the average distance 

between them. The systematic measurement of the electrical conductivity of 

the different foams then allowed establishing important foam 

morphology/conductivity relationships. The electrical conductivity 

continuously increased with the volume expansion as the result of the 
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selective localization of the CNTs inside the cell wall. Increasing the air 

fraction in the foam shortens the distance between CNTs at a given CNTs 

volume content. The increase of the cell density also raised the electrical 

conductivity while increasing the pore size or the cell-wall thickness had the 

opposite effect. From this work, it can therefore be concluded that foams 

with a high electrical conductivity can be achieved when high volume 

expansion, small pore size, high cell density, and thin cell-wall thickness are 

targeted. This study states the guidelines to tailor foamed materials with high 

electrical conductivity.  
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