Genome-wide environmental interaction analysis using multidimensional data reduction principles to identify asthma pharmacogenetic loci in relation to corticosteroid therapy

F. Van Lishout', K. Bessonov', Q.L. Duan², E.S. Gusareva', J.M. Mahachie John¹, K. Tantishira³, and K. Van Steen¹

1'Montefiore Institute and GIGA-Research, University of Liège, Belgium
${ }^{2}$ Channing Division of Network Medicine, Brigham \& Women's Hospital and Harvard Medical School, USA
${ }^{3}$ Pulmonary Division, Brigham \& Women's Hospital and Harvard Medical School, USA

## Problem Formulation

- How to efficiently discover the most significant SNPenvironment interactions in search for asthma pharmacogenetic loci?
- We analyze the difference in pre-bronchodilator FEV1 in patients following or not ICS therapy for a period of 8 weeks (prech_short), for 550 pediatric Caucasian CAMP (ages 5-12) from the SHARE project
- The trait of interest is prech_short expressed on a continuous scale and represents a relative difference in preFEV1:
prech_short=(prefev on_Cs - prefev $\left._{\text {off_Cs }}\right) /$ prefev $_{\text {off_ICs }}$
- The environmental variable is dichotomous and refers to inhaled corticosteroids therapy (ICS) based on budesonide. If ICS is administrated it is coded 1 and 0 otherwise


## Data Preparation

- We analyze 550 samples containing no reported family structure
- Missing genotypes were MaCH-imputed using 1000 Genomes

Project Reference Panels resulting in $8,221,073$ SNPs

- Since the T-gene was found to be associated to asthma [6], a total of 5,793 SNPs found within 1 Mb range from T -gene coding region start and end in both 5 ' and $3^{\prime}$ direction where added to the marker panel
- Genotype data QC steps consisted of the following steps: LD pruning (SNPRelate library in R) with maximum between-marker $r^{2}$ of 0.2 (yielding 231,568 SNPs), removal of poorly annotated SNPs, removal of SNPs not present in the dbSNP database, removal of SNPs with MAF $<0.01$, HWE at FDR maximum cutoff of 0.2 . Samples and their genotypes passing QC were extracted with PLINK
- The final subset consisted of 69,171 markers with population inflation factor $\lambda=1.001$ (minimal population stratification effects).
- Genetic Idenity-by-State (IBS) kinship matrix was calculated using allelic frequency and applied as part of polygenic model
- Trait residuals were computed in two ways from trait sex+age+BMI: 1) based on a polygenic regression model (POLY) using observed kindships (GenABEL 1.7.6); 2) based on linear regression (GLM) in R. These were taken as input to MB-MDR 4.0.1 either as such or Rank Transformed to Normality (RTN)

State-of-the-art

- Genome-wide gene-environment (GWEI) and gene-gene (GWAI) interaction studies share a lot of challenges due to highdimensionality concerns. GWEI studies may benefit from methodologically resolved issues in the context of GWAls
- Model-Based Multifactor Dimensionality Reduction (MB-MDR), initially built for epistasis detection is also useful to discover genedrug interactions. It does not make any assumption about the genetic inheritance model and involves reducing a highdimensional GxE space to a GxE summary variable with factor levels that either exhibit high, low or no evidence for their association to disease outcome. In contrast to logistic regression and random forests, MB-MDR can be used to detect GxE interactions in the absence of any main effects.
- The nature and the effect of population stratification in genomewide interaction context has not rigorously been studied

Graphical Workflow of MB-MDR Methodology [1]



## Multiple Testing

- Especially in the context of high-order genome-wide interaction studies one of the challenges is to handle the severe multipletesting problem associated with them, while adequately controlling the number of false positives and acknowledging intrinsic complexities dependencies between tests
- We have developed a new implementation of the maxT algorithm of Westfall \& Young [4], requiring an amount of memory independent from the number of genetic effects to be investigated - A graphical explanation of the differences between the classical and new implementation of the maxT algorithm is given below [5]

- In the classical maxT implementation all $T_{i, j}$ values are in memory. If the 1000 best MB-MDR $p$-values are envisaged, then only the maximum $M_{1}, \ldots, M_{B}$ of the $\left[T_{1,1000+1}, \ldots, T_{1, m}\right], \ldots,\left[T_{B, 1000+1}, \ldots, T_{B, m}\right]$ together with $\left[T_{1,1}, \ldots, T_{1,1000}\right], \ldots,\left[T_{B, 1}, \ldots, T_{B, 1000}\right]$ are retained

Population Stratification Correction

- We propose two strategies to correct for population stratification, hereafter referred to as STRAT1 and STRAT2, avoiding the use of principal components (PCs)
- In both cases, we first compute the median $M_{1}$ of all observed MBMDR test-statistics. Second, we use the new implementation of MAXT on re-scaled MB-MDR test values. In particular, - in STRAT1 we divide all observed MB-MDR test values by $M_{1} M_{2}$, where $M_{2}$ is the median of all permutation-based MB-MDR test values the statistics computed on the permuted data - in STRAT2, we divide each observed MB-MDR test value for interaction $i$ by $M_{1} M_{2, i}$ where $M_{2, i}$ is the median of the permutation-based MB-MDR test values for the $i$ ith interaction
Simulation Study: Epistasis=NO - Pop Strat.=YES/NO


Figure 1: MB-MDR false positive rates (FP) under a variety of scenarios

- We performed 12 different analyses according to algorithm: MAXT, STRAT1 or STRAT2
polygenic regression: yes (POLY) or no (GLM) rank transformation to normality: yes (RTN) or no (NONE)



## Discussion

- The smallest $p$-values are obtained for STRAT1-POLY-NONE - In the presence of population stratification MAXT-POLY-RTN has lower false-positive rates ( $\mathrm{FP}=0.20$ ) as compared to MAXT-POLYNONE. In the absence of population stratification these options keep FP under control (Figure1)
- By construction STRAT2 better accommodates allele-specific MBMDR test distributions and is to be preferred (cfr., pair-specific "genomic" control; simulation results not shown) (Table 1)
- Whether polygenic control is appropriate for structured data in genome-wide interaction settings needs further investigation. Similarly, assessing the relative advantage of polygenic control over regression models not using kinship information (GLM), yet possibly corrected for ancestry-related confounding variables, is underway.
- Nevertheless, rs11782301 was one of the 94 SNPs that occurred in the top 1000 MB-MDR outputs for all 12 investigated scenarios. It had on average the lowest MB-MDR $p$-value. This SNP maps to the ZHX2 gene - transcription factor, a member of (zinc fingers and homeoboxes 2). ZHX2 was shown to be differentially expressed in airway smooth muscle cells and might be implicated in asthma [7]


## About the Software: MBMDR-4.0.1

- MBMDR 4.0.1 is a flexible and efficient $\mathrm{C}++$ implementation of the MB-MDR methodology [1]. The software can be downloaded from http://www.statgen.ulg.ac.be/ and is available for mac and linux. - The C++ MB-MDR software can optionally convert PLINK formatted input data files into MBMDR-4.0.1's internal format.
- Traits can either be expressed on a binary or continuous scale. Censored traits are also accommodated
- The software can either perform a global test or an interactionspecific test that adjusts for main effects. Co-dominant main effect corrections are recommended [1]
- Apart from two-order interactions, three-order interactions such as: $G \times G \times G, G \times G \times E, G \times E \times E$, are easily run in parallel mode


## Conclusions

- We have designed a new implementation of the maxT algorithm [5], which makes genome-wide interaction studies with MB-MDR feasible
- We have developed new algorithms to correct for population stratification, that avoid making choices about the number of principal components to retain and how to compute them
- The STRAT corrections use ideas from genomic controlling in main effects GWAs. The recommended use of RTN for quantitative trait MB-MDR analysis needs to be revised in the context of population stratification


## Acknowledgements

This work was partially funded by the Interuniversity Attraction Poles Programme (IAP P6/25 BIOMAGNET and IAP P7 DYSCO), initiated by the Belgian State, Science Policy Office and by the European Network of Excellence PASCAL2. The authors thank the GIGA Bioinformatics platform for providing computing resources. Tantishira K. and Duan QL acknowledges the source of funding U01 HL06589. In addition, Duan QL receives funding from the National Heart, Lung and Blood Institute: 1K99HL116651

[^0]
[^0]:    References
    [1] Mahachie JM, Cattaert T, Van Lishout F, Gusareva ES and Van Steen K. Lower-Order Effects Adjustment in Quantitative Traits Model-Based Multifactor Dimensionality Reduction. PlosOne 2011.
    Multifiactor Dimensionaitity Reduction. PlosOne 2011.
    [2] Ritchie MD, Hahn LW, Roodi N , Bailey LR, Dupont WD, Parl FF, Moore JH: $[2]$ Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF , Moore JH :
    Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001. [3] Van Steen K.: Travelling the world of gene-gene interactions. Briefings in Bioinformatics 2011.
    [4] Westfall PH and Young SS: Resampling-base multiple testing. New York, Wiley 1993.
    [5] Van Lishout F, Mahachie John JM, Gusareva ES, Urrea V, Cleynen I, Thêâtre E, Charloteaux B, Calle ML, Wehenkel L, Van Steen K: An efficient algorithm to perform multiple testing in epistasis screening. BMC Bioinformatics 2013. perform multiple testing in epistasis screening. KMC Bioinformaticic 2013.
    [6] Tantisira KG, Damask A, Szefler SJ, Schuemann B, Markezich A, Su J, [6] Tantisiria KG, Damask A, Szefler SJ, Schuemann B, Markezich A, Su J,
    Klanderman B, Sylvia J, Wu R, Martinez F, boushey HA, Chinchilli VM, Mauger D, Weiss ST, Israel E; SHARP Investigators: Genome-wide Association Identifies the T Gene as a Novel Asthma Pharmacogenetic Locus. American Journal of Respiratory and critical care medicine 2012.
    [7] Misior A. PKA- and gluco corticoid-dependent regulation of gene expression in human airway smooth muscle cells. Am K Respir Cell Mol Biology 41 (1) 2009

