AN OPTIMIZATION APPROACH

TO THE MATERIAL TAILORING OF MICROSTRUCTURES

WITH DAMAGE RESISTANT CONSTRAINT

Université de Liège

lise.noel@ulg.ac.be Advisor: Pierre Duysinx

INTRODUCTION/GOAL

Material tailoring can be formulated as a structural optimization problem. The final objective of this work is to perform microstructural design under damage resistant constraint.

The work is divided in three main parts:

- 1. the microstructural design problem: maximizing the linear properties as stiffness, thermal conductivity, ...
- 2. the damage propagation problem: propagating damage on fixed microstructural geometries
- 3. the combination of the two previous problems: optimizing microstructures under damage resistant constraint

The developed method will be designed to be applied to composite materials, functionally graded materials, damage materials, ...

MICROSTRUCTURAL DESIGN PROBLEM

The microstructural design is carried out through shape optimization. Shape optimization is performed using an approach that combines:

- a Level Set description of geometries
- a non-conforming analysis method (XFEM)

The design problem is casted in a mathematical programming approach providing a general and robust framework:

$$\min_{\mathbf{x}} f_0(\mathbf{x})$$

$$s.t. \quad f_j(\mathbf{x}) \ge \overline{f}_j \quad j = 1, \dots, m$$

$$\underline{\mathbf{x}}_i \ge \mathbf{x} \ge \overline{\mathbf{x}}_i \quad i = 1, \dots, n$$

LEVEL SET DESCRIPTION

Basic principles of the Level Set Description:

- a function $\phi(\mathbf{x})$ is used to represent implicitly any shape Γ
- the desired shape is drawn by the iso-zero Level Set
- working on a finite mesh, $\phi(\mathbf{x})$ is discretized and interpolated

EXTENDED FINITE ELEMENT METHOD

Basic principles of the eXtended Finite Element Method:

- adding special shape functions to the approximation to deal with particular behavior near an interface
- in the case of material-void interface:

$$u^h(\mathbf{x}) = \sum_i H(\mathbf{x}) N_i(\mathbf{x}) u_i$$

• in the case of material-material interface:

$$u^{h}(\mathbf{x}) = \sum_{i \in I} N_{i}(\mathbf{x}) \ u_{i} + \sum_{i \in I^{\star}} N_{i}(\mathbf{x}) \left(\sum_{j} N_{j}(\mathbf{x}) \ |\phi_{j}| - |N_{j}(\mathbf{x}) \ \phi_{j}| \right) \ a_{i}$$

$$\square \quad \text{FEM} \quad \square \quad \text{XFEM} \quad \square \quad \text{Enriched node}$$

SENSITIVITY ANALYSIS

Van Miegroet et al. (2007) developed a semi-analytical approach to perform the sensitivity analysis in the case of material-void interface:

- Level Set parameters = design variables
- derivatives computed through forward finite difference
- derivatives are used to compute variations of design functions as compliance, displacement, stress, ...

$$\frac{\partial \mathbf{K}}{\partial z} = \frac{\mathbf{K}(z + \delta z) - \mathbf{K}(z)}{\delta z}$$
 and $\frac{\partial \mathbf{f}}{\partial z} = \frac{\mathbf{f}(z + \delta z) - \mathbf{f}(z)}{\delta z}$

Trying to extend this approach to the material-material interface case, several additional difficulties arise. Those difficulties are highlighted by comparing the material-void and the material-material cases.

Material-void case

Initially non-included → cut by the interface

- \rightarrow approximation \neq
- → number of dofs /

Finite difference ×

Initially partially filled

- → not cut anymore
- \rightarrow approximation =
- \rightarrow number of dofs =

Finite difference \checkmark

Material-material case

Initially unimaterial

- → cut by the interface
- \rightarrow approximation \neq
- → number of dofs /

Finite difference ×

Initially bimaterial

- → not cut anymore
- \rightarrow approximation \neq
- → number of dofs \

Finite difference ×

DAMAGE PROPAGATION PROBLEM

Ongoing work:

- propagation of damage through fixed geometry microstructures
- microstructural design under damage resistant constraint

Many methods are available to simulate the propagation of damage:

• damage as an **optimal problem**: A damaged material of lower stiffness is distributed on a undamaged structure, submitted to loadings, so that the global compliance is maximized.

$$\max_{z} \min_{d} \min_{u} \int_{\Omega} \frac{1}{2} \varepsilon(u)^{t} D(z, d) \varepsilon(u) d\Omega - \int_{\Omega} f^{t} u d\Omega - \int_{\Gamma_{\sigma}} t^{t} u d\Gamma$$

• damage starting at the interface: Cohesive laws can be used to simulate a stiffness reduction of the interface as the structure undergoes different types of loadings.

ACKNOWLEDGEMENTS