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INTRODUCTION/GOAL
Material tailoring can be formulated as a structural optimization
problem. The final objective of this work is to perform microstruc-
tural design under damage resistant constraint.

The work is divided in three main parts:
1. the microstructural design problem: maximizing the linear

properties as stiffness, thermal conductivity, . . .
2. the damage propagation problem: propagating damage on

fixed microstructural geometries
3. the combination of the two previous problems: optimizing mi-

crostructures under damage resistant constraint

The developed method will be designed to be applied to composite
materials, functionally graded materials, damage materials, . . .

MICROSTRUCTURAL DESIGN PROBLEM
The microstructural design is carried out through shape optimization.
Shape optimization is performed using an approach that combines:

a Level Set description of geometries
a non-conforming analysis method (XFEM)

The design problem is casted in a mathematical programming ap-
proach providing a general and robust framework:

min
x

f0(x)

s.t. fj(x) ≥ f j j = 1, . . . ,m

xi ≥ x ≥ xi i = 1, . . . , n

LEVEL SET DESCRIPTION
Basic principles of the Level Set Description:

a function φ(x) is used to represent implicitly any shape Γ

the desired shape is drawn by the iso-zero Level Set
working on a finite mesh, φ(x) is discretized and interpolated

Ω

Ω+ : φ(x) > 0

Ω− : φ(x) < 0

Γ : φ(x) = 0
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EXTENDED FINITE ELEMENT METHOD
Basic principles of the eXtended Finite Element Method:

adding special shape functions to the approximation to deal
with particular behavior near an interface
in the case of material-void interface:

uh(x) =
∑
i

H(x) Ni(x) ui

in the case of material-material interface:

uh(x) =
∑
i∈I

Ni(x) ui+
∑
i∈I?

Ni(x)

∑
j

Nj(x) |φj | − |Nj(x) φj |

 ai

FEM

XFEM

Enriched node
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SENSITIVITY ANALYSIS
Van Miegroet et al. (2007) developed a semi-analytical approach to
perform the sensitivity analysis in the case of material-void interface:

Level Set parameters = design variables
derivatives computed through forward finite difference
derivatives are used to compute variations of design functions
as compliance, displacement, stress, . . .

∂K

∂z
=

K(z + δz)−K(z)

δz
and

∂f

∂z
=

f(z + δz)− f(z)

δz

Trying to extend this approach to the material-material interface case,
several additional difficulties arise. Those difficulties are highlighted
by comparing the material-void and the material-material cases.

z

1

z + δz

1

Material-void case Material-material case

1 1

Initially non-included Initially unimaterial
→ cut by the interface → cut by the interface
→ approximation 6= → approximation 6=
→ number of dofs↗︸ ︷︷ ︸ → number of dofs↗︸ ︷︷ ︸

Finite difference× Finite difference×

1 1

Initially partially filled Initially bimaterial
→ not cut anymore → not cut anymore
→ approximation = → approximation 6=
→ number of dofs =︸ ︷︷ ︸ → number of dofs↘︸ ︷︷ ︸

Finite difference
√

Finite difference×

DAMAGE PROPAGATION PROBLEM
Ongoing work:

propagation of damage through fixed geometry microstructures
microstructural design under damage resistant constraint

Many methods are available to simulate the propagation of damage:
damage as an optimal problem: A damaged material of lower
stiffness is distributed on a undamaged structure, submitted to
loadings, so that the global compliance is maximized.

max
z

min
d

min
u

∫
Ω

1

2
ε(u)tD(z, d)ε(u)dΩ−

∫
Ω

f tudΩ−
∫

Γσ

ttudΓ

damage starting at the interface: Cohesive laws can be used
to simulate a stiffness reduction of the interface as the structure
undergoes different types of loadings.
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