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The present research is focused on the identification
of time-varying systems
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M (t) ẍ(t) + C(t) ẋ(t) + K(t) x(t) = f (t)

The dynamics of such systems is characterized by:
I Non-stationary time series
I Instantaneous modal properties

I Frequencies : ωr(t)
I Damping ratio’s : ζr(t)
I Modal deformations : qr(t)



Why time-varying behaviour can occur ?
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Several possible origins :
I Structural changes

I Operating conditions

I Damages



Existing techniques for the identification
of time-varying systems
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Short-time analyses

Wavelet analysis

ARMA methods

Hilbert-Huang Transform (HHT)

Hilbert Vibration Decomposition (HVD)



Outline of the presentation
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Introduction to the Hilbert transform and the
HVD method

Drawbacks and illustrative example

Adaptation of the initial method

Application to the case study



The Hilbert Transform
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The Hilbert transform H of a signal x(t) is the convolution product of
this signal with the impulse response h(t) = 1

π t

x̂(t) = H(x(t)) = (h(t) ∗ x(t))

= p.v.
∫ +∞

−∞
x(τ)h(t − τ) dτ

=
1
π

p.v.
∫ +∞

−∞

x(τ)
t − τ

dτ

It is a particular transform that remains in the same
domain as the original signal

It corresponds to a phase shift of −π
2 of the signal



The Hilbert transform is used to build the
complex analytic form of a signal
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The analytic signal z is built as

z(t) = x(t) + iH(x(t))
= A(t) eiφ(t)

In the frequency domain, the analytic signal
becomes a one-sided signal



The analytic signal can be seen as a rotating
phasor in the complex plane
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It is suitable to find the envelope
of the signal
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The instantaneous envelope of the signal is given by
the absolute value of the analytic signal

A(t) = |z(t)|
x

Time
 

 
x(t)
A(t)



It also gives information about
the instantaneous phase
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The instantaneous phase of the signal is given by the
argument of the analytic signal

φ(t) = ∠z(t)

The time derivative of the phase angle gives the
instantaneous frequency

ω(t) = dφ
dt



Study of multicomponent signals
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Multicomponent signals as a sum of modulated
harmonic components

x(t) =
n∑

r=1
Ar(t) sin(φr(t) + θr)

In its analytical form, it can be seen as a phasor
superposition

z(t) =
n∑

r=1
Ar(t)ei φr (t)
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The Hilbert Vibration Decomposition
(HVD) sifting process
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Key steps of the method:
I Analytic signal computation
I Phase extraction and smoothing
I Synchronous demodulation
I Component subtraction and iteration
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The HVD method in that scheme
encounters some drawbacks
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It is applicable to single channel measurement.
The application on multiple channels has to be
done in parallel

In a multivariate case, all the modes have to be
excited at each time instants on all the channels

The method will always follow the
instantaneous dominant mode



Example: a simple 2–DoF
time–variant system
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System properties:
I m1 = 3 [kg]
I m2 = 1 [kg]
I k1 = 20000 [N/m]
I c1 = 3 [N.s/m]
I k2 = 25000↘ 5000 [N/m]
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The application of the HVD method on each
channel leads to mode switching
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Introducing a source separation method
can help to avoid this phenomenon
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In the case of multivariate measurements, a source
separation step is introduced in the algorithm
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x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s1(t) + iH(s1(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
φ(k)(t) → x(k)(t), V k(t)

Sifting process
x(t) := x(t) − x(k)(t)

Sources are used as references to get the
instantaneous frequencies

Trend extraction computes the phase of the
dominant mode
Vold-Kalman filter (VKF) is used for
component extraction



Example of application: an aluminium beam
on which a mass is travelling
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I Beam geometry: 2000× 80× 20 mm
I M = 3 kg (≈ 35% of the mass of the beam)
I Pinned connections:

x(0) = y(0) = z(0) = x(l) = y(l) = z(l) = 0

I Five measurement points in two directions
I One excitation point in two directions



The system is simulated using
LMS–Samcef Mecano
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I Newmark integration over 60 seconds
I The mass travels the whole beam during the

integration time at a constant speed
I Random forces excite all the modes of the

structure
I Gaussian noise is added to the numerical

responses (1% noise to signal ratio)



The time–variant characteristics
of the system are easily visible
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Resonance frequencies oscillate between top
and bottom values depending on the position
of the mass
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All the channels are then decomposed in sources
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The smooth orthogonal decomposition (SOD)
technique is used to try to highlight one mode
in each source
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x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s1(t) + iH(s1(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
x(k)(t), V k(t)

Sifting process
x(t) := x(t) − x(k)(t)



Source s1(t) is kept and its analytic signal
is calculated to extract its phase
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x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s1(t) + iH(s1(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
x(k)(t), V k(t)

Sifting process
x(t) := x(t) − x(k)(t)

The Hodrick–Prescott (HP) filter is used as
trend detection technique

It is an optimisation problem trying to find the
trend that minimises

min
[tn ]Nn=1

{ N∑
n=1

(φn − tn)2

︸ ︷︷ ︸
(1)

+ λ
N−1∑
n=2

[(tn+1 − tn)− (tn − tn−1)]2︸ ︷︷ ︸
(2)

}

(1) penalises large discrepancies between the
trend and the signal

(2) penalises fast variations of the trend



Once the phase of the dominant mode is known,
its corresponding components are extracted
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x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s1(t) + iH(s1(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
x(k)(t), V k(t)

Sifting process
x(t) := x(t) − x(k)(t)

A Vold–Kalman filter (VKF) is used to this aim

The method retrieves signal components based on
their phase

x(t) =
∑

k ak(t) ei φk(t)︸ ︷︷ ︸
x(k)(t)

+ ν(t)

The complex amplitudes of the components
minimise the data equation

x(t)−
∑

k ak(t) ei φk(t) = δ(t)

and the structural equations

ak(t − 1)− 2ak(t) + ak(t + 1) = εk(t)



Analogy between VKF and modal expansion
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x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s1(t) + iH(s1(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
x(k)(t), V k(t)

Sifting process
x(t) := x(t) − x(k)(t)

By analogy with the modal expansion the
complex amplitudes can be seen as unscaled
instantaneous mode shapes

VK filter

x(t) =
∑

k
ak(t) ei φk(t)

Modal expansion

x(t) =
∑

k
V k(t) η(t)



All the modes are extracted
by successive iterations
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The Modal Assurance Criterion is adapted
to time–varying mode shapes
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At each time instant the MAC matrix is
calculated and reshaped in a column vector
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The mode shapes are perturbed by the
presence of the mass on the beam
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Conclusion and future work
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The HVD method was presented with its
strengths and weaknesses

Modifications were added to treat an MDOF
system

The method was applied to identify the
numerically simulated system

Application to the identification of actual
sytems

Increase the robustness of the method
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Thank you for your
attention




