

Effect of 120 minutes of high pressure-volume and low pressurevolume mechanical ventilation on plasmatic markers of systemic

inflammation in horses during general anaesthesia

Cenani A.¹, Cerri S.¹, Gougnard A.¹, Detilleux J.², Franck T.¹, Serteyn D.¹, <u>Sandersen C.¹</u>

¹Clinical Department of Companion Animals and Horses, ²Department of Animal Production, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium.

INTRODUCTION

Mechanical ventilation (MV) may trigger some pulmonary inflammatory response in absence of pre-existing lung disease¹. Conventional ventilation may also enhance systemic inflammatory response after major surgical procedure².

AIM

To investigate <u>SYSTEMIC</u> changes in equine pro-inflammatory mediators (IL-6, TNF- α , ELT, MPO) after 60 min of conventional mechanical ventilation in anaesthetized horses undergoing surgery.

METHODS

<u>Animals</u>: 34 client-owned ASA I-II horses (9.8±5.4 years, 510±88 kg) undergoing elective soft tissue or orthopaedic surgery.

<u>Anaesthesia</u>: Premedication with acepromazine (0.1 mg.kg⁻¹, IM) followed by xylazine (0.6 mg.kg⁻¹, IV) 10 minutes prior to induction with ketamine (2.2 mg.kg⁻¹, IV) and midazolam (0.06 mg.kg⁻¹, IV). Partial intravenous anaesthesia was used for maintenance of anaesthesia: isoflurane in 70% O2 and 30% air; ketamine and midazolam CRIs (1 and 0.02 mg.kg.h⁻¹, respectively, discontinued 20 min prior to recovery).

Surgical procedure started 25 min after induction and lasted a minimum of 45 min. Antibiotics and NSAIDs were given on the morning of the surgery.

<u>Mechanical Ventilation</u>: Intermittent positive pressure ventilation was started 10 min after induction, using a volume-target, time-cycled ventilator (Drager AVE ventilator, Drager Medical) used in continuous mandatory ventilation mode. Horses were randomly allocated to 4 groups:

- Low pressure-volume: PIP 15 cmH₂O, V_T≤ 10ml.kg⁻¹, in DORSAL (15D, n=5) or LATERAL (L15, n=11) recumbency.
- High pressure-volume: PIP 30 cmH₂O, V_T>10 ml.kg⁻¹, in DORSAL (30D, n=9), or LATERAL (L30, n=9) recumbency.

I:E ratio was set between 1:2 and 1:3. Respiratory rate 8 \pm 3 breath per min (Min: 4 - Max: 15) to achieve the PIP and V_T.

RESULTS

Measurements:

- Peripheral arterial blood gas analysis every 20 min (AVL Compact 3 blood gas analyser).
 Horses were excluded if PaCO2 was < 30 or >60 mmHg, and if PaO2 < 80 mmHg.
- Peripheral venous blood samples (EDTA, jugular vein) immediately before the start at of MV (T0, n=34), after 60 min (T1, n=34) and 120 min (T2, n=12) were immediately centrifuged and the plasma was stored within 30 min at -20°C. IL-6, TNF-α, ELT and MPO measured with equine specific ELISA.

Statistical analysis:

- A linear mixed model with a 1st-order autoregressive structure was used on normalized data (significance: p<0.05)
- Fixed effects: time, recumbency, PIP and their 2x2 interactions. Main effects: antiinflammatory drugs and antibiotics. Covariate: weight. Random effects: horse and repeated measures within horses.

- Plasma concentrations of ELT and MPO significantly decreased at T1. Plasma concentration of TNF-α significantly deceased at both T1 and T2. These changed were not linked to PIP, recumbency or their 2-by-2 interactions. Plasma concentration of IL-6 was not significantly different either at T1 or T2 (fig 1-3).
- V_T significantly varied with PIP and recumbency; RR and PaCO₂ significantly varied with PIP; minute volume significantly varied with recumbency (table I).
- No correlation with anti-inflammatory drug and antibiotic therapies was found.

<u>Figure 1:</u> Plasma concentrations of equine IL-6, TNF- α , MPO and ELT at TO (n=34), T1 (n=34) and T2 (n=12). *: Significantly different from TO (p<0.05), §: Significantly different from TO (p<0.05).

CONCLUSIONS

None of the protocols tested in this study were associated with a systemic increase of equine pro-inflammatory mediators

Figure 2: Plasma concentrations of equine IL-6, TNF-α, MPO and ELT at T0, T1 and T2 in 15L (T0=11, T1=11, T2=5), 15D(T0=5, T1=5, T2=0), 30D (T0=9, T1=9, T2=2) and 30L (T0=9, T1=9, T2=5).

Group		15D	30D	15L	30L
RR	TO	$10.2 \pm 3.2^{\dagger \ddagger}$	5.9 ± 1.3	$9.4 \pm 2.6^{\dagger \pm}$	5.2 ± 0.8
(breaths/minute)	T1	11.3 ± 2.3 ^{†‡}	5.3 ± 0.7	$10.1 \pm 2.5^{\dagger \ddagger}$	5.1 ± 0.5
	T 2	np	5.1 ± 0.2	$11.5 \pm 3.1^{\pm}$	4.7 ± 0.5
VT	TO	9.2 ± 2.3 ^{†‡‡}	16.6 ± 2.8 ^{‡¤#}	8 ± 1.8 ^{†‡#}	14.2 ± 2.3 ^{†¤#}
(ml/kg)	T1	8.5 ± 2^{12}	16.6 ± 2^{10}	8 ± 1.8 ^{†‡#}	15.4 ± 2.8 ^{†##}
	T2	np	$17.4 \pm 2.2^{\pm 1}$	$7.9 \pm 2.3^{\dagger \ddagger}$	15.5 ± 3.6^{12}
Minute Volume	TO	94.4 ± 36.4 ^{‡¤}	96.1 ± 20.6 ^{‡¤}	73.4 ± 19.9	72.2 ± 13
(RR x VT)	T1	93.7 ± 19.3 ^{‡¤}	86 ± 8.5 ^{‡¤}	80.1 ± 22.6	77.3 ± 14.9
	T2	np	89.1 ± 8.4 ^{‡¤}	87.4 ± 21.5	72.1 ± 15.8
PaO ₂	TO	np	np	np	np
(mmHg)	T1	170.7±65	215.2 ± 130.3	232.5 ± 70.4	241.3 ± 48.5
	T2	np	102.9 ± 25.4	253.6 ± 84.4	222.3 ± 51.4
PaCO ₂	то	np	np	np	np
(mmHg)	T1	53.5 ± 5.8	39.1 ± 3.2	51.1 ± 7.5	39.2 ± 7.2
	T2	np	37.7 ± 1.6	50.5 ± 12.2	36.1 ± 6.1

<u>Figure 3</u>: Percent change in plasma equine IL-6, TNF- α , MPO and ELT concentrations in 15L, 15D, 30D and 30L at T1 and T2. Results are expressed as relative values (%) of T0.

<u>Table I</u>: Intraoperative respiratory and pulmonary variables at T0, T1 and T2 in 15L, 15D, 30D and 30L at T1 (mean±standard deviation, †significantly different (p<0.05) from 30D; ‡significantly different (p<0.05) from 30L; ¤significantly different (p<0.05) from 15L; #significantly different (p<0.05) from 15D;

(IL-6, TNF-α, ELT, MPO) after 120 minutes of mechanical ventilation.

The use of drugs with anti-inflammatory properties may have contributed to the overall decreased systemic inflammatory mediator concentration, despite MV and surgery.

Pulmonary inflammation, undetectable systemically, cannot be excluded, as suggested recently³.

Abbreviations:

15L: low pressure-volume ventilation in lateral recumbency; 15D: low pressure-volume ventilation in dorsal recumbency; 30D: high pressure-volume ventilation in lateral recumbency;

IL: Interleukin; TNF: Tumor Necrosis Factor, MPO: Myeloperoxidase, ELT: Elastase, MV: Mechanical Ventilation, PIP: Peak Inspiratory Pressure, T0: at the start of mechanical ventilation; T1: after 60 minutes of mechanical ventilation; T2. after 120 minutes of MV; V_T : Tidal Volume; RR: respiratory rate; PaO₂ = arterial partial pressure of oxygen; PaCO₂ = arterial partial pressure of carbon dioxide.

<u>Contact</u>: Charlotte Sandersen, charlotte.sandersen@ulg.ac.be

<u>References</u>:

1: Wolthuis EK, Vlaar AP, Choi G, et al. (2009) Mechanical ventilation using non-injurious ventilation settings cause lung injury in the absence of pre-existing lung injury in healthy mice. Crit Care 13, R1.

2: Michelet P, D'journo XB, Roch A, et al. (2006) Protective ventilation influences systemic inflammation after esophagectpmy: a randomized controlled study. Anesthesiology 105, 911-919.

3: Hong CM, Xu DZ, Lu Q et al. (2012) Systemic Inflammatory Response Does Not Correlate with Acute Lung Injury Associated with Mechanical Ventilation Strategies in Normal Lungs. Anesth Analg 115, 118-121.