P13 - Old inks: pigments extracted from plants

Jessica Despy¹, Noémie Wymeersch¹, Isabelle Bouchat¹, Caroline Destree¹, Anne Burette², Aurore Richel³ and Gilles Olive¹

 ¹ Ecole Industrielle et Commerciale de la Ville de Namur, Belgium
² Abbaye de Villers-la-Ville ASBL, Belgium
³ University of Liège, Gembloux Agro-Bio Tech, Unit of Biological and Industrial Chemistry, Belgium Corresponding author: gilles.olive@eicvn.be

Thousands of years ago, natural pigments were discovered and they have been used ever since. Indeed, prehistoric people already used them to paint the walls of the caves in which they were living. A significant example of this is the Cosquer cave (-19,000 to -27,000 years) located near Marseilles.

Pigments and dyes can be classified into two broad categories and five families: natural pigments and dyes and those called artificial. The first one of these five families includes the mineral pigments. Among these we can find the clays (yellow ochre, red ochre, green clay, brown clay) and the stones like lapis lazuli (blue). The second and third families gather the organic dyes and pigments. Those that have vegetal origins like indigo (blue) and madder (red) compose the second family and those that have animal origins like cochineal (red) and kermes dyers (carmine) form the third family. One family includes pigments and dyes stemming from chemical reactions such as verdigris or red lead (family 4) and the other one is made of the miscellaneous inks such as iron-gall type who are vegetal and mineral one (family 5).

All these pigments, although they have been used for centuries, have been replaced by synthetic dyes from the oil industry at the end of the 19th century. Indeed, they have the advantage of reproducibility of the properties unlike natural pigments. But the scarcity of oil causes a renewed interest in natural preparations. We report the extraction of pigments from plants.

Old inks: pigments extracted from plants

Jessica DESPY^a, Noémie WYMEERSCH^a, Isabelle BOUCHAT^a, Caroline DESTREE^a, Anne BURETTE⁶, Aurore RICHEL^c and <u>Gilles OLIVE^{a,c}</u>

^aEcole Industrielle et Commerciale de la Ville de Namur, Rue Pépin, 2B, 5000 Namur, Belgium, email: gilles.olive@eicvn.be ⁶Abbaye de Villers-la-Ville ASBL, Rue de l'Abbaye, 55, 1495 Villers-la-Ville, Belgium

^cUniversity of Liège, Gembloux Agro-Bio Tech, Unit of Biological and Industrial Chemistry, Passage des Déportés 2, 5030 Gembloux, Belgium

Thousands of years ago, natural pigments were discovered and they have been used ever since. Indeed, prehistoric people already used them to paint the walls of the caves in which they were living. A significant example of this is the Cosquer cave (-19,000 to -27,000 years) located near Marseilles (France).

Pigments and dyes can be classified into two broad categories: natural pigments and dyes and those called artificial. These categories are then subdivided into five families. The first one of these five families includes the mineral pigments. Among these we can find the clays (yellow ochre, red ochre, green clay, brown clay) and the stones like lapis lazuli (blue) and malachite (green). The second and third families gather the organic dyes and pigments. Those that have vegetal origins like indigo (blue), weld (yellow) and madder (red) compose the family 2 and those that have animal origins like cochineal (red) and kermes dyers (carmine) form the family 3. One family includes pigments and dyes stemming from chemical reactions such as verdigris or red lead (family 4) and the other one is made of the miscellaneous inks such as iron-gall type who are vegetal and mineral one (family 5).

All these pigments, although they have been used for centuries, have been replaced by synthetic dyes from the oil industry at the end of the 19th century. Indeed, they have the advantage of reproducibility of the properties unlike natural pigments. But the scarcity of oil causes a renewed interest in natural preparations. In such purpose, our laboratory in conjunction with the Abbey of Villers-la-Ville has decided to study natural derivatives for inks and focuses in particular on the extraction of pigments from plants.

Definitions

Decoction: the liquid and the plant are boiled together. **Infusion**: the plant is put to soak after the boiling of the liquid. **Maceration**: the plant is immersed in a liquid at room temperature (for longer time).

Alum stone: the ordinary alum (also called Kalinite) is a salt with the chemical formula $KAl(SO_4)_2$.12 H_2O (11 H_2O for Kalinite). **To mordant:** step of manufacturing an ink which allows the coloring substance present in a plant to bind to a metal salt and thus formed a solid complex, depending on the metal salt used the resulting color will be different.

<u>Results</u>									
Name of the plant	Extraction mode	Mordant	Yield	Color	Example	Remark			
Madder (Rubia tinctorium L.)	physical with hot water	alum stone	14.1 %	red					

St John's wort (Hypericum perforatum L.)	alcoholic maceration	alum stone	40.6 %	pale green	Test	
	aqueous decoction	alum stone	35.6 %	yellow-green	Millepertuis Millepertuis	
	aqueous decoction	copper sulfate	_	brownish green		
Tall mallow (Malva sylvestris L.)	cold aqueous decoction	alum stone	17.8 %	green-yellow		
	hot aqueous decoction	alum stone (pH 8)	26.2 %	green-yellow		
	aqueous decoction	magnesium oxide	> 80 %	yellow-green		
	aqueous decoction	magnesium chloride	79.4 %	yellow-green		
	aqueous decoction	alum stone	85.3 %	yellow-green		
Tansy (Tanacetum vulgare £.)	aqueous decoction	iron sulfate	75.9 %	brown		
	aqueous decoction	magnesium oxide	38.9 %	light salmon		
	aqueous decoction	magnesium chloride	37.1 %	yellow		
	aqueous decoction	calcium hydroxide	30.5 %	dark yellow		
	aqueous decoction	nickęl chloride	23.1 %	light green		
	aqueous decoction	copper sulfate	36.4 %	green		
Burning nettle (Urtica urens L.)	aqueous decoction	alum stone	13.8 %	_	too light, due to the insolubility of pigments	