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One-Sentence summary: 

Description of root and soil properties defining plant water uptake dynamics. 

 

 

 www.plant.org on February 10, 2014 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2014 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/
http://www.plantphysiol.org/
http://www.plant.org
http://www.plant.org


 3

Footnotes : 
 
This work was supported by the Communauté française de Belgique (Actions de 
Recherche Concertées, grant 11/16-036 to X.D.), by the Belgian Science Policy 
Interuniversity Attraction Poles Program (grant P7/29 to G.L., X.D), by the Fonds 
National belge de la Recherche Scientifique (F.M., V.C.), by the Belgian American 
Educational Foundation and the Wallonie-Bruxelles International (V.C.) and by the 
European Community’s Seventh Framework Programme under the grand agreement 
n°FP7-244374 (DROPs). 

 
 
 
Corresponding author : 
 
xavier.draye@uclouvain.be 

 www.plant.org on February 10, 2014 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2014 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/
http://www.plantphysiol.org/
http://www.plant.org
http://www.plant.org


 4

Abstract 

 

Over the last decade, investigations on root water uptake have evolved towards a 

deeper integration of the soil and roots compartments properties, with the aim to 

improve our understanding of water acquisition from drying soils. This evolution 

parallels increasing attention of agronomists to suboptimal crop production 

environments. Recent results have led to the description of root system architectures 

that could contribute to deep water extraction or to water saving strategies. In 

addition, the manipulation of root hydraulic properties would provide further 

opportunities to improve water uptake. However, modeling studies highlight the role of 

soil hydraulics in the control of water uptake in drying soil and calls for integrative soil-

plant systems approaches.  

 

 

 

Keywords: root; water uptake; root modeling 
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Introduction 

 

The fundamental mechanism of water flow in plants has been described for many 

years (Steudle, 2001). Briefly, the diffusion of vapor through stomata leads to the 

evaporation of water from the surface of inner leaf tissues and an increase of tension 

in the xylem that propagates to each root segment following the cohesion-tension 

principle (in this context, a root segment can be seen as a portion of root with uniform 

hydraulic properties). Where this tension is higher than the surrounding soil, it induces 

an inflow of water from the rhizosphere following paths of low soil hydraulic 

resistance. How far plants are able to sustain their leaf water demand is therefore 

largely dependent on the hydraulic properties of the soil-root system. 

 

The spatial geometry of the root system is typically considered as a major 

determinant of water availability, essentially because the placement of roots in the soil 

domain delineates the extent of soil exploration and sets an upper limit to the volume 

of potentially accessible water (fig. 1A). The level of details required to link the volume 

of accessible water to the spatial geometry of the root system depends on crop 

species, sowing patterns and soil hydraulic properties. While a vertical profile of root 

density is generally sufficient for crops sown at very high densities in a highly 

conductive soil, two- or three-dimension descriptions are needed for crops with large 

inter-rows or in water depleted soils (Couvreur, 2013). 

  

Within the volume of soil explored by a root system, however, water uptake is 

unevenly shared among root segments. Indeed, individual segments differ by their 

axial and radial hydraulic conductivities and by the conductance of the shortest paths 

that links them to the shoot base. These properties, encapsulated in the concept of 

root hydraulic architecture (fig. 1B), have a large impact on the hydraulic conductance 

of the root system and, together with the soil hydraulic status, on the distribution of 

water capture among individual root segments. Consequently, sites of higher uptake 

occur throughout the root zone and contribute to the heterogeneous spatial 

distribution of the plant available soil water availability (Doussan et al., 2006). For a 

given root, these preferential sites are predicted a few centimeters from the root tip, 

where protoxylem and xylem elements are conductive and hydrophobic structures are 

lacking. This was recently confirmed experimentally by neutron radiography 

experiments (Zarebanadkouki et al., 2013). 
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The distribution and amount of water uptake in the root zone is also influenced by the 

distribution and amount of the available soil water (fig. 1C). As the soil matric potential 

and hydraulic conductivity decrease with soil water content, dry soil portions 

contribute marginally to root water uptake, but also limit the contribution of the 

surrounding (potentially wetter) bulk soil. As long as soil hydraulic conductivities do 

not limit the water flow to the rhizosphere, root placement and hydraulic properties 

(i.e., the root hydraulic architecture) have a limited impact on the uptake process, 

provided that the root system conductance is large enough (Passioura, 1984). The 

root hydraulic architecture essentially matters in water deficit conditions, when the soil 

hydraulic conductivity become limiting. Because the array of intermediate situations 

where the soil is neither completely dry nor wet is large, it has become obvious in the 

last decade that an appropriate framework to analyze water uptake should consider 

both root hydraulic architecture and soil hydraulic properties (Draye et al., 2010). 

 

In this Update, we report on recent advances in the analysis of water flow and water 

uptake regulation within the soil-root domain. In the first three sections, we analyze 

root and soil features that influence water uptake, with a focus on conditions of limited 

water supply. In the last two sections, we highlight recent work in systems analysis of 

root water uptake and review methodological developments that will guide future 

research in this area. 

 

 

Coincidence between root foraging and soil resources distribution 

 

The importance of root placement for water extraction depends on the ability of the 

soil to redistribute its water in order to sustain the uptake of water that occurs in the 

rhizospheric compartment of the soil. In soils with high water conductivity throughout 

the season, fast soil water redistribution from the bulk soil to the rhizosphere limits the 

role of root foraging as long as the root system conductance is large enough. In 

drying soils, however, the smaller hydraulic conductivity of the soil reduces soil water 

redistribution and the soil volume from which individual root segments are able to 

obtain their water narrows down accordingly. In such conditions, even transient, the 

placement of roots and its correlation to the distribution of soil water sets an upper 

limit to the amount of water that can be extracted.   
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In transient or cyclic drought environments, the reserve of soil water can be 

temporarily restricted to deeper layers because water uptake (and evaporation) 

occurs preferentially in the topsoil, where the root length density (cumulated root 

length per unit soil volume) is the highest and the path to extract water the lowest. 

This situation is most pronounced under terminal drought, as the soil water reserve is 

not refilled over the growing season and is gradually restricted to deeper soil layers. 

Increasing the root system depth and tailoring deep water extraction was therefore 

proposed as a key element of a root system ideotype adapted to water-limited 

environments (Wasson et al., 2012; Comas, 2013; Lynch, 2013). Considering the 

construction and maintenance costs of root systems, the ideotype should preferably 

have few and long laterals, evenly distributed along the depth axis (Lynch, 2013). The 

rationale is that few long laterals have a small weight on the carbon budget and allow 

the exploration of a larger soil volume. Aerenchyma is also considered as a feature 

reducing the root construction cost, in favor of deep root extension. Wasson et al. 

also advocate for a greater root length density at depth and reduced density in the 

top-soil in order to favor deep soil water extraction. 

 

Root system depth appears to be amenable to conventional breeding and has been 

shown to be under control of, at least, four different QTL in rice (Courtois et al., 2013) 

and one major constitutive QTL in maize (Landi et al., 2010). In addition, several traits 

that should contribute to a deep root phenotype have been proposed or identified. 

Increasing the diameter of the main roots is thought to be linked with a greater growth 

potential (Pagès et al., 2010) and a greater ability to explore hard soil (Bengough et 

al., 2010). In rice, the gene DRO1 has been shown to steepen the root insertion angle 

and increase the rooting depth, conferring improved drought resistance (Uga et al., 

2013). In groundnut, DREB1A has been shown to increase drought resistance by 

promoting root development in deep soil layers. Additionally, increasing the proportion 

of aerenchyma in main root axes reduces the metabolic cost of root exploration (Fan 

et al., 2007; Lenochova et al., 2009; Zhu et al., 2010). The manipulation of root 

branching in different layers, which is part of the deep root ideotype, is expected to be 

more difficult to achieve for practical observation constraints. While considering those 

traits, it should be reminded that deep rooting could be obtained differently in tap-

rooted species compared to monocot root systems with continued production of 

gravitropic adventitious root axes.  

 

The identification of root ideotypes is further complicated by the fact that root growth 

and development are strongly influenced by the soil environment. Root architecture 
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remodeling in response to a wide range of nutrients deficiencies have been recently 

described and partly elucidated in Arabidopsis (Giehl et al., 2013; Gruber et al., 

2013). Changes in root architecture in response to phosphate starvation occur under 

the control of OsMYB2P-1 in rice (Dai et al., 2012) and AtSIZ1 in Arabidopsis (Miura 

et al., 2005; Miura et al., 2011). Interestingly, alternative adaptations to the same 

adverse conditions exists among different genotypes, as illustrated by altered primary 

or lateral root growth conferring resistance to K starvation (Kellermeier et al., 2013). 

Local environmental conditions also contribute to root architecture remodeling. 

Individual roots are able to reorient towards water (hydrotropism), under the control of 

MIZ1 (Iwata et al., 2013) and GNOM (Moriwaki et al., 2014) in Arabidopsis. Similarly, 

PIN2 activity influences the capacity of individual roots to escape high salinity patches 

(halotropism) (Galvan-Ampudia et al., 2013). This plasticity of root development 

should not be overlooked in drought resistance studies given the role of water in 

nutrient uptake. 

 

The benefit of deep root system in drought prone environment has been 

demonstrated experimentally in rice (Steele et al., 2012), wheat (Manschadi et al., 

2010), maize (Hammer et al., 2009; Hammer et al., 2010), legumes (Vadez et al., 

2012a), grapes (Alsina et al., 2011) or trees (Pinheiro et al., 2005). However, other 

results seem to indicate that deep root systems are not always linked to an increase 

in yield. Experiment with chickpea (Zaman-Allah et al., 2011a; Zaman-Allah et al., 

2011b) and wheat (Schoppach et al., 2013) indicate that drought tolerance, especially 

in terminal drought conditions, can be linked to a conservative use of water 

throughout the season rather than deep rooting. In such cases, plants tailored for 

improved root length density at depth are likely to use too much water early in the 

season and reduce the reserve of water in the profile during grain filling. A similar 

behavior has been reproduced using modeling tools (Vadez et al., 2012b). As 

suggested recently, benefits of any root-related trait could be highly dependent on the 

drought scenario (G x E interactions) (Tardieu, 2011).  

 

 

Root system hydraulic architecture 

 

Although all root segments are somehow connected to the plant stem, the negative 

water potential that develops at their surface as a result of the xylem tension is not 

necessarily uniform. Indeed, individual root segments are not equally conductive to 
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water, both radially and axially, and the paths that link them to the shoot base are 

unique (fig. 1A). On the one side, from the root surface to the xylem vessels, water 

flows radially following paths of lowest hydraulic resistance using apoplastic, 

symplastic and cell-to-cell pathways. This radial water inflow into the root, described 

as a composite transport, can be characterized at the root segment level by a radial 

hydraulic conductance, which has been shown to be variable between species 

(Bramley et al., 2009; Knipfer et al., 2011) and even ecotypes (Sutka et al., 2011). On 

the other side, the axial flow along the xylem is characterized by the axial 

conductance of successive root segments. The complete hydraulic structure of the 

root system, comprising its topology and the size and hydraulic properties of its 

constituting segments, forms its root hydraulic architecture (Doussan et al., 1998). 

Under uniform soil water distribution, it has been shown that the hydraulic architecture 

allows to predict the expected contribution of every root segment to the water uptake 

(Doussan et al., 2006), recently referred to as the standard uptake fractions 

distribution (Couvreur et al., 2012). 

 

The tissular organization of root segments is a long-term determinant of their radial 

conductivity (fig. 2C). This includes the number and anatomy of cell layers between 

the root surface and the xylem (Yang et al., 2012), and the presence of hydrophobic 

Casparian strips that occur typically at the endodermis and exodermis (Enstone et al., 

2003). The formation of hydrophobic structures has been shown to be influenced by 

the growing medium (Hachez et al., 2012) and is triggered by drought conditions 

(Enstone and Peterson, 2005; Vandeleur et al., 2009). As the tissular organization is 

established permanently, this implies that the radial conductivity reflects the root 

segment history (its development, in relation with its environment). Beyond these 

structural features, the root radial conductivity is also controlled on a shorter term by 

the regulation of water channels, or aquaporins (Cochard et al., 2007b; Hachez et al., 

2012)  Presence of functional aquaporins in cell membranes highly facilitates the 

passive flow of water and has been shown to contribute to 20 to 80% of the radial 

water inflow into the root (Maurel and Chrispeels, 2001; Javot et al., 2003), although 

this contribution varies between species (Bramley et al., 2009; Bramley et al., 2010).  

Aquaporin regulation is achieved through their expression intensity (Hachez et al., 

2012), subcellular localization (Li et al., 2011) or through the gating of the aquaporin 

pore (gating) (Boursiac et al., 2008). In maize, aquaporins have been shown to be 

preferentially localized in the endodermis and exodermis (Hachez et al., 2006) (fig. 

2C). For more details on aquaporins, see the update of F. Chaumont in this issue 

(Chaumont and Tyerman, 2014). 
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As for the radial conductance, both permanent and transient features affect the axial 

conductance of individual root segments. Structural features include the number, size, 

degree of inter-connexion and decorations of xylem vessels (Vercambre et al., 2002; 

Domec et al., 2006; Tombesi et al., 2010) (fig. 2B). The number and size of xylem 

vessels increase during the maturation of root segments, and decrease with 

branching order in cereals (Watt et al., 2008). The xylem diameter reflects the root 

segment history. For example, it tends to be lower in shallow roots than in deep roots 

for woody plants growing in environments subject to drought or freezing conditions 

(Gebauer and Volařík, 2012). The anatomy of xylem vessels also displays a large 

variability in Zea (Burton et al., 2013), rice (Uga et al., 2008), legumes 

(Purushothaman et al., 2013) or coniferous (McCulloh et al., 2010). Transient 

modifications of the axial conductance occur as a result of xylem vessel embolism, or 

cavitation, following the nucleation and rapid expansion of gas bubbles under high 

tension. As embolized vessels are not hydraulically conductive, the flow of water 

through the root segment is restricted to the remaining, non-cavitated vessels. 

Species are not equally susceptible to cavitation (Cochard et al., 2008) or even 

cultivars (Cochard et al., 2007a; Li et al., 2009; Rewald and Ephrath, 2011) (but not 

always (Lamy et al., 2013)). Susceptibility to cavitation has been linked to the large 

xylem vessels, anatomy of walls and pits (Delzon et al., 2010; Herbette and Cochard, 

2010; Christman et al., 2012). It has to be noted that xylem vessels cavitation is a 

reversible event although the exact mechanisms underlying the refilling processes are 

not yet fully known (Zwieniecki and Holbrook, 2009). It is often considered that the 

axial conductance does not limit water flow in the root system by virtue of the large 

conductivity of xylem vessels (Steudle, 2000). However, recent experimental 

evidence have revealed the negative effect of cavitation on the plant water status 

(Zufferey et al., 2011; Johnson et al., 2012). 

 

Novel root hydraulic architectures are being proposed to improve drought tolerance. 

Wasson et al (2012) advocate for greater axial and radial conductivities in deep roots 

to increase the uptake and transport capacity of water from deep soil layers. In 

conditions of scarce deep water, Comas et al (2013) recommend to decrease the 

axial conductance in order to save water for the end of the crop cycle. More generally, 

the importance of the ratio between axial and radial conductivities has also been 

stressed from modeling studies (Doussan et al., 2006; Draye et al., 2010). Large 

values of this ratio should lead towards a uniform distribution of the uptake throughout 

the entire root system, while low values would favor preferential uptake in the topsoil. 
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Experimental evidence that the manipulation of root hydraulic architecture can 

improve the water status of plants under water deficit remains scanty (Passioura, 

2012). Designing a root hydraulic architecture to improve drought tolerance is thus 

likely to be specific to the species and genotype, climatic scenario, soil hydraulic 

properties and management practices (Draye et al., 2010). 

 

 

Influence of the soil water distribution 

 

The above statement that the distribution of water uptake among root segments 

should be predictable from the sole root hydraulic architecture, is only valid under 

conditions of uniform soil water potential that are generally encountered in well 

watered soils (Doussan et al., 1998). Under heterogeneous conditions, at places 

where the soil water potential is low, soil capillary forces retain water more strongly in 

the remaining fraction of the soil porosity, comprised of small micropores. As this 

reduces the soil hydraulic conductivity, the flow of water towards the root surface is 

locally restricted and water uptake by other root segments, located in portions of the 

soil where water is more readily available, should increase to maintain the global 

transpiration stream. This passive adjustment of the distribution of water uptake 

among root segments occurring as a consequence of the heterogeneity of soil water 

potential (fig. 3) and conductivity was called compensatory root water uptake (Jarvis, 

1976; Šimůnek and Hopmans, 2009). When compensation occurs, the root 

distribution becomes a very poor indicator of the distribution of the uptake sites, as 

root length density and uptake profiles become dissimilar (Javaux et al., 2013). 

Couvreur et al. (2012), recently highlighted that the compensatory uptake can be 

formulated as the product of three terms: (i) the standard uptake fraction (see above), 

(ii) the difference between the local and spatially averaged soil water potential, and 

(iii) the root system conductance; which suggests that, in addition of defining the 

standard sites of water uptake, the root hydraulic architecture simultaneously 

contributes to the adjustment of the uptake to the soil water potential distribution and 

influences soil water potential heterogeneity. Interestingly, simulations studies 

indicate that compensatory root water uptake precedes the moment where 

transpiration is affected (Couvreur et al., 2012). All these results converge to a 

contribution of compensatory root water uptake to the maintenance of transpiration 

and assimilation. 
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A particular scenario of soil water redistribution involving the root hydraulic 

architecture can occur under low or negligible transpiration flow. In such conditions, 

the xylem water potential is a weighted value of the soil water potentials sensed by 

root segments, intermediate between the soil water potential of the driest and wettest 

soil parts in contact with roots. As long as root segments are radially conductive to 

water, the root system offers a long distance path of low hydraulic resistance that 

allows the hydraulic lift phenomenon, whereby soil water is redistributed through the 

root system from the wetter soil regions towards the drier ones. This phenomenon, 

which has long been a matter of debate, would contribute to the night restoration of 

the soil hydraulic conductivity that decreased around part of the root system as a 

result of root water uptake during the day (McMichael and Lascano, 2010).  

 

Other factors reducing the soil hydraulic conductivity have been recently underlined. 

Following the mass conservation principle, the flux density of water (motion speed) 

increases as it gets closer to the root surface and, in parallel, its water potential 

decreases as well as the soil conductivity. The rhizosphere is thus susceptible to a 

local drop of hydraulic conductivity, that is favored by high rates of root water uptake 

and by soil properties, such as coarse textures, that steepen the relationship between 

soil conductivity and water potential (Shroeder et al., 2008). Soil hydraulic properties 

and water potential around each root segment therefore set a maximum uptake rate 

above which a soil restriction to water flow is likely to occur. Interestingly, this 

phenomenon would be difficult to distinguish from the limitation imposed by root 

hydraulic properties that is observed under drought (Schoppach et al., 2013). 

 

The specific hydraulic properties of the rhizosphere have been reviewed recently 

(Carminati and Vetterlein, 2013). Strikingly, its complex constitution seems to 

generate hydrophilic or hydrophobic behaviors depending on the environmental 

conditions (Carminati et al., 2011; Moradi et al., 2012). The role of this plasticity is not 

yet fully understood but is proposed to participate in the control of the soil conductivity 

by the roots themselves, which would add a level of complexity in our model of the 

regulation of water uptake. 

 

Modeling can help understanding the dynamics of root water 

uptake 
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Despite the fact that water uptake follows simple rules of passive flow driven by water 

potential gradients and following paths of lowest resistance, and despite our 

knowledge of the main paths and factors affecting their conductivities, our 

understanding of water uptake at the plant and seasonal scale remains limited by the 

difficulties to integrate those interacting path and factors, at the appropriate scales 

and in a spatial and temporal framework. Many of those factors have been evoked in 

the above sections, but many others have been deliberately set aside, such as the 

feedback effect of water uptake on root growth via its effects on, e.g. assimilation and 

soil mechanical impedance. Because direct experimental observations are 

necessarily capturing limited aspects of water uptake, systems approaches gained 

much interest in the last decade (Dunbabin et al., 2013; Hill et al., 2013).  

 

Doussan et al (2006) presented the first model that simulates water flows explicitly in 

the soil-root continuum. Using the concept of hydraulic architecture to solve plant 

water flow (Doussan et al., 1998) and Richards equations to solve water flow in 

unsaturated soils, this model was able to simulate compensatory uptake and 

hydraulic lift in heterogeneous soil conditions. A very similar approach was taken by 

Javaux et al. (Javaux et al., 2008) to implement the R-SWMS model. Using the model 

R-SWMS, Schoeder et al (Schroeder et al., 2009) illustrated the negative impact of 

local conductivity drops around roots in drying soils on the water uptake process. The 

importance of the ratio between axial and radial root conductivities and of the soil type 

was also highlighted (Draye et al., 2010). On the soil side, the model can be 

instrumental to investigate the influence of the root water uptake on water flow and 

nutrient transport in the surrounding soil (Schroeder et al., 2012). Recently, it was 

used to assess the impact of salinity on the plant transpiration reduction (Schroeder 

et al., 2013). In order to streamline the adoption of these tools by the plant science 

community, Couvreur et al. (2012) proposed a simplified version of R-SWMS that can 

be used at the crop level, but still relies on a precise parameterization of root 

hydraulic architecture. This simplified model has also been shown to simulate 

behaviors such as compensatory uptake and hydraulic lift from hydraulic principles 

(Javaux et al., 2013). 

 

Methods to investigate root water uptake dynamics. 

 

The development of measurement techniques and observation methods has been 

instrumental in many recent advance of our understanding of root water uptake 
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dynamics. While traditional methods to investigate either plant or soil properties are 

mainly used at the plant scale, new techniques have empowered a more detailed 

approach of the system, down to the centimeter scale. 

 

Several 2D and 3D observation methods have been developed that enable better or 

faster characterization of root system architecture. Pouches dipping in nutrient 

solution are becoming increasingly popular to screen early stages of root systems 

development in two dimensions (Hund et al., 2009). Recently, a scanning technique 

has been proposed for digitizing entire root systems of plants grown in rhizoboxes 

(Lobet and Draye, 2013). The two-dimensional restriction of pouches and rhizotrons 

was recently released by stereo-imaging of root systems grown in tubes filled with 

gellan gum (Iyer-Pascuzzi et al., 2010; Clark et al., 2011). Lastly, X-ray computed 

tomography (Mooney et al., 2012) or magnetic resonance imaging (Jahnke et al., 

2009), widely used in medical sciences, are now entering the plant research domain. 

These allow the 3D non invasive monitoring of root growth in realistic soil cores and, 

in the future, should provide much details on the precise soil conditions around 

individual root segments, including soil water content. 

 

Following the development of these observation techniques, specific free software 

solution were developed for the analysis of root system architecture and root 

anatomy. For example, RootNav (Pound et al., 2013), SmartRoot (Lobet et al., 2011), 

RootReader2D (Clark et al., 2012), EZ-Rhizo  (Armengaud et al., 2009) and Root 

System Analyser (Leitner et al., 2013) were developed for the analysis of 2D root 

images while RooTrak (Mairhofer et al., 2013) and RootReader3D (Clark et al., 2011) 

were designed for the analysis of stereo-images. These tools ease the digitizing and 

analysis of complex root system architecture. At the organ scale, RootScan (Burton et 

al., 2012) was developed for the high-throughput analysis of the anatomy of root 

sections. The software automatically computes the area of multiple root tissues 

including the aerenchyma or the xylem vessels. These tools have been recently 

included on the plant-image-analysis.org database (Lobet et al., 2013). 

 

The quantification of root hydraulic properties remains certainly one of the biggest 

challenges. Techniques suitable for global measurements have been established for 

many years. The pressure chamber is widely used and estimates the conductance from 

the measurement of the water flow induced by a known pressure differential . Other 

techniques estimate the conductance of individual root segments, yet remain 

extremely time consuming (e.g. pressure clamp (Bramley et al., 2007) and pressure 
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probe (Steudle and Peterson, 1998)). Part of the challenge lies in the plasticity of root 

hydraulic properties as a function of segment type and age and environmental 

conditions, and in the variability between measurement methods (Bramley et al., 

2007).   

 

On the opposite, an array of techniques is available to monitor soil water content in 

one, two and even three dimensions. This include time domain reflectometry 

(Robinson et al., 2003; Walker et al., 2004), electrical resistance tomography 

(Vanderborght et al., 2005; Cassiani et al., 2006; Beff et al., 2013) or, more recently, 

ground penetrating radar (Lambot et al., 2008). The spatial resolution of these 

techniques ranges in the decimeter scale and is appropriate to study the distribution 

of water in rows or inter-rows. Recently, two techniques have been successfully 

tested for the observation of water flow down to the centimeter level. Light 

transmission imaging can be used to finely map changes in soil water content in 

transparent rhizotrons (Garrigues et al., 2006). Unfortunately, the technique is 

restricted to a specific type of substrate (white sand) and does not estimate water 

uptake by individual roots due the unknown redistribution of the water in the substrate 

(Javaux et al., 2008). More recently, the use of neutron radiography (Esser et al., 

2010), that is not bound to any specific type of substrate, has been used to 

investigate water movement and determine water uptake sites in lupin root systems. 

Using D2O injection in combination with a convection-diffusion model, water uptake by 

individual segments could be quantified in a complete root system (Zarebanadkouki 

et al., 2013). This technical evolution is therefore promising new insights on the water 

dynamics at smaller scales, while systems analysis frameworks will help to integrate 

this information. 

 

 

Conclusion 

 

The determinants of water flow through the soil-root system are well known and have 

been largely studied individually. However, their integration at the plant and canopy 

scales and over a whole crop cycle remains very limited. The spatial and temporal 

heterogeneity of the soil, the interactions between the soil and the root at multiple 

scales and the need to combine very different disciplines makes this integration 

particularly difficult. With the development of functional-structural soil-plant models, 

root systems biology is bringing novel analytical tools to turn a vast amount of data 
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into biological questions crossing scales and disciplines. We believe that new root 

system ideotypes could emerge from a more comprehensive and quantitative 

consideration of the many determinants of water flow during a whole crop cycle and in 

the framework of a cost-benefit analysis at the system level.  
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Figures 
 

 

Figure 1: Properties of the soil-root system. A. Spatial geometry of the root system. 

B. Root hydraulic architecture is the integration of axial (orange lines) and radial (blue 

lines) hydraulic resistances of individual root segments (grey circles) and soil 

elements (brown circles). C. Soil water content distribution (white = dry, blue = wet). 

 

Figure 2: Water flow in the plant. A. Water flow in the plant is a passive process 

driven by water potential differences and regulated by hydraulic conductivities 

between the compartments of the system (soil-root-shoot-atmosphere). B. Axial water 

flow is influenced by the anatomy of the xylem pipes (size, number, presence of pits) 

and the occurrence of cavitation event (embolism of xylem elements). C. Radial water 

flow is influenced, on the long term, by the radial anatomy of the root such as the 

number of cell layers and the presence of hydrophobic layers (endodermis and 

exodermis). On a short term, the radial flow is influenced by the expression and 

localization of aquaporins.  

 

Figure 3: Influence of the soil water potential distribution on the water uptake 

process. The R-SWMS model (Javaux et al. 2008) was used to simulate the root 

radial water flow under different soil water potential distribution. A. Radial water flow 

(top) under hydrostatic equilibrium (bottom). B. Compensatory root water uptake (top) 

for different soil water potential distribution (bottom). Relative units compared with A.  
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