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Abstract 

During galenic formulation development, homogeneity of distribution is a critical parameter 

to check since it may influence activity and safety of the drug. Raman hyperspectral imaging 

is a technique of choice for assessing the distributional homogeneity of compounds of 

interest. Indeed, the combination of both spectroscopic and spatial information provides a 

detailed knowledge of chemical composition and component distribution. 

Actually, most authors assess homogeneity using parameters of the histogram of intensities 

(e.g. mean, skewness and kurtosis). However, this approach does not take into account spatial 

information and loses the main advantage of imaging. To overcome this limitation, we 

propose a new criterion: Distributional Homogeneity Index (DHI). DHI has been tested on 

simulated maps and formulation development samples. The distribution maps of the samples 

were obtained without validated calibration model since different formulations were under 

investigation. The results obtained showed a linear relationship between content uniformity 

values and DHI values of distribution maps. Therefore, DHI methodology appears to be a 
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suitable tool for the analysis of homogeneity of distribution maps even without calibration 

during formulation development. 
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1. Introduction 

 

During pharmaceutical development, assessment of the homogeneity of powder blends is a 

critical step that will impact both medicine safety and efficacy. Actually, HPLC is the 

commonly used technique consuming time and requiring a lot of resources. This is the reason 

why NIR and Raman spectroscopies have been more and more used to study powder blend 

processes [1-3]. However, none of these techniques can determine the spatial distribution of 

the components in the final product.  

 

Hyperspectral imaging combines spectral and spatial information. Therefore, it has gained in 

importance in pharmaceutical analysis during the last decade. Indeed, it allows obtaining 

simultaneously the API (Active Pharmaceutical Ingredient) concentration and its 

corresponding distribution map [4].  

In the pharmaceutical field, hyperspectral techniques are mainly based on Raman, near-

infrared (NIR-CI) or mid-infrared (MIR-CI) spectroscopies and have been used to obtain 

quantitative distribution maps of pharmaceutical ingredients [5-7], to detect and quantify 

polymorphs [8, 9], to characterize particle size [10], to detect counterfeit medicines [11] and 

to characterize blending conditions [12, 13]. 

 

Several approaches have been used to assess the distributional homogeneity in an objective 

way. Most of them used a quantitative model to obtain distribution maps and then analyzed 

the histogram of pixel concentrations [14-17]. Histograms parameters (mean, standard 

deviation, skewness and kurtosis) are useful to assess the “constitutional homogeneity” which 

is the dispersion of pixel concentration values [6]. However, two maps may have exactly the 
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same constitutional homogeneity while being spatially totally different. This is why it is also 

important to assess the distributional homogeneity. 

Usually, distributional homogeneity is assessed by visual inspection of distribution maps. 

This approach clearly lacks objectivity and if the difference between the two maps is tight, it 

is impossible to unequivocally declare which one is the most homogeneous.  

Therefore, Rosas et al. [18-20] developed a criterion to obtain an objective value of 

distributional homogeneity. This criterion is based on the analysis of the Poole index of non-

overlapping macropixels. However, this approach has several limitations. As it works with 

non-overlapping macropixels, it is quickly limited for the analysis of small distribution maps. 

Furthermore, studied map must be binarized. This binarization step is inevitably a source of 

error. Therefore, it appears that it could be advantageous to develop a new criterion which 

could analyze small maps and which would need as few input and pre-processing as possible 

to avoid as much error as possible. 

 

In this paper, we describe a new criterion called Distributional Homogeneity Index (DHI). 

This index can be performed on small maps with continuous values. Relevance of the 

developed DHI has been tested on simulated distribution maps of controlled increasing 

homogeneity. 

Secondly, DHI has been applied on several developed formulations with different content 

uniformity values. As these formulations were under investigation, no quantitative model (e.g. 

partial least square model) should be built. DHI was then tested on distribution maps obtained 

by semi-quantitative methods. 

 

2. Material and methods 
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2.1. Samples 

Several pilot blends of 8 kg were produced with different blending conditions, API particle 

size and excipients grade. Final concentration of API was of 8.4 % (w/w). These blends were 

then pressed in tablets of 80 mg and of 5 mm of diameter. 

 

Tablets were collected in a stratified way (begin, middle and end of the tableting) for several 

blends. For each blend, begin, middle and end samples were considered as different batches. 

Batch selection for hyperspectral analysis was performed choosing a specific blend and a 

specific tableting time. To do so, ten tablets per batch were randomly chosen, assayed by 

HPLC and the content uniformity (expressed as relative standard deviation, RSD %) and the 

European Pharmacopoeia’s acceptance value [21] were calculated.  

Batches with different content uniformity and acceptance values ranging from 0.46 % to 

11.04 % and from 1.10 to 29.41 respectively were selected. Once the batch selected, ten other 

tablets were randomly chosen and analyzed by hyperspectral Raman imaging.  

 

For confidentiality reasons, neither HPLC method nor information of tablet’s qualitative 

composition and blending conditions can be presented. Tablet’s quantitative composition is 

presented in supplementary Table S1. Spectral similarities between tablet’s components are 

presented as correlation coefficient values in supplementary Table S2.  

 

2.2. Instrumentation 

Raman hyperspectral images were collected with a dispersive Raman spectrometer 

RamanStation 400F (Perkin Elmer, MA, USA) equipped with a two-dimensional CCD 

detector (1024 × 256 pixel sensor). The laser excitation wavelength used was 785 nm with a 

power of 100 mW.  
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The measured spectral region was 1622-90 cm
-1

 and the spectral resolution was equal to 2 

cm
−1

. One accumulation with a 1 second exposure time was performed per sample mapping 

point. The distance between 2 consecutives mapping measurements was fixed at 100 µm. 

Background acquisition during mapping was repeated each 20 minutes. The spectra were 

collected with the Spectrum 6.3.2.0151 (Perkin Elmer) software.  

 

The analyzed tablet surface was prepared beforehand with a Leica EM Rapid milling system 

equipped with a tungsten carbide miller (Leica Microsystems GmbH, Wetzlar, Germany). 

 

Tablets were circular with a diameter of 6 mm (area of 28 mm²). Measured maps represented 

the greatest square possible with a map size of 40x40 and a step size of 100 µm. A total 

surface of 16 mm² was covered. 

Ten tablets per batch were analyzed. 

 

2.3. Data processing 

Once acquired, the hyperspectral images underwent preprocessing and multivariate analysis 

to extract useful information.  

First, hyperspectral data cubes (𝑀 ×𝑁 × 𝜆) were unfolded into a two-dimensional array 

(𝑀𝑁 × 𝜆) where 𝑀 and 𝑁 are the spatial information and λ the spectral information. Once 

unfolded, Raman spectra were baseline corrected using the Asymmetric Least Squares (AsLS) 

algorithm [22] with a λ value of 10
5
 and a p value of 0.001. 

Then, cosmic rays have been removed using the algorithm developed by Sabin et al. [23] with 

a parameter k set at 15. 

 

Two multivariate data analysis approaches were used: 
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Classical Least Squares (CLS) regression: Distribution maps were obtained using CLS 

regression. This method assumes that Beer–Lambert’s law is respected and that the sum of the 

individual absorbance for each component equals the total absorbance for each pixel. 

Therefore, it computes the concentration of each component by direct regression of the 

hyperspectral data cube by using the pure spectra. 

It is a very easy and fast method but it is not flexible at all and any variability not reflected in 

the pure spectrum may affect the results [24]. Therefore, to obtain pure spectra as 

representative as possible, they have been resolved with Multivariate Curve Resolution – 

Alternating Least Squares (MCR-ALS). 

All analyzed maps were assembled and one every tenth spectrum was retained. Then, 

resolution of the pure spectra of each component was performed by the MCR-ALS toolbox 

[25-27]. Initial spectra estimates were obtained by simple-to-use-interactive self-modelling 

mixture analysis (SIMPLISMA) [28]. The constraints applied in the resolution analysis were 

non-negativity in the concentration profiles and spectra. 

The advantage of image multiset analysis by MCR-ALS is the higher robustness of the 

resolved spectra and concentration maps.  

Refolded CLS scores of the API were then used as distribution map. 

 

Principal Component Analysis (PCA): PCA is a variable reduction technique, which reduces 

the number of variables by making linear combinations of the original variables. These 

combinations are called the principal components (PC) and are defined in such way that they 

explain the highest (remaining) variability in the data and are by definition orthogonal. 
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The importance of the original variables in the definition of a principal component is 

represented by its loadings and the projections of the objects onto the principal components 

are called the scores of the objects [29].  

Unfolded preprocessed data cubes were mean centered before PCA analysis. The first PC was 

linked to the API with a good confidence since the correlation coefficient between the first 

loading and the pure API spectrum is higher than 0.966 (see supplementary Table S3). 

However, such a strategy is only applicable if a sufficient proof of correlation between the 

loading and the studied compound is obtained. Refolded scores of the first PC were then used 

as distribution map of the API. 

 

DHI and preprocessing of hyperspectral data cubes were performed using routines written in 

Matlab R2013a (The Mathworks, Natick, MA, USA). Multivariate data analysis was 

performed using the PLS_Toolbox 7.0.3 (Wenatchee, WA, USA) running on Matlab and 

MCR-ALS was performed using the toolbox described in [27].  

Analysis of experimental data was performed on Microsoft Excel 2010 (Microsoft, 

Albuquerque, NM, USA). 

 

3. Results and discussion 

 

3.1. Distributional Homogeneity Index (DHI) 

As stated before, conventional homogeneity testing of distribution maps consists of analyzing 

the histogram of pixel intensities. However, this technique is highly dependent on the spatial 

resolution of the hyperspectral imaging technique. Furthermore, this approach cannot 

differentiate two distribution maps with different spatial distribution if they have the same 

pixel intensities. 
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Therefore, a subsampling technique is necessary to evaluate the spatial homogeneity of a 

distribution map. This technique called macropixel analysis was first introduced by Hamad et 

al. [30]. A macropixel is a “square cluster of neighboring pixels with an intensity value equal 

to the average value of the included pixels”. Macropixel size can vary from a single pixel size 

to the entire distribution map size.  

The distribution map is first sampled by all possible macropixel of size 2x2 original pixel 

size. Then, all macropixels of size 3x3 are evaluated. The computation goes on with unit 

macropixel size increase until macropixel size equals the whole distribution map size. This 

approach is called the Continuous-Level Moving Block (CLMB) [30]. Therefore, for a 

defined macropixel size, there exists a total number of macropixels of (image size – 

macropixel size +1)². 

For each macropixel size, the standard deviation of the macropixel value is computed. Then, 

standard deviation is plotted against the macropixel size to obtain the so-called “homogeneity 

curve” [31]. 

Once the homogeneity curve obtained for the studied distribution map, the map is randomized 

and the homogeneity curve of the random map is computed. DHI value is obtained by the 

ratio of the area under the homogeneity curve (AUC) of the studied map and the area under 

the homogeneity curve of the randomized map (Figure 1). 

Because of the randomization step, many simulations are necessary (generally 50 to 100 

simulations) to compute a mean DHI value assorted with a standard deviation value. 

It is now obvious that DHI is rather an inhomogeneity index than a homogeneity index as its 

value increases as the homogeneity of the distribution map decreases. 
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Figure 1: Methodology to compute the Distributional Homogeneity Index (DHI). 

 

3.2. Test of DHI with controlled homogeneity maps 

In order to test the properties of DHI and to evaluate the relationship between DHI and 

distribution map homogeneity, controlled homogeneity maps were constructed. These maps 

were composed of 50 % pseudorandom values from the standard uniform distribution on the 

open interval (0, 1). The other half is composed of zeros.  

Therefore, a map of 10 % of controlled homogeneity means that a half of the image is 

composed of a random mix of 95 % of pseudorandom values and 5 % of zeros and the other 

half is composed of 95 % of zeros and 5 % of pseudorandom values. Doing so, one has an 

image with a total randomization of 10 % of the values keeping 90 % of the values divided in 

each half.  

Indeed, a 100 % controlled homogeneity map means that each half has 50 % of zeros and 50 

% of pseudorandom values randomly mixed. 
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Such simulated maps mimic well distribution maps and allow testing DHI on continuous 

values maps. Indeed, in the method developed by Rosas et al. [18-20], distribution maps are 

binarized prior to homogeneity evaluation. However, the threshold selection to achieve this 

binarization remains a non-trivial task and can therefore greatly affect the homogeneity 

measured. It appeared to us that the opportunity to work with continuous values maps could 

greatly ease the analysis. 

Controlled homogeneity maps of different sizes were built with homogeneity ranging from 90 

% to 10 %. Extreme homogeneity situations of 0 % and 100 % were avoided due to their 

unreal character that could mislead us in our conclusions. These maps were simulated four 

times and the DHI were computed. 

As one can see on Figure 2b, a direct linear relationship is found between DHI values and 

controlled homogeneity with coefficient of determination (R²) values higher than 0.99. 

Another important observation is that DHI values and best fit lines are different for each map 

size. Therefore, if one wants to compare two formulations, the analysis must be performed 

with the same parameters and the same map size. 

 

DHI has also been tested on 60x60 simulated maps with an varying proportion of lines of 

zeros and of lines of random values: 10/50, 20/40, 30/30, 40/20 and 50/10, respectively. 

Figure 3b shows the corresponding DHI values plotted against controlled homogeneity. As 

expected, simulated maps with equal proportion of random values and zeros have the higher 

DHI denoting the lowest homogeneity. Simulated maps with a higher proportion of zeros 

have higher DHI considering their opposite with a higher proportion of random values. This 

can be explained by the fact that DHI is based on the ratio of the AUC of the studied map and 

the AUC of the randomized studied map. Therefore, simulated maps with a higher proportion 
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of random values are more similar to the randomized map than their opposite and appear 

slightly more homogeneous (smaller DHI). 

 

This reinforces the fact that DHI must be performed only to check the homogeneity of a 

defined formulation. If one wants to compare many formulations with different API 

concentrations, preliminary tests are needed to confirm pertinence of future results. 
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a. 

 

b. 

 

Figure 2: a) Simulated distribution maps of size 100x100 with a proportion zeros and 

continuous values of 1:1. Extreme simulated maps (0 and 100 % of controlled homogeneity) are 

shown for illustration but were not analyzed by DHI. 

  b) Plot showing the relationship between DHI values and the controlled homogeneity 

of the simulated distribution maps of size 40x40 (red circles), 60x60 (blue triangles), 100x100 (green 

diamond-shaped), 140x140 (turquoise crosses) and 160x160 (violet squares). Each controlled 

homogeneity map has been simulated four times. Best fit linear relationship was drawn with the four 

computed DHI values. Equation and coefficient of determination of corresponding best fit lines are 

shown. 
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a. 

 

b. 

 

Figure 3: a) Simulated distribution maps of size 60x60 with a growing proportion of zeros. For 

better visualization, only the maps of 0 % controlled homogeneity are shown. 

  b) Plot showing the relationship between DHI values and the controlled homogeneity 

of the simulated distribution maps of size 60x60. Different proportions of zeros and continuous values 

of respectively 10/50 (red circles), 20/40 (blue triangles), 30/30 (green diamond-shaped), 40/20 

(turquoise crosses) and 50/10 (violet squares) were analyzed. Each controlled homogeneity map has 

been simulated three times. Best fit linear relationship was drawn with the four computed DHI values. 

Equation and coefficient of determination of corresponding best fit lines are shown. 
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3.3. Analysis of real samples 

As DHI represents spatial heterogeneity in API distribution, it has been decided to validate it 

with the well-known content uniformity test. The main idea was to develop a non-destructive 

and ecological friendly test that could be used by pharmaceutical industry while developing 

new formulations. Once prepared (milled), tablet are not destroyed by hyperspectral imaging 

and could therefore stay in a sample bank for further analysis or even inspections. 

During formulation development, five batches of tablets were produced with content 

uniformity ranging from 0.46 % to 11.04 %. These batches represent well the variability that 

can be encountered during formulation development: different API particle size, excipient 

grades and blending conditions. 

Once obtained, the hyperspectral images were processed and the distribution maps were 

obtained by CLS or PCA analysis (see section 2.3). DHI were computed on distribution maps 

obtained by the two methods. 

Figure 4 shows the obtained content uniformity values plotted against the measured DHI 

values. As can be seen, a linear relationship (R² close to 0.99) is observed between DHI and 

content uniformity values validating the DHI methodology with real pharmaceutical samples. 

Another interesting observation is that DHI values measured from distribution maps obtained 

by both CLS and PCA are comparable (Table 1).  

These observations constitute a major advantage of the DHI methodology since it is now 

possible to determine which formulation is the more homogeneous with neither any 

calibration dataset nor wet chemistry step. Indeed, multivariate calibration is difficult to 

implement since it necessitates the production of calibration samples with different nominal 

concentrations. Furthermore, any change in formulation leads to a complete re-development 

of the calibration model which is clearly not possible during formulation development step. 
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Hyperspectral imaging enables a fast analysis of different formulations while keeping 

prepared samples in a sample bank for any further analysis. 

 

Table 1: Acceptance values, content uniformity and mean DHI values computed on distribution maps 

obtained by both CLS and PCA for the five developed formulations (batches A-E).  

 

Similarly, the calculated European Pharmacopoeia’s acceptance values were plotted against 

the measured DHI values (Figure 5). Once again, a clear linear relationship is observed. It 

could therefore be possible to predict whether a formulation will have an acceptance value 

below the threshold of 15 or not with a defined uncertainty. 

 

Based on DHI analysis of the distribution maps of the different formulations, formulation A 

was selected as the best formulation. Indeed, choosing this formulation ensures us that the 

formulation has the lowest content uniformity value and that its acceptance value is below the 

threshold value of 15. 

 

Coefficients of determination with real samples are lower than those obtained with simulated 

images. This can be explained by sampling errors with real samples. Indeed, Raman 

hyperspectral imaging only analyzes the surface of the sample whereas content uniformity 

Batch Reference Acceptance Value 

Content 

Uniformity(n=10) 

(RSD %) 

Mean DHI Value 

computed on CLS 

distribution maps 

(n=10) ± Standard 

Error 

Mean DHI Value 

computed on PCA 

distribution maps 

(n=10) ± Standard 

Error 

A 1.10 0.46 2.066 ± 0.110 2.080 ± 0.114 

B 4.54 1.60 2.333 ± 0.077 2.345 ± 0.071 

C 8.64 3.56 2.445 ± 0.103 2.434 ± 0.104 

D 23.31 8.29 3.051 ± 0.151 3.080 ± 0.154 

E 29.41 11.04 3.491 ± 0.194 3.470 ± 0.196 
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values obtained by HPLC analyzes the whole tablet. Furthermore, only ten tablets per batch 

were tested (as recommended by the European Pharmacopoeia) but it is not really 

representative of a batch of about 100 000 tablets. Another parameter that must be optimized 

is the laser spot size and the spatial resolution of the hyperspectral analysis which are 

dependent on the particle size of the different present components. 

 

All these sampling issues are under investigation to develop a generic approach that could be 

set up for any kind of homogeneity determination. 

 

a.       b. 

       

Figure 4: a) Plot showing the relationship between the content uniformity values (RSD %) and 

the computed DHI values. DHI were computed with the distribution maps obtained by CLS analysis of 

the hyperspectral images of the tablet samples (see section 2). Each point represents the mean DHI 

value of ten tablets assorted with the corresponding standard error. 

  b) Plot showing the relationship between the content uniformity values (RSD %) and 

the computed DHI values. DHI were computed with the distribution maps obtained by PCA analysis of 

the hyperspectral images of the tablet samples (see section 2). Each point represents the mean DHI 

value of ten tablets assorted with the corresponding standard error. 
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a.      b. 

     

Figure 5: a) Plot showing the relationship between the European Pharmacopoeia’s acceptance 

values and the computed DHI values. DHI were computed with the distribution maps obtained by CLS 

analysis of the hyperspectral images of the tablet samples (see section 2). Each point represents the 

mean DHI value of ten tablets assorted with the corresponding standard error. Red dotted line 

represents the maximal authorized acceptance value of 15. 

  b) Plot showing the relationship between the European Pharmacopoeia’s acceptance 

values and the computed DHI values. DHI were computed with the distribution maps obtained by PCA 

analysis of the hyperspectral images of the tablet samples (see section 2). Each point represents the 

mean DHI value of ten tablets assorted with the corresponding standard error. Red dotted line 

represents the maximal authorized acceptance value of 15. 

 

Conclusion 

 

A new methodology for the assessment of spatial homogeneity in hyperspectral images has 

been presented. This methodology called Distributional Homogeneity Index (DHI) is based 

on the ratio of the area under the curve of the homogeneity curve of the raw studied map and 

the area under the curve of the homogeneity curve of the randomized studied map. 
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The DHI have been tested on simulated maps of increasing controlled homogeneity 

mimicking distribution maps of the studied compound. A linear relationship has been found 

between DHI values and controlled homogeneity. It has also been demonstrated that DHI 

values were dependent of map size. Therefore, to be compared, two tablets must be analyzed 

with the same parameters.  

Simulated maps of the same size but with different proportions of zeros were tested. DHI 

values were, as presumed, dependent of the proportion of zeros. Therefore, two blend 

mixtures with very different proportions of the studied compound must be compared 

cautiously. 

Nevertheless, it has been shown that DHI is a useful methodology to compare the distribution 

homogeneity of different blend mixtures during formulation development. This comparison is 

possible with distribution maps obtained without any calibration by CLS or PCA which 

lightens substantially the analysis work and enables a fast and non-destructive analysis of the 

samples. 

The DHI approach has been tested on real samples of different pilot batches during 

formulation development. Linear relationship has been observed between DHI values and 

content uniformity values and with European Pharmacopoeia’s acceptance values of the 

different batches allowing the selection of the most homogeneous formulation. 

 

As with any application of hyperspectral imaging, sampling aspects are very important. This 

is why laser spot size, the spatial resolution and the achievement of a representative sampling 

of the studied batches are currently under investigation. The final objective is the elucidation 

of parameters to be optimized for the development of a generic approach of homogeneity 

assessment with hyperspectral imaging. 
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