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aUniversity of Liège, Department of Architecture, Geology, Environment and Constructions, Structural Engineering Division,
Chemin des Chevreuils, 1, B52/3, 4000 Liège, Belgium
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Abstract

Equivalent linearization consists in replacing a nonlinear system with an equivalent linear one whose parameters are tuned with regard
to the minimization of a suitable function. In particular, the Gaussian equivalent linearization expresses the properties of an equivalent
linear system in terms of the mean vector and the covariance matrix of the responses, which are the unknowns of the optimization problem
in a spectral approach. Even though the system has been linearized, the resulting set of equations is nonlinear. The computational effort
in this method pertains to the solution of a possibly large set of nonlinear algebraic equations involving integrals and inversions of full
matrices. This work proposes to develop and apply an asymptotic expansion-based method to facilitate and to improve the statistical
linearization for large nonlinear structures. The proposed developments demonstrate that for slightly to moderately coupled nonlinear
systems, the equivalent linearization can be applied with an appropriate modal approach and eventually seen as a convergent series
initiated with the stochastic response of a main decoupled linear system. With this method, the computational effort is attractively
reduced, the conditioning of the set of nonlinear algebraic equations is improved and inversion of full transfer matrices and repeated
integrations are avoided. The paper gives a formal description of the method and illustrates its implementation and performances with
the computation of stationary responses of nonlinear structures subject to coherent random excitation fields.
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1. Introduction

A classical result from probabilistic theory states that linear deterministic systems driven by Gaussian processes
respond with Gaussian processes. The joint probability density function of the responses is thus completely char-
acterized by a mean vector and a covariance matrix. However, for nonlinear systems or in the case of non-Gaussian
excitations, the computation of the response of the system is more complicated, partly due to the statistical poly-
morphism of a non-Gaussian process.

Discarding straightaway the Fokker-Planck equation due to the curse of dimensionality [1, 2], the Monte Carlo
approach is considered as the only tractable method to compute the non-Gaussian response of large-dimensional
nonlinear systems [3, 4]. Briefly, the method consists in generating samples of the excitation to compute samples of
the system response by means of deterministic solvers. Although the simulation-based framework is extensively used
in risk analysis and risk quantification [5], the computational burden remains a major drawback of this method.
Indeed, the generation of random samples from coherent random fields, as wind acting on large structures [6, 7],
may be prohibitive. Therefore, the use of approximate methods is attractive, especially in a design stage or in an
optimization procedure involving many parameters and repeated operations.

Many approximate methods have been developed for decades : the averaging method [8], the equivalent lin-
earization [9, 10], quadratization and cubicization [11], non-Gaussian closures [12] are seemingly the most famous.
Among them, the equivalent linearization, originally introduced by Botoon and Caughey [13, 14] can be used for
the analysis of high-dimensional nonlinear structures, as encountered in earthquake engineering [15, 16, 17] or in
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wind engineering [18, 19, 20]. The main idea of the equivalent linearization consists in replacing the nonlinear sys-
tem with an equivalent linear one by minimizing an error criterion depending on the parameters of the equivalent
system. Though different criteria have been proposed [9, 21], the most robust and advantageous one remains the
minimization of the mean squared discrepancy, by tuning the parameters of the equivalent system, especially as the
excitations are diffusive processes.

The equivalent linearization method benefit from valuable features of linear systems. First, the modal projection
can be used to reduce the size of the equation of motion. Secondly, it is more convenient to work in the frequency
domain for stationary processes, while realistic loadings are usually modeled by large Power Spectral Density (PSD)
matrices, as it is the case for coherent wind or seismic fields. Finally, the input-output Gaussianity is preserved.
Consequently, the equivalent linearization may compete with Monte Carlo simulation in the estimation of the first
two statistical moments.

In the linearization method, assumptions on the statistical distribution of the response is formulated : the
Gaussian Equivalent Linearization (GEL) supposes that the responses of the system are Gaussian processes, but
statistical linearization methods have been extended to non-Gaussian processes [22, 23, 24] with limited success.
The GEL expresses the properties of the equivalent linear system in terms of the mean vector and the covariance
matrix of the response of the system. Even though the system has been linearized, the set of equations to calculate
the covariance matrix of the system is nonlinear. The computational effort in this method pertains to the solution
of a possibly large set of nonlinear algebraic equations, all the more for large nonlinear structures.

This work proposes to develop and apply a perturbation approach, as formerly investigated by the authors for
deterministic [25] and stochastic [26] linear systems, to facilitate and to improve the GEL of a nonlinear structure
subject to stationary loadings. Our approach exposed in a stationary setting can be extended to some classes of
evolutionary problems [27, 28] (alternative to fully-nonstationary excitations [29]), provided the quasi-stationary
assumption is justified, i.e. the natural period of the structure is small compared to the duration of the evolutionary
random excitation [30, 31].

Since many optimization algorithms can be used to solve the nonlinear equation set inherent to statistical
linearization, the development of a solver accounting for the specificities of this set has not often been addressed by
the research community. Provided the excitation can be modeled by filtered white noises, the covariance matrix of
the response is expressed by a Lyapunov equation. This equation can be solved in particular by direct algorithm
[32, 33, 34]. Nonetheless, if the excitation is modeled as a coherent field in the frequency domain, the Itô procedure
cannot be applied. In the context of equivalent linearization with a spectral approach, a fixed-point algorithm is a
convenient and readily implemented method [10]. However, this algorithm behaves poorly in terms of convergence
[35], especially for large equation sets. Consequently, a gradient-based formulation is prefered to circumvent some
limitations.

The proposed developments demonstrate that for slightly to moderately coupled nonlinear systems in a suitable
modal basis, the equivalent linearized response can be seen as a convergent series of correction terms initiated with
the stochastic response of a main decoupled linear system. This work shows that the concept of asymptotic expansion
of a modal transfer matrix might be efficiently used to enhance the GEL technique. Indeed, this expansion allows to
compute rapidly the Jacobian matrix required in a gradient-based method. The conditioning of the system is also
improved, especially for large structures. The computational effort is thus attractively reduced, while preserving
the advantages of spectral analysis.

Because simulation techniques or alternative exact approaches would equally perform in small-size structures
with simple loadings, a specific attention in the developments is dedicated to high-dimensional structures subject
to coherent random excitation fields such as those encountered in wind and earthquake engineering. The proposed
method is capable of dealing with nonlinear conservative as well as dissipative forces, either affecting some degrees
of freedom only, or more regularly distributed in the whole structure.

First, the philosophy of the equivalent linearization is exposed, then the asymptotic expansion of a modal transfer
matrix is developed in the context of GEL. A Newton-Raphson procedure applying the asymptotic expansion is then
described. Finally, illustrated examples are proposed to emphasize the pertinence of the method and to highlight
the underlying assumptions.
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2. Spectral strategy for stochastic linearization of large structures

On a probability space (Θ,F,P), the equation of motion of an n-DOF nonlinear system is

Mÿ + Cẏ + Ky + g(y, ẏ) = f , (1)

where M, C and K are the n× n-dimensional mass, damping and stiffness matrices of the structure, respectively,
f(t, θ) : R+×Θ 7→ Rn is the vector of the random exogenous Gaussian forces and the dot denotes the time derivative.
The vector y(t, θ) : R+ × Θ 7→ Rn gathers the nodal displacements expected to be non-Gaussian processes due to
the nonlinear forces gathered in the vector function g(y, ẏ) : Rn × Rn 7→ Rn. With this formalism, the equation
of motion is split into four contributions : inertial forces, internal linear forces, internal nonlinear forces and
exogenous random forces. Actually, in these developments, we consider nonlinear conservative or dissipative forces
only depending on the nodal displacements of the structure (no history variable). Discarding the nonlinear forces
g(y, ẏ) in (1) produces a linear governing equation, refered to as the linear subsystem in the sequel.

In the considered problem, the size n of the system is possibly large, and the exogeneous forces are characterized
by a PSD matrix Sf (ω) with possibly complex expressions as typically encountered in realistic wind turbulence
model [36] or spatial coherence in seismic engineering [37]. For the sake of clarity in the following analytical
developments, only antisymmetric nonlinear forces and zero-mean excitation processes are considered. Otherwise,
some minor modifications to the method must be operated to take into account the mean response and the non-
centered statistical moments [10].

The stochastic linearization aims at replacing Equation (1) by the equation of motion of a n-DOF equivalent
linear structure. The equivalent equation of motion reads

Mẍ + (C + Ceq) ẋ + (K + Keq) x = f , (2)

where x and ẋ are the Gaussian nodal displacements and velocities of the equivalent linear system, respectively, and
with Keq and Ceq the equivalent stiffness and damping matrices, respectively [10]. The probabilistic response of the
system is thus completely characterized by the symmetric covariance matrices Σx and Σẋ, obtained by integration
of the corresponding PSD matrices

Σx =

ˆ
R

Sxdω, and Σẋ =

ˆ
R

Sẋdω, (3)

which are themselves obtained by left- and right-multiplication of Sf (ω) by the nodal frequency response function
of the system [38].

The equivalent stiffness and damping matrices in (2) are determined by minimizing the error function E [8],
defined as

E = E
[
(Keqx + Ceqẋ− g(x, ẋ)) (Keqx + Ceqẋ− g(x, ẋ))

T
]

(4)

with E[.] the expectation operator. Because the covariance between displacements and velocities is equal to zero in
a stationary setting E

[
xẋT

]
= 0, the equivalent matrices Keq and Ceq are respectively given by

Keq = Σ−1x E
[
xg(x, ẋ)T

]
, and Ceq = Σ−1ẋ E

[
ẋg(x, ẋ)T

]
. (5)

For usual nonlinear mappings g, provided they are explicitely known, the expectations in the above equations may
be expressed as a function of Σx and Σẋ, in which case (5) also reads

Keq = K (Σx,Σẋ) , and Ceq = C (Σx,Σẋ) (6)

with K and C two operators depending on the kind of nonlinearity in g.
Equations (3) and (6) constitute a set of nonlinear algebraic equations that need to be solved for Σx and Σẋ.

A classical iterative approach to the solution of that set ([10], p. 140) consists in initiating the unknown matrices
Keq and Ceq to zero, in which case the linear subsystem is analyzed, and using the fixed-point iterative scheme. In
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large scale problems, this traditional algorithm is readily implemented, but it requires the costly construction and
integration of full matrices at each iteration step.

The response of a given linear structure can be computed using a limited number of m normal modes of vibration,
with m� n for large scale structures. The costly construction (and then integration) of Sx and Sẋ is thus replaced
by

Sx = ΦSqΦT , and Sẋ = ω2ΦSqΦT , (7)

where Φ is the n×m matrix collecting the normal modes and Sq (ω) represents the psd matrix of modal coordinates.
In principle, the normal modes should result from the eigenproblem (K + Keq) Φ = ω2MΦ, in which case they
should be updated at each iteration, as Keq changes. The possible saving on the construction and multiplication
of large matrices is thus shifted to repeated eigenvalue decompositions. To use the modal basis related to matrices
K + Keq and M is a natural reaction from linear dynamics aiming at uncoupling the resulting set of equations, on
top of reducing the size of the problem. Since it is computationally expensive, this option is abandoned.

Instead, inspired by a similar approach within environments with moderate and non-essential nonlinear forces,
it is suggested to work in a constant modal basis (as in [39]) resulting from the eigenproblem(

K + K̃
)

Φ = ω2MΦ, (8)

where K̃ is a fixed estimation of Keq that accounts for the distribution of the nonlinear stiffness forces within the
structure, in an equivalent manner, even if their intensity is a priori unknown. The construction of this matrix is
discussed later in the light of relevant examples. This constant modal basis is normalized to have unit generalized
masses, such that

ΦTMΦ = I, ΦTKΦ = Ω (9)

with I the m×m-identity matrix and Ω a non-diagonal generalized stiffness matrix.
Using the modal superposition principle [38], Equation (2) reads

q̈ + (D + Deq) q̇ + (Ω + Ωeq) q = p, (10)

where q(t) is the vector of modal coordinates (x = Φq) and D = ΦTCΦ, Ωeq = ΦTKeqΦ, Deq = ΦTCeqΦ and

p(t) = ΦT f(t). Even though the number of variables has been reduced by the modal projection, the equations
of motion are not decoupled because the matrices in (10) are not necessarily diagonal matrices, even Ω, quite the
opposite actually. Therefore, the uncoupling advantage offered by the modal projection is lost but this issue may
be treated with existing solutions [26], as developed next.

The PSD matrix of modal coordinates Sq (ω) introduced in (7) is given by

Sq = HSpH∗, (11)

where the superscript ∗ denotes the Hermitian operator and where the modal transfer matrix of the equivalent
linearized system H(ω) : R 7→ Cm×m is defined as

H =
(
−ω2I + ιω (D + Deq) + Ω + Ωeq

)−1
(12)

with ι =
√
−1. The PSD matrix of modal loadings is obtained as Sp = ΦTSfΦ. The projection of the high-

dimensional random excitation field f (t) in the modal basis consitutes the major computational cost (i.e. O(n2)),
for large structures as encountered in civil engineering. The projection of this field in a fixed and energy-independent
basis is another key point in our formulation, that makes it rational for large structures. The modal loading Sp(ω)
is indeed established once and for all, instead of being updated too, at each iteration.

With this modal approach, the set of nonlinear equations (6) is not supplemented with the heavy estimation of
the covariance matrices Σx and Σẋ as given in (3), but rather

Σx = ΦΣqΦT ; Σẋ = ΦΣq̇ΦT , (13)
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where the covariance matrices of the modal coordinates as well as their time derivatives are

Σq =

ˆ
R

Sqdω ; Σq̇ =

ˆ
R
ω2Sqdω. (14)

The covariance matrices Σx and Σẋ are still functions of the a priori unknown equivalent matrices Keq and Ceq

through Deq and Ωeq in (12) and the same fixed-point procedure may still be used to readily solve the set of equations
(6)-(13). Nevertheless, as the convergence of the fixed-point algorithm is sensitive to the Jacobian of operators K
and C, with known evidences of slow convergence [35], the use of any gradient-based method is promoted which, at
the expanse of heavier computational costs, offers a faster convergence and an increase of the convergence domain.
This is formalized by transforming (14) into the canonical form

Σq = F1 (Σq,Σq̇) ; Σq̇ = F2 (Σq,Σq̇) . (15)

As a difference with this alternative formulation, the unknowns of the problem are the elements of the modal
covariance matrices. The operators F1 and F2 correspond to the integral operation in (14), while H (ω; Ωeq,Deq)
is an implicit function of the unknown modal covariance matrices. A main objective of this paper is to provide an
efficient formulation for the solution of (15).

3. Asymptotic expansion method with the modal spectral analysis

3.1. Derivation of the asymptotic formulation

The governing equations in the modal basis (10) are slightly to moderately coupled, depending on the intensity
of nonlinear forces in the global balance of forces, as a result of the projection into a fixed basis. Former works have
demonstrated the advantage of considering this kind of coupled set of modal equations as a perturbation of a main
decoupled problem [25, 26]. In order to decouple the modal equation of motion of the equivalent linear structure,
the modal damping and stiffness matrices are respectively split into two contributions such that

D + Deq = Dd + Do (16)

and

Ω + Ωeq = Ωd + Ωo, (17)

where Dd and Do are built as Dd = (D + Deq) ◦ I (diagonal elements) and Do = D + Deq −Dd (out-of-diagonal
elements) and where Ωd and Ωo are built as Ωd = (Ω + Ωeq) ◦ I (diagonal elements) and Ωo = Ω + Ωeq − Ωd

(out-of-diagonal elements), with ◦ the Hadamard product. With these notations, the modal transfer matrix (12)
becomes

H = (Jd + Jo)
−1
, (18)

where
Jd = Ωd − ω2I + ιωDd, and Jo = Ωo + ιωDo (19)

gather the diagonal and out-of-diagonal elements, respectively. The elements of matrices Jd(ω) and Jo(ω) come
from both the linear subsystem and the equivalent terms. The subscript d recalls that these matrices are diagonal
by construction.

The diagonal modal transfer matrix of the virtually decoupled system is also introduced as Hd(ω) = J−1d . It
corresponds to the modal transfer matrix that would be obtained if the coupling resulting from the projection in
the generalized basis was simply neglected.

Substitution of (18) into (11) readily leads to

Sq = (I + HdJo)
−1

Sqd
(I + J∗oH

∗
d)
−1
. (20)

The virtual response of the decoupled system Sqd
, as would be obtained by only retaining diagonal elements in the

modal matrices, is

5



Sqd
= HdSpH∗d. (21)

Upon some smallness conditions on the product HdJo formally studied in the following, Equation (18) may be
written as

H =I +

∞∑
j=1

(−HdJo)
j
. (22)

We denote by asymptotic expansion-based method, all the developments based on (22) [25, 26]. Equation (20) now
reads

Sq =

(
I +

∞∑
k=1

(−HdJo)
k

)
Sqd

I +

∞∑
j=1

(−J∗oH
∗
d)
j

 , (23)

transforming thus the inverse of full matrices into convergent series. This product of series is written as a single
series which is truncated, for practical needs, at an order N such that

Sq,N = Sqd
+

N∑
k=1

∆Sq,k (24)

with ∆Sq,k the k-th correction term added to the decoupled approximation Sqd
. Thence, provided a given measure

of HdJo is of order ε (a small parameter), the same measure of the correction term ∆Sq,k is of order εk. Working
out the algebra yields

∆Sq,1(ω) = −HdJoSqd
− Sqd

J∗oH
∗
d (25)

for the first correction term and a recurrence relation

∆Sq,k(ω) = − (HdJo∆Sq,k−1 + ∆Sq,k−1J
∗
oH
∗
d)−HdJo∆Sq,k−2J

∗
oH
∗
d (26)

for k ≥ 2 and ∆Sq,0 = Sqd
. The correction terms do not require the inversion of any full matrix, because they are

expressed in terms of the decoupled system.
Substitution of (24)-(26) into (14) provides the asymptotic expansion of the covariance matrices Σq and Σq̇

that read

Σq,N = Σqd
+

N∑
k=1

∆Σq,k ; Σq̇,N = Σq̇d
+

N∑
k=1

∆Σq̇,k. (27)

The first correction terms for the modal covariance matrices defined in Equation (14) read

∆Σq,1 = −
(
Lq,1 + L∗q,1

)
, ∆Σq̇,1 = −

(
Lq̇,1 + L∗q̇,1

)
(28)

with

Lq,1 =

ˆ
R

HdJoSqd
dω, Lq̇,1 =

ˆ
R
ω2HdJoSqd

dω. (29)

Replacing the expression for Jo from (19), the matrices Lq,1 and Lq̇,1 are finally expressed as

(Lq,1)ij =

m∑
k=1

(Ωo)ik Iijk,0 +

m∑
k=1

(Do)ik Iijk,1 (30)

(Lq̇,1)ij = −
(

m∑
k=1

(Ωo)ik Iijk,2 +

m∑
k=1

(Do)ik Iijk,3
)

(31)
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with

Iijk,α =

ˆ
R

(ιω)α (Hd)i (Hd)k (Sp)kj (H∗d)j dω (32)

with α = 0, ...3 and i, j, k = 1, ...m. As a noteworthy advantage of this formulation, the integral Iijk,α only depends
on the decoupled system and the out-of-diagonal elements of Jo are seen as higher-order perturbation sources of
the decoupled system. The reason why the derivation ends up with such a simple formulation is that the whole
concept is based on linear algebra. Retrospectively, the matrix inversions in (20) are replaced by linear combinations,
thanks to the asymptotic expansion, and any operation in the derivation is linear with respect to its arguments.
The permutation of these linear operators precisely allows the expression of the response of the coupled systems
as a perturbation of the response of the main decoupled system. From an algorithmic point of view, the integrals
Iijk,α are promptly established at each iteration. As explained next, they are also stored in order to set up the
Jacobian matrix in the iterative solution of the problem.

Similarly, the second correction terms for the modal covariance matrices read

∆Σq,2 =
(
Lq,2,I + L∗q,2,I + Lq,2,II

)
, ∆Σq̇,2 =

(
Lq̇,2,I + L∗q̇,2,I + Lq̇,2,II

)
(33)

with

Lq,2,I =

ˆ
R

(HdJo)
2
Sqd

dω, Lq,2,II =

ˆ
R

HdJoSqd
J∗oH

∗
ddω (34)

Lq̇,2,I =

ˆ
R
ω2 (HdJo)

2
Sqd

dω, Lq̇,2,II =

ˆ
R
ω2HdJoSqd

J∗oH
∗
ddω. (35)

The computation of the second correction term is recommended but not mandatory for all terms. Usually the first
correction is sufficient for the estimation of out-of-diagonal terms in ∆Σq and ∆Σq̇ whilst the second correction
offers a better estimation of diagonal elements (variances). This general trend should be regarded with a discussion
on the coherence in the generalized loading [26].

3.2. Discussion on the convergence of the asymptotic expansion

The conditions upon which the series expansion derived above shall be valid are now reviewed. A necessary and
sufficient condition for the series expansions in (22) to converge is that

Γ [Hd(ω)Jo(ω)] < 1, ∀ω ∈ R (36)

with Γ [A] = max {|λA,i| , i = 1, ...m} the spectral radius of A ∈ Cm×m and λA,i the i-th eigenvalue of A [40]. The
spectral radius of HdJo also defines the index of diagonality ρ of Jd + Jo [40, 41]

Γ [HdJo] = ρ [Jd + Jo] , (37)

as it measures the relative importance of the diagonal terms in Jd compared with the out-of-diagonal ones in Jo.
The general condition formulated in (36) must be checked for all the values of ω ∈ R. It is relevant to first

investigate the limit behaviors for ω tending to zero and to infinity, such that

lim
ω→0

HdJo = lim
ω→0

(
Ωd − ω2I + ιωDd

)−1
Jo = Ω−1d Ωo (38)

lim
|ω|→+∞

HdJo = lim
ω→+∞

− 1

ω2
Jo = 0. (39)

These conditions are related to the quasi-static and the inertial regimes of the linear system, respectively. The
smallness of the product HdJo is ensured for high-frequency responses, while the smallness of Ω−1d Ωo is required
for the quasi-static response. In this case, the spectral radius of Ω−1d Ωo is also the diagonality index of Ω + Ωeq. If
the spectral radius of Ω−1d Ωo is less than one,
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ρ [Ω + Ωeq] = Γ
[
Ω−1d Ωo

]
< 1, (40)

the matrix Ω + Ωeq is said to be diagonal dominant [40]. However, the criterion (40) is only sufficient for ω → 0.
Concerning the resonant regime occuring for ω equal to a natural frequency of the decoupled system, a straight

criterion is not easily derived. And yet, the Gerschgorin theorem [40] allows to show that (i) all the Gerschgorin
discs are concentric and centered on zero regardless of ω and that (ii) the largest disc is one of the discs calculated
for ω equal to a natural frequency of the decoupled system. Therefore, the largest eigenvalue of HdJo can be
potentially found in one of these discs. The maximum value of Γ [HdJo] is more judiciously sought in the biggest

disc, which is obtained for ωd,i

(
= (Ωd)

1/2
i

)
. The convergence criterion ρJ is a key indicator in the method. It must

be calculated in each application to check the validity of the expansion, as done in the following. This explanation
has the drawback to not properly justify the convergence criterion in terms of eigenvalues, but it is quite hard to
calculate them explicitely, a reason for rather using a theorem allowing to bound them, at least.

The convergence of the series might be evaluated with the condition

ρJ = max {Γd,i = Γ [Hd(ωd,i)Jo(ωd,i)] , i = 1, ...m} < 1. (41)

After the numerical computation of the spectral radii Γd,i, the verification that they are local maxima can be easily
performed (see [40]).

4. Newton’s iterative procedure and computational aspects

In this Section, the application of Newton’s algorithm to solve (15) is discussed, in the light of the asymptotic
expansion formulation. As a major outcome, it will be observed that, again, the linear algebra, deliberately kept in
the former derivation, results in a particularly efficient formulation.

4.1. Asymptotic approximation of the Jacobian matrix

Due to the symmetry of the modal covariance matrices Σq and Σq̇, m(m+ 1) unknown elements are identified
in the set of equations (15). For the sake of simplicity in the notations, they are gathered in the m(m+ 1)-vector of
unknowns u. As the matrix operators F1 and F2 are symmetric as well, they are similarly rearranged into a vector
operator F as for the covariance matrices. Finally, the set of equations (15) is written in the residual form

R(u) = u−F(u) = 0. (42)

The operator F is nonlinear and involves the integrals defined in (14). Newton’s algorithm to solve (42) requires
the computation of a Jacobian matrix T, defined as

T(u) = ∇uRT = I−∇u FT. (43)

Starting from an initial guess u(0), which is the solution of the linear subsystem in this case, a new iterate u(k+1)

is obtained by

u(k+1) = u(k) −T
(
u(k)

)−T
R
(
u(k)

)
, k ≥ 0 (44)

and the procedure is repeated until a certain norm of R (u) becomes smaller than a desired threshold.
The formal derivation of T in the general case is rather cumbersome. For instance, the construction of ∇u FT,

in the upper half of the Jacobian matrix (i.e. related to F1), requires the estimation of

∇u

(ˆ
R

HSpH∗dω

)
=

ˆ
R

(∇uH) SpH∗dω +

ˆ
R

HSp (∇uH∗) dω, (45)

where ∇uH further requires the application of the chain rule differentiation, as H (ω; Ωeq,Deq) defined with respect
to Ωeq and Deq is differentiated with respect to u. As a compensation, a finite difference method may be used to
estimate the Jacobian matrix T

(
u(k)

)
. However, this finite difference operation constitutes a heavy computational
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step in the method, precisely because the function estimation itself is already heavy. Indeed, for each perturbed
component of the vector u(k), the almost full modal transfer matrix must be inverted for every circular frequency
and then the integration of the psd matrices Sq and Sq̇ must be performed. The repeated inversions and integrations
make this method prima facie quite inefficient, a reason why the fixed-point method might be preferred.

Interestingly however, the previous asymptotic developments can be used to simplify the computation of the
Jacobian matrix and to offer, with a much less expensive algorithm, the quality of a second-order method. According
to the previous developments, the vector F(u) is replaced by its first-order asymptotic expansion in (42). In this
case, the Jacobian matrix may be analytically and efficiently approximated. Indeed, the construction of ∇u FT in
(43), requires the estimation of ∇uH which is now regarded as

∇uH ' ∇u ((I−HdJo) Hd) ' −Hd (∇uΩeq + ιω∇uDeq) Hd, (46)

where the two approximations correspond to first-order developments. According to the approximation (46), Equa-
tion (45) may read

∇u

(ˆ
R

HSpH∗dω

)
' (∇uLq) +

(
∇uL∗q

)
(47)

with

(∇uLq)ij =

m∑
k=1

(∇uΩeq)ik Iijk,0 +

m∑
k=1

(∇uDeq)ik Iijk,1 (48)

and Iijk,α exactly the same as defined in (32). Similarly, the second half of the Jacobian matrix, which is related
to operator F2, is filled with ∇uLq̇ +∇uL∗q̇, where

(∇uLq̇)ij =

m∑
k=1

(∇uΩeq)ik Iijk,2 +

m∑
k=1

(∇uDeq)ik Iijk,3. (49)

A final substitution into (43) with the corresponding matrix-to-vector rearrangement provides an approximation
of the Jacobian matrix, which is an edgestone in this Newton algorithm. Indeed, the numerical construction of this
matrix is efficiently performed, since (i) it mainly relies on the scalars Iijk,α which are previouslycomputed for the
calculation of R

(
u(k)

)
, (ii) no matrix is inverted and (iii) no additionnal integral is performed. Only the results

computed for a given guess of u in the iterative procedure are exploited. The gradients ∇uΩeq and ∇uDeq can be
analytically established or with a finite difference scheme. We shall notice that this approximation of the Jacobian
matrix can be applied, even if the operator F is not asymptotically approximated.

All in all, the derivation of the Jacobian matrix in this Section shows that, with the projection of the motion
into a fixed and suitable modal basis, together with the asymptotic expansion, it is possible to rapidly construct an
accurate first-order approximation of the Jacobian matrix, allowing to conveniently use a gradient-based method.
Compared to the finite difference estimation of the full residual vector, the proposed method efficiently concentrates
the time-consuming and ill-conditionned operations (matrix inversion and integration) in analytical developments.

It is also remarkable that the proposed method does not require any user-tuned continuation procedure to
converge towards the solution. In the problems investigated by the authors, among which some are reported in
Section 5, a part of the solution of the linear subsystem is always used as initial guess u(0). While the fixed-point
algorithm is only able to handle limited nonlinearities in amplitude, the proposed algorithm smoothly converges
towards the solution of the problem, without recoursing to any relaxation nor backtracking artifact.

4.2. Solver implementation

In order to make as clear as possible the implementation of the Newton algorithm, we propose to summarize in
five steps the different operations that must be applied to perform the equivalent linearization with the asymptotic
expansion-based method. We shall notice that the generalized basis Φ can be modified throughout the procedure,
since the value of the equivalent stiffness forces is a priori unknown.

Step 0. To initialize the problem, we first solve the eigenvalue problem (8) related to the linear subsystem with

K̃(0) = 0. We project the linear equation of motion in the basis Φ(0), as well as the Gaussian force vector f . We
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perform the spectral analysis (11) with Deq = Ωeq = 0 in (10). Finally, we obtain the matrices Σ(0)
q and Σ

(0)
q̇

gathered in u(0).

Step 1. We consider the k-th step (k ≥ 0) of the iteration procedure and the l-th generalized basis Φ(l)

(k ≥ l ≥ 0). We make the distinction between k and l, since the basis is not necessarily adapted at each iteration.

The elements of the matrices Σ
(k)
q,N and Σ

(k)
q̇,N (as well as Σ

(k)
x,N and Σ

(k)
ẋ,N ) are known and gathered in u(k). The

equivalent matrices D
(k)
eq and Ω(k)

eq are computed with (6). We can thus identify the matrices D
(k)
o , D

(k)
d , Ω(k)

o and

Ω
(k)
d by invoking (16) and (17). According to (41), we check whether the convergence criterion is verified, or not.

If ρJ < 1, we go to Step 3. Otherwise, we go to Step 2 to adapt the modal basis.

Step 2. In order to ensure the convergence of the asymptotic expansion, the modal basis may be adapted. It
essentially means that the equivalent stiffness forces cease to be negligible compared with the linear ones in the

basis Φ(l). A new generalized basis Φ(l+1) can be computed according to (8) with K̃(l+1) = K
(k)
eq . In this case, the

covariance matrices and the vector u(k) must be evaluated in the new modal basis. We may identify two possible
methods : (i) a new spectral analysis is performed according to (11) with the asymptotic expansion-based method
or (ii) a linear mapping can be used to express the covariance matrices in the new modal basis. In this latter case,

the nodal displacements are expressed in the modal basis Φ(l+1). However, this mapping requires to compute the
(pseudo-) inverse of the mode shape matrix. Then, we go to Step 3.

Step 3. At this step, we estimate the operator F(u(k)). We apply the asymptotic expansion-based method to

the modal transfer matrix H(ω; Ω(k)
eq ,D

(k)
eq ). We compute the decoupled approximation and the correction terms.

By the way, we also compute the integrals Iijk,α. If a suitable norm of the residual function R(u(k)) is reached, we
stop the iteration procedure. Otherwise, we go back to Step 4.

Step 4. We apply the Newton algorithm to find the new guess of u(k+1). Since we know from Step 3 the
integrals Iijk,α, we can directly compute the first-order approximation of the Jacobian matrix T(u(k)). By applying
Equation (44), we obtain u(k+1) and we go to Step 1.

With this short description for an implementation of the method, we understand how important is the con-
vergence criterion ρJ. Actually, the method depends on the ability to find a suitable and convenient modal basis
to project and decouple the equations of motion. Therefore, the proposed method is more pertinently applied to
moderate modal coupling coming from the structural nonlinear behaviors. This modal coupling depends on both
the intensity of the equivalent forces and their spatial distribution within the structures. These two facts are both
measured with the index ρJ.

4.3. Integration of the correction terms

The proposed formulation relies on the estimation of the definite integrals Iijk,α and, to a lesser extent Lq,2

and Lq̇,2, as defined previously. Taking into account the symmetry of the integrand, integration can be carried out
on R+ with available numerical integration methods [42]. The only subtlety in the estimation of these integrals
is related to the peakiness of the integrand which requires an adaptive integration scheme [35]. Actually a non-
adaptive scheme, with a proper selection of the integration points, could also be developed since the poles of the
integrands are easily identifiable, another consequence of the decoupling procedure since the integrands are the
mixed products of the transfer functions of single degree-of-freedom systems. Although this numerical procedure is
the standard application of the proposed method, the estimation of these integrals may be simplified (e.g. in the
case that many modes are kept in the analysis), as underlined hereinafter.

First, for some kind of excitations, Jordan’s lemma and Cauchy’s residue theorem [43] may provide manageable
explicit expressions. For instance, if the excitations are uncorrelated white noises, the PSD matrix Sp is full of
frequency-independent elements. This idea is inspired by well-known integrals (e.g. in the the CQC combination in
earthquake engineering [38]), such as

ˆ
R

(Hd)i (Sp)ij (H∗d)j dω = (Sp)ij
4π(ξiωd,i + ξjωd,j)(

ω2
d,i − ω2

d,j

)2
+ 4ωd,iωd,j (ξiωd,i + ξjωd,j) (ξjωd,i + ξiωd,j)

(50)

10



with (Ωd)i = ω2
d,i and (Dd)i = 2ξiωd,i and may be extended to the computation of the integrals Iijk,α.

A second case concerns loadings acting on a timescale different from the structural response. Inspired by
the background-resonant approximation introduced by Davenport [44] for single degree-of-freedom systems, the
method has been extended to other classes of problems [45]. The required assumption that different frequency
bands contribute independently to the total definite integral, may also be applied to estimate the integrals Iijk,α.
For instance, the integrals Iiii,0 and Iiij,0 may be approximated by

Iiii,0 ≈
(Σp)ii
ω6
d,i

+
π

4ξiω5
d,i

(
(Sp(ωd,i))ii −

ωd,i
2

(
S

′

p(ωd,i)
)
ii

)
(51)

Iiij,0 ≈
(Σp)ji
ω4
d,iω

2
d,j

+
π

2ξiω3
d,i

<
(

(Sp(ωd,i))ji (Hd(ωd,i))j

)
. (52)

They are thus replaced by direct function evaluations, which indeed offers a considerable computational speedup.
A comprehensive statement of this method and the theoretical basements are not exposed in this paper, but some
highlights and further results are given in AppendixB.

5. Illustrations

Three examples are next considered to illustrate the accuracy of the asymptotic expansion-based approach for
various natures and intensities of nonlinear forces. As the truncation order and the convergence of the asymptotic
expansion remain central in the method, the accuracy and the efficiency of the proposed method (with a finite
number N of terms) are assessed by comparison with the formal statistical linearization based on a fully coupled
modal approach (N = ∞) in which case a classical fixed-point method is also applied. In the following, the error
between the different approaches is expressed as the ratio of the Euclidean norm of the difference between the
two approaches over the same norm of the formal statistical linearization (supposed to be exact). The numerical
efficiency of the method and its robustness are also investigated.

Although it is deliberately kept as a side-discussion, for each example, a full nodal step-by-step solution using
a nonlinear Newmark scheme is also performed in order to indicate the validity of the statistical linearization. In
any case, the discrepancies between the two statistical linearization approaches (the proposed one, and the formal
one) is one order of magnitude smaller than the discrepancy between the Monte Carlo simulation and the formal
statistical linearization.

5.1. Mitigation of the along-wind response of high-rise building

Mitigation of the along-wind response of high-rise buildings can be achieved with different types of damping
devices such as Tuned Liquid Column Dampers (TLCD) [46]. The nonlinear governing equation of the liquid
elevation z in the TLCD due to the horizontal displacement x of the liquid column [47] is given by

ρALz̈ +
1

2
ρAδ|ż|ż + 2ρAgz = −ρABẍ, (53)

where ρ, A, B, L are the density, cross-sectional area, width and length of the liquid column, respectively and δ,
g are the head loss coefficient and acceleration of gravity, respectively. As experiments have demonstrated that
nonlinearity at the orifice remains small [18], the equivalent linearization is efficiently used to design such devices.
Applying the statistical linearization, the equivalent equation to (53) reads

ρALz̈ +

√
2

π
ρAδσż ż + 2ρAgz = −ρABẍ. (54)

For the illustration, a 370m-high TV tower is analyzed under turbulent wind actions. This structure is an
example proposed in [18], where the characteristics of the structure and TLCD are exhaustively reported. The
spectrum of longitudinal turbulence used in this illustration is the model proposed by Davenport [44], such that

(Sf )ij =
12

π
K0

(
1

2
CaρaV

2
10

)2(
hihj
100

)β
AiAjcoh (hi, hj , ω)Sv(ω), (55)
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where the coherence function and the unilateral wind PSD are defined as

coh (hi, hj , ω) = exp

(
−C1 |ω|

2π

|hi − hj |
V10

)
, Sv(ω) =

4πt̄2

3ω (1 + t̄2)
4/3

(56)

respectively, with t̄ = 600ω/πV10, V10 the reference mean wind velocity (m/s) at 10m above the ground, ρa = 1.2
the air density, Ko = 0.007 the surface drag coefficient, Ca = 0.7 the drag coefficient; the other constants are C1 = 7
and β = 0.15. The height hi above the ground of the i-th story is calculated assuming an individual story height of
4m. The wind area of each floor is equal to Ai = 192m2 and the velocity V10 to 26.4m/s.

Because no nonlinear stiffness force is considered in this example, the modal basis is the one of the linear
subsystem (K̃ = 0). Figure 1-(a) illustrates the standard deviations of the horizontal deflections of the tower if the
head loss coefficient δ is set equal to zero or equal to 30% (tuned value). With the TLCD, the standard deviation
of the top displacement is nearly divided by two, which indicates the importance of the nonlinear damping. Figure
1-(b) illustrates the relative errors made with the asymptotic approach (N = 1, 2) in comparison with a full matrix
inversion (N =∞). With only the first correction term, relative errors range in [−2%;−1%], while the addition of
the second correction term reduces the relative errors to less than −0.5%. .
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Figure 1: (a) Standard deviation of the horizontal displacements obtained with the equivalent linearization (N = 2) for δ = 0% and
δ = 30%. (b) Relative errors between the proposed asymptotic approach (N = 1, 2) and the formal equivalent linearization (N = ∞)
for δ = 30%.

The correlation coefficient between the liquid elevation and the top displacement is shown in Fig. 2-(a). It
increases rapidly with δ, then tends to an asymptotic value. For this quantity, large relative errors, up to 8%, occur
with a first-order decoupling approximation, depicted in Fig. 2-(b). Once again, the first two correction terms are
necessary to fit the reference values with relative errors lower than −0.5%.

Figure 3 shows the global increase of the damping ratios with the parameter δ. The largest increase is observed
for the first two modes, because the TLCD is tuned to the fundamental one. For the second mode, the damping
is nearly multiplied by five for δ = 30%. The index of diagonality starts at 0.15 because the structural damping is
not proportional and for δ = 30% it increases up to 0.4.
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Figure 2: (a) Correlation coefficient between the liquid elevation z of the liquid column and the top displacement (N = 2). (b) Relative
errors [%] between the decoupling asymptotic approach (N = 1, 2) and the full matrix inversion (N =∞).

Figure 3: (a) Modal damping ratios and (b) index of diagonality as function of δ.

The comparison with fully nonlinear time-domain simulations gives relative discrepancies lower than 4% in
magnitude for the highest value of head loss coefficient (δ = 30%). Actually, the nonlinear behaviour due to the
orifices is weak and the global response of the structure is nearly Gaussian. In any case, the proposed method is
closer to the solution of the equivalent linearization, than this latter one is from the Monte Carlo simulation.

5.2. Nonlinear multistory building under strong earthquake

The following example is inspired from [28]. A multistory shear-type building under a unilateral seismic excitation
is considered. The structural model consists of Ns stories modeled by lumped masses m connected by clamped-
clamped nonlinear beam elements. The hardening behavior of a steel beam can be taken into account for large
elastic displacements by an additional cubic nonlinear stiffness as in [24, 48]. The structure is sketched in Fig. 4
and the undamped equation of motion for the j-th story is

mŸj + k (Yj+1 − 2Yj + Yj−1) + gj(Yj−1, Yj , Yj+1) = −mÜ (57)

with gj the j-th component of the nonlinear force vector defined as

gj(Yj−1, Y j , Yj+1) = κk
(

(Yj − Yj−1)
3 − (Yj+1 − Yj)3

)
(58)

with Yj the relative horizontal displacement (with respect to the ground displacement) of that story. At the first
floor, Y0 is set equal to zero, while at the last floor, the term YNs+1−YNs

is also set equal to zero. In this illustration,
the number of stories Ns is fixed equal to 10 and the characteristics of the structure are m = 1290tons, k = 108N/m.
The damping terms result from a proportional structural damping ratio imposed to 1% in the first two linear modes.
The parameter κ which quantifies the intensity of the nonlinear forces is supposed to be a variable parameter in
this example. The natural frequencies of the first five linear normal modes are 0.21, 0.62, 1.02, 1.40, 1.75Hz. The
unilateral excitation field is modeled by a modified Kanai-Tajimi spectrum [38]

SÜ = S0

(
1 + 4ξ21

(
ω
ω1

)2)
(

1−
(
ω
ω1

)2)2

+ 4ξ21

(
ω
ω1

)2
(
ω
ω2

)4
(

1−
(
ω
ω2

)2)2

+ 4ξ22

(
ω
ω2

)2 (59)
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with ω1 = 5rad/s, ξ1 = 0.2, ω2 = 0.5rad/s, ξ2 = 0.6 and S0 = 0.03m2/s3.
Since all the degrees of freedom are involved in the nonlinear behavior, this example is pertinent to illustrate

the method. Furthermore, the classical fixed-point method might fail to solve this problem for moderate nonlinear
behavior. Indeed, in the nodal basis (n = 10), for a given guess of Σ(k)

x , the equivalent stiffness matrix Keq may shift
the natural frequencies in the high-frequency domain, for which the spectrum (59) is low. The updated response of
the structure is therefore reduced, and so is the following guess of Keq. Thus, the natural frequencies are reduced

and the risk here is to come back to the previous guess Σ(k)
x . The fixed-point iterative process is thus eventually

trapped in this period-2 oscillation, as illustrated in Fig. 4(b). This argument physically explains why the equation
set is ill-conditioned and why the convergence can be really slow. Obviously, this fact corroborated by numerical
experiments, shall not be encountered with white noise excitation processes. This might explain the attractivity of
the fixed-point method, in more academic examples.

Figure 4: Sketch of the structure (a). Non-convergence of the fixed-point algorithm; Oscillations occur between the states ◦ and ∗, the
standard deviations of the lateral displacements and the related natural frequencies on the spectrum are illustrated.

In this context, the proposed method (with N = 2) shows its efficiency, because Newton’s algorithm is able to
explore more efficiently the solution space. With the proposed developments, the problem consists in minimizing
the residue function (42), as well as keeping the convergence criterion (36) as small as possible. This latter aspect
is ensured by a proper selection of the equivalent matrix K̃. Due to the nonlinear stiffness forces, the initial choice
of the matrix K̃ for the modal projection in Equation (9) is important, because it conditions the convergence of
the series. Computing K in (6) with u0 gives a crucial information about the distribution of the nonlinear forces
and yet the amplitudes are roughly estimated. In this example, a good initial trial for K̃ consists in computing
K with a fraction of u0. This fraction can be interpreted as a ratio between the internal forces coming from the
linear subsystem and from the equivalent linear one (in this problem the ratio 1/(1 + 3κ) is used). In this manner,
both linear and equivalent linear forces are taken into account with an adequate proportion in the total stiffness
matrix K + K̃ . Although our goal is to keep it constant, matrix K̃ may be updated, when a better estimate ũ is
known (K̃ = K(ũ)) or when the convergence criterion is violated, in order to converge to a more accurate results.
Here the proposed method reveals another valuable aspect, since the expansion-based method does not require a
modal update at each iteration, as in a classical statistical linearization [10]. In fact, examples show that one of
two updates are by far enough to offer an accurate result. The combination of a small convergence criterion and a
small residual function ensures that the solution is the sought one.
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Figure 5: (a) Convergence criterion ρJ for three iterations on K̃ . (b) Error [%] between the proposed method (N = 2) and the formal
statistical linearization. (c) Standard deviation of the lateral displacements for different values of κ.

For all simulations, five modes are kept in the analysis and K̃ is updated twice in order to satisfy the convergence
criterion as illustrated in Fig. 5(a). Even if ρJ is greater than one with the first guess K̃(0), it does not mean that
the problem cannot be solved, but it shows that the solver does not converge to the good solution because the
approximation of s(u) in (42) is not accurate enough. However, the developed strategy just requires few iterations
on K̃ before reaching a suitable guess, as illustrated in Fig. 5(b), for strong nonlinarities. The comparison between
Fig. 5(a) and (b) shows that a small index ρJ (with a small residue) is a proof of convergence for the linearization.
The nonlinear forces become more important, but a small index ρJ ensures the converge independently of a value of
κ. Figure (5)-c highlights the effects of the nonlinear forces on the standard deviation of the lateral displacements.

The number of iterations inside Newton’s solver for all the simulations in Fig. 5 does not exceed four and the
computation time does not exceed 1s per iterate (in MatLab): the method is not expensively consumming in virtue
of its second-order accuracy. Figure 5(a) shows the accuracy of the method. The error on the diagonal terms and on
the whole covariance matrix is at most 1% even for strong nonlinearities. Figure 5(c) shows profiles of the standard
deviation of the lateral displacements for different values of κ. The good agreement with the proposed method and
the exact linearization is noteworthy.

5.3. Response of a long-span bridge to a coherent seismic excitation

As a third example, a conceptual 16-span bridge excited by a coherent seismic field is considered. Some connec-
tions between the piles and the deck are completed by nonlinear damping devices providing the isolation of the deck
and the mitigation of the vibrations. The unilateral excitation Sü is modeled by a modified Kanai-Tajimi spectrum
as in Equation (59) with the same parameters and the coherent seismic field Sü(ω) is modeled as

(Sü)ij = Sü |Γij | exp

(−ιωdij
V

)
(60)

with

|Γij | = A exp

(
− 2dij
αΘs

(1−A+ αA)

)
+ (1−A) exp

(
−2dij

Θs
(1−A+ αA)

)
(61)

and Θs = ks

(
1 +

∣∣∣ ωωb

∣∣∣b)−1/2

, where dij is the distance between the excitation points i and j The constants are

chosen as A = 0.736, α = 0.147, ks = 512m, b = 2.78, ωb = 6.85rad/s and V = 600m/s [49, 50]. The structure is
modeled with 3-DOF beam finite elements (210GNm2, 6t/m for piles and deck) : the piles are 50m height and the
spans are 30m long. The first natural frequencies of the linear substructure are 0.75, 0.76, 0.83, 0.99 and 1.25Hz
and the structural damping ratio is equal 1% for the first two modes. All the piles are horizontally connected to the
deck by linear springs of 20MN/m stiffness. On the connections at the piles 4, 6, 8, 10 and 12, nonlinear viscous
dampers are set in order to mitigate the lateral vibrations in the first two modes of the structure (bending modes of
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the deck) during an earthquake. The force-velocity relationship of these devices is of the type ηsign(v) |v|β with v
the relative velocity between two connected DOF, η the damping coefficient and β ranged between 0.10 and 0.50 in
order to be efficient for small velocity values. The stochastic linearization approach is commonly used to design such
type of dampers [51]. Five modes are kept in the analysis and the modal basis is the one of the linear substructure
(K̃ = 0).

Figure 6: Sketch of the structure with the position of the dampers (a). Convergence criterion ρJ for different values of η (b). Error [%]
on the covariance matrix (c) and the variances (d) for different values of η (dotted line N = 1, solid line N = 2).

Fig. 6(c) and (d) compare the equivalent linearization in a modal basis computed with a fixed-point approach
and with the proposed expansion-based method (with N = 2) for different combinations of β and η. These results
must be interpreted with regard to the convergence criterion ρJ plotted in Fig. 6(b). For the case β = 0.50, the
index ρJ does not exceed 0.15, and the resulting errors are less than 1%. However, for β = 0.25, the nonlinear
forces are stronger and the index ρJ is thus greater than for β = 0.50, for all the given values of η. In the case
η = 2 · 106 and β = 0.25, the maximum error is about 3% with ρJ equal to 0.36, which remains satisfactory.
Furthermore, the fixed-point method has not converged and a continuation method has been applied in that case.
The expansion-based method is able to deal with a large range of parameters in an efficient way. In Fig. 6, the
variance of the lateral velocity of the deck are plotted in order to figure out the effect of the nonlinear viscous forces.

Figure 7: Variance of the lateral velocity of the deck for (a) β = 0.50 and (b) β = 0.25

The numerical efficiency is also checked between the proposed approach and the fixed-point approach. For
each simulation, the initial guess is supposed to be the response of the linear subsystem. The asymptotic method
converges to the linearized solution in spite of a huge difference with the initial guess. No more than 4 iterations are
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required in all cases to converge to the correct linearization with the proposed method. The number of iterations is
divided by two, compared to the fixed-point approach (provided it converges).

6. Conclusions

The present paper has developed and applied the concept of asymptotic expansion of a modal transfer matrix
in order to perform the GEL of large structures subject to coherent in space and time loadings. The proposed
developments are based on the assumption that a suitable modal basis can be found to transform the equations
of motion into a slightly coupled linearized system. According to some assumptions about the convergence of
asymptotic expansion for matrices, the modal transfer matrix can be expanded in a series initiated by the transfer
matrix of a main decoupled linearized system. Following linear algebra, inversion of full matrices is avoided and
some remarkable integrals are extracted.

The choice of a suitable basis is a central discussion in this paper. With the asymptotic expansion-based method,
a relevant basis must be able to transform the structural matrices into diagonally dominant matrices after the modal
projection. While the use of a constant basis is limited to slightly nonlinear problems, moderately nonlinear problems
may be treated with the proposed algorithms, with a very limited number of modal basis updates. As a major
outcome, the projection of the nodal loading field, known as the most time-consuming operation in a spectral modal
analysis, is performed only once (or only a couple of times depending on the amplitude of the nonlinearity) instead
of each step, which increases the efficiency proportionally to the number of iterations.

These developments allow to use efficiently a Newton algorithm, i.e. a second-order method, in order to solve
the nonlinear equation set involving integrals required to perform the linearization in a spectral strategy. Indeed,
the computation of the Jacobian matrix is deeply simplified by the proposed approach. The combination of the
asymptotic expansion-based method with this algorithm allows to use gradient-based method, quite efficiently.

Some examples are proposed in order to illustrate the robustness of the method, its ability to cover different
natures and orders of magnitude for the nonlinear forces. Limitations of the proposed method with respect to the
convergence criterion have also been illustrated. In particular, the expansion-based method remains competitive if
the number of required correction terms is at most equal to two. We notice that two correction terms are mainly
required, if ρJ is about 0.4. In all those cases, it is efficient and accurate at the same time.
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[39] H.J. Pradlwarter, G.I. Schuëller, and C.A. Schenk. A computational procedure to estimate the stochastic
dynamic response of large non-linear FE-models. Computer Methods in Applied Mechanics and Engineering,
192:777–801, 2003.

[40] R.A. Horn and Johnson C.R. Matrix Analysis. Cambridge University Press, Cambridge, seconde edition
edition, 2013.

[41] M. Morzfeld, N. Ajavakom, and F. Ma. Diagonal dominance of damping and the decoupling approximation in
linear vibratory systems. Journal of Sound and Vibration, 320:406–420, 2009.

[42] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes. The art of scientific
computing. Cambridge University Press, 3rd edition, 2007.

[43] E. Kreyszig. Advanced Engineering Mathematics. John Wiley and Sons, Inc., 9th edition, 2006.

[44] A. G. Davenport. The application of statistical concepts to the wind loading of structures. Proceedings of the
Institute of Civil Engineers, 19:449–472, 1961.
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AppendixA. A sufficient condition of convergence of the asymptotic expansion

Invoking the Gerschgorin theorem [40], a subspace B(A) of C containing all the eigenvalues of a matrix A =
[aij ] ∈ Cm×m can be defined. This subspace is the union of the so-called Gerschgorin discs defined as Di(aii, Ri)
with the radius Ri =

∑m
j=1,j 6=1 |aij | and aii the center of the circle. Thus, B(A) =

⋃m
i=1Di(aii, Ri) and the i-th

eigenvalue λA,i ∈ B(A) with i = 1, ...m. If A is posed equal to Hd(ω)Jo(ω) as in Equation (20), the theorem reads

Di =

z ∈ C, ω ∈ R, |z| ≤
n∑

j 6=i=1

∣∣∣(Hd)i (Jo)ij

∣∣∣
 , (A.1)

since the diagonal elements of HdJo are equal to zero. Therefore, the m Gerschgorin discs are concentric. The
inequality defining the i-th disc can be rewritten and an upper bound is calculated as

|z| ≤ |(Hd(ω))i|
n∑

j 6=i=1

√
(Ωo)

2
ij + ω2 (Do)

2
ij

<
∣∣(Hd(ωd,i))i

∣∣ n∑
j 6=i=1

√
(Ωo)

2
ij + ω2

d,i (Do)
2
ij (A.2)

with ωd,i defined in Section 4.3. Notice that no formal distinction is introduced between natural frequency and the
damped natural frequency of the decoupled equivalent system.

AppendixB. Extension of the background-resonant approximation

The background-resonant approximation introduced by Davenport in [44] is a common method in wind engi-
neering used to compute the integral of the product between the PSD of a background excitation and the transfer
function of a linear SDOF system in order to estimate the variance of the response. The philosophy of the method
is based on the evident separation between two timescales in the process : (i) the quasi-static response of the system
due to the low frequency excitation and (ii) the resonant response due to dynamical amplification of the system at
higher frequency content. This methodology is applied here in order to facilitate the computation of the integral
Iijk,α, in presence of low frequency excitations like turbulent wind.
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First, the integral Iiii,0 is considered. The background component is rapidly computed by adding and subtracting

simultaneously a term |(Hd(0))i|
3
, such that

ˆ
R

(Hd)i (Hd)i (Sp)ii (Hd)
∗
i dω =

1

ω6
0,i

ˆ
R

(Sp)ii dω +

ˆ
R

(
(Hd)i (Hd)i (Hd)

∗
i −

1

ω6
0,i

)
(Sp)ii dω

=
1

ω6
0,i

(Σp)ii +

ˆ
R
φ(ω) (Sp)ii dω, (B.1)

where Σp is the covariance matrix of the modal forces. The first term is the background contribution, while the
second integral is the resonant one. Two identical and symmetric contributions to the resonant component are
concentrated around the natural frequency ±ω0,i, so just one of those is computed for ω > 0. A coordinate η is
used to stretch the frequency ω around ω0,i, such that ω = ω0,i(1 + ξη). The previous integral now reads

ˆ
R
φ(ω) (Sp)ii dω ≈ 2ξω0,i

ˆ
R+

φ(η) (Sp)ii dη. (B.2)

However, the function φ(η) remains non-integrable on +∞, so that function is replaced by a local Padé approxi-
mation φ̃(η) of the real part of φ(η), since the integral is real-valued. Everywhere else, the Padé approximation φ̃(η)
is continuous and tends to zero for η tending to 0, +∞ and −∞. The resonant contribution is thus approximated
by

ˆ
R
φ(ω) (Sp)ii dω ≈ 2

ˆ
R
φ̃(η) (Sp)ii ξω0,idη. (B.3)

Locally, the spectrum Sp(ω) is approximated by its first-order expansion and the integral becomes

ˆ
R
φ(ω) (Sp)ii dω ≈ 2

ˆ
R
φ̃(η)

(
(Sp(ω0,i))ii + ηξω0,i

(
S

′

p(ω0,i)
)
ii

)
ξω0,idη. (B.4)

The remaining integrals can be performed with the residue theorem. For α > 0, the integral Iiii,α has no background
contribution. The methodology is applied also to these integrals in order to obtained simplified formula. Some
pertinent results are

Iiii,1 =
π

8ξ2i ω
4
d,i

(Sp(ωd,i))ii , Iiii,2 =
π

8ξiω2
d,i

(
S

′

p(ωd,i)
)
ii
, Iiii,3 =

−π
8ξ2i ω

2
d,i

(Sp(ωd,i))ii . (B.5)
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