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Problem statement

Goal

Short-term forecasting of daily solar energy production based on
weather forecasts from numerical weather prediction (NWP)
models.

Challenges
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Data

Solar energy production

» 98 Oklahoma Mesonet
sites

» Total incoming solar
energy in Jm—?

» Time period : 1994 -
2007

Courtesy : Dr. Amy McGovern

Numerical weather prediction

» NOAA/NCEP GEFS Reforecast, 5 forecasts per day
» Ensemble comprises 11 members (one control)

» 15 measurements (temp, humidity, upward radiative flux, ...)



Overview of our approach

Learning

Interpolation Feature

(Kriging) engineering (Gradient Tree

Boosting)

1. Interpolation of meteorological measurements from GEFS
grid points onto Mesonet sites;

2. Construction of new variables from the measurement
estimates ;
3. Forecasting of daily energy production using Gradient

Boosted Regression Trees, on the basis of the local
measurement estimates.



Kriging
Goal : Estimate meteorological variables (temperature, humidity,
...) locally at all Mesonet sites.

For each day d, period h and type f of meteorological
measurement :

1. Build a local learning set
Lanr = {(X,‘ = (Iat,-, lon;, elevation,-),y,- = m,'dhf)},

where mjgpf is the average value (over the ensemble) of
measurements miqpr of type f, at GEFS location 7, day d and
period h;
2. Learn a Gaussian Process from Lgpf, for predicting
measurements from coordinates;
(Fitting is perfomed using nuggets to account for noise in the measurements.)
3. Predict measurement estimates n@ at Mesonet stations j
from their coordinates.



Feature engineering

Goal : Build a learning set £ from the measurement estimates.

1. Concatenate the estimates at all periods h and for all types f,
for each Mesonet station j and day d :

—

L = {(Xjg = (Mjdhf> Midhyfys ) Yid = Pjd)}

where pjq is the energy production at Mesonet station j and
day d.
2. Extend inputs xjq with engineered features :

» Solar features (delta between sunrise and sunset)

Temporal features (day of year, month)

Spatial features (latitude, longitude, elevation)

Non-linear combinations of measurement estimates

Daily mean estimates

Variance of the measurement estimates, as produced by the
Gaussian Processes
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Predicting energy production

Goal : Predict daily energy production at Mesonet sites.

1. Learn a model using Gradient Boosted Regression Trees
(sklearn.ensemble.GradientBoostingRegressor),
predicting output y from inputs x;

» Use the Least Absolute Deviation loss for robustness ;
» Optimize hyper-parameters on an internal validation set;

2. For further robustness, repeat Step 1 several times (using
different random seeds) and aggregate the predictions of all
models.



Results

Evaluation

» Held-out data from 2008 - 2012.
» Mean Absolute Error (MAE) as metric :

1 2D
MAE:E : Z’de—
j=1d=1
Results
Method Heldout-Score [MAE]
GMM 4019469.94
Spline Interp. 2611293.30
Kriging + GBRT 2162799.74

Best 2107588.17

Pjd
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-2.62%



Error analysis

Daily MAE
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Conclusions

Competitive results (4th position) ;
Robust approach at all steps of the pipeline;

X Including additional data from nearest GEFS grid points might
have further improved our results.

Questions ? g.louppe | peter.prettenhofer@gmail . com


g.louppe|peter.prettenhofer@gmail.com

Kriging illustration
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