

Forecasting Daily Solar Energy Production Using Robust Regression Techniques

Gilles Louppe ([@glouppe](#))
Université de Liège, Belgium

Peter Prettenhofer ([@pprett](#))
*Graz University of Technology,
Austria*

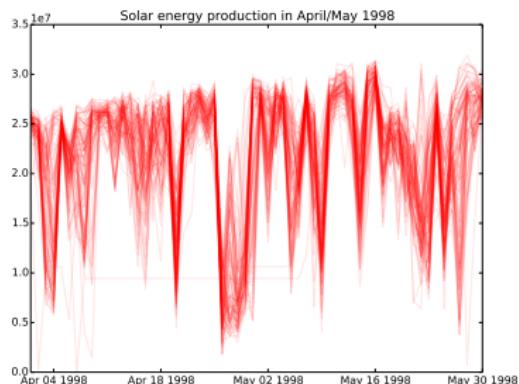
Problem statement

Goal

Short-term forecasting of daily solar energy production based on weather forecasts from numerical weather prediction (NWP) models.

Challenges

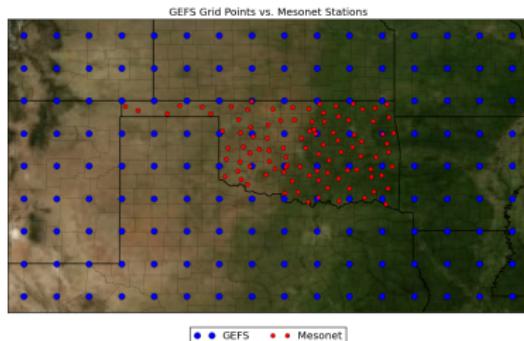
- ▶ High volatility
rapidly changing weather conditions
- ▶ Noisy response
hardware failure
- ▶ Noisy inputs
inaccuracy of NWP model



Data

Solar energy production

- ▶ 98 Oklahoma Mesonet sites
- ▶ Total incoming solar energy in Jm^{-2}
- ▶ Time period : 1994 - 2007



Courtesy : Dr. Amy McGovern

Numerical weather prediction

- ▶ NOAA/NCEP GEFS Reforecast, 5 forecasts per day
- ▶ Ensemble comprises 11 members (one control)
- ▶ 15 measurements (temp, humidity, upward radiative flux, ...)

Overview of our approach

1. **Interpolation** of meteorological measurements from GEFS grid points onto Mesonet sites ;
2. Construction of **new variables** from the measurement estimates ;
3. **Forecasting** of daily energy production using Gradient Boosted Regression Trees, on the basis of the local measurement estimates.

Kriging

Goal : Estimate meteorological variables (temperature, humidity, ...) locally at all Mesonet sites.

For each day d , period h and type f of meteorological measurement :

1. Build a local learning set

$$\mathcal{L}_{dhf} = \{(\mathbf{x}_i = (\text{lat}_i, \text{lon}_i, \text{elevation}_i), y_i = \overline{m_{idhf}})\},$$

where $\overline{m_{idhf}}$ is the average value (over the ensemble) of measurements m_{idhf} of type f , at GEFS location i , day d and period h ;

2. Learn a Gaussian Process from \mathcal{L}_{dhf} , for predicting measurements from coordinates ;

(Fitting is performed using *nuggets* to account for noise in the measurements.)

3. Predict measurement estimates $\widehat{m_{jdhf}}$ at Mesonet stations j from their coordinates.

Feature engineering

Goal : Build a learning set \mathcal{L} from the measurement estimates.

1. Concatenate the estimates at all periods h and for all types f , for each Mesonet station j and day d :

$$\mathcal{L} = \{(\mathbf{x}_{jd} = (\widehat{m_{jdh_1f_1}}, \widehat{m_{jdh_1f_2}}, \dots), y_{jd} = p_{jd})\}$$

where p_{jd} is the energy production at Mesonet station j and day d .

2. Extend inputs \mathbf{x}_{jd} with engineered features :
 - ▶ Solar features (delta between sunrise and sunset)
 - ▶ Temporal features (day of year, month)
 - ▶ Spatial features (latitude, longitude, elevation)
 - ▶ Non-linear combinations of measurement estimates
 - ▶ Daily mean estimates
 - ▶ Variance of the measurement estimates, as produced by the Gaussian Processes

Predicting energy production

Goal : Predict daily energy production at Mesonet sites.

1. Learn a model using Gradient Boosted Regression Trees (`sklearn.ensemble.GradientBoostingRegressor`), predicting output y from inputs x ;
 - ▶ Use the *Least Absolute Deviation* loss for robustness ;
 - ▶ Optimize hyper-parameters on an internal validation set ;
2. For further robustness, repeat Step 1 several times (using different random seeds) and aggregate the predictions of all models.

Results

Evaluation

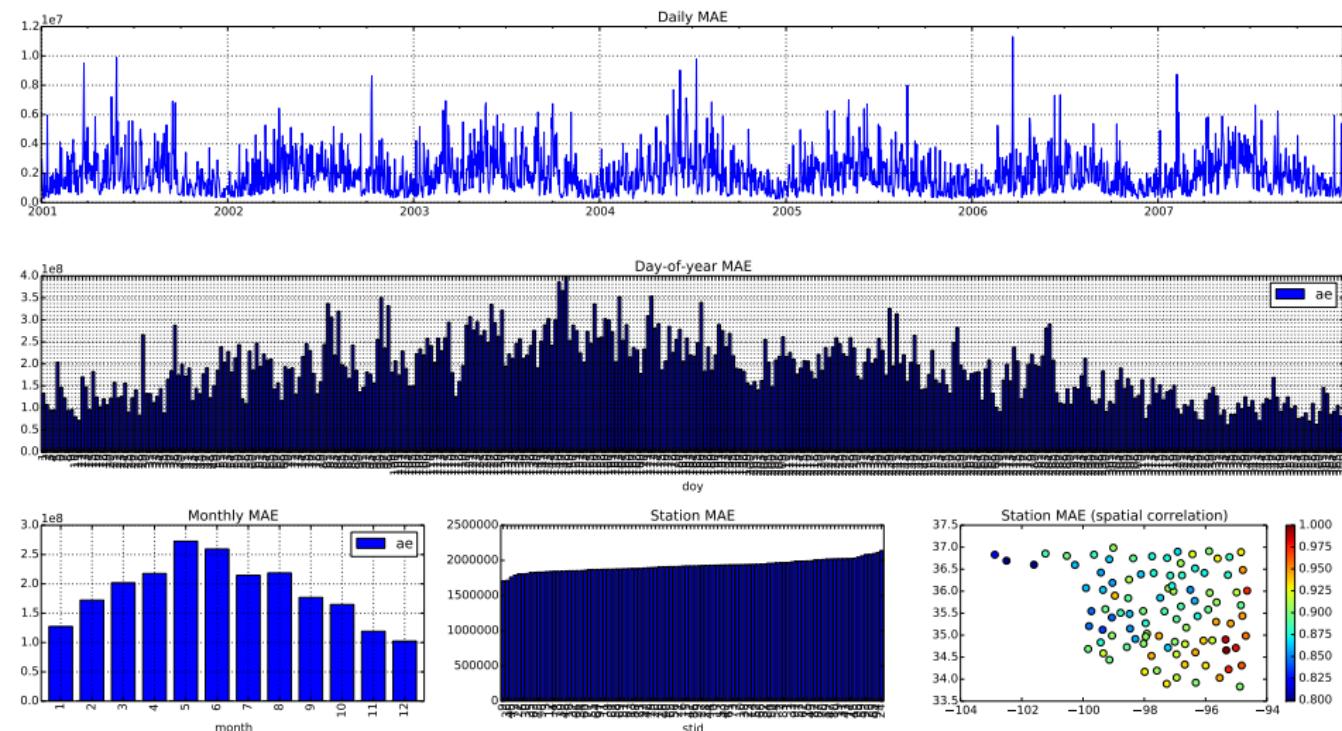
- ▶ Held-out data from 2008 - 2012.
- ▶ Mean Absolute Error (MAE) as metric :

$$MAE = \frac{1}{JD} \sum_{j=1}^J \sum_{d=1}^D |p_{jd} - \hat{p}_{jd}|$$

Results

Method	Heldout-Score [MAE]	Δ [%]
GMM	4019469.94	46.19%
Spline Interp.	2611293.30	17.17%
Kriging + GBRT	2162799.74	-
Best	2107588.17	-2.62%

Error analysis



Conclusions

- ✓ **Competitive** results (4th position) ;
- ✓ **Robust** approach at all steps of the pipeline ;
- ✗ Including additional data from nearest GEFS grid points might have further improved our results.

Questions ? g.louppe|peter.prettenhofer@gmail.com

Kriging illustration

