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Fire in a building

Consider a sensor-placement in a building such that each sensor can detect
a fire in its room and in its neighbouring rooms.
If there is a fire in one room, can we determine exactly where the fire is ?

Modelization with a graph : vertices : rooms,
edges : between two neighbouring rooms.

Identifying code of a graph : set C of vertices such that

- (Domination) each vertex must contain at least a vertex of C in its neigh-
bourhood,

- (Separation) any pair of vertices can not have the same set of vertices of
C in their neighbourhoods.

Linear formulation

We put weights xu ∈ {0, 1} on the vertices with the convention that for a
set of vertices C ⊆ V , xu = 1⇔ u ∈ C.
The set C ⊆ V is an identifying code if for any u, v ∈ V with u 6= v,∑
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Domination

and
∑

w∈N [u]∆N [v]

xw ≥ 1.

Separation

Then γID(G) := min{#C =
∑
u∈V xu|C is an identifying code of G}.

Finding an identifying code with minimum cardinality
is NP-hard in general !

How to obtain a natural bound on γID(G) ?
Allow the weights xu to be fractions in [0, 1] in the above problem and denote
by γID

f (G) the smallest possible
∑
u∈V xu. Then

γID
f (G) ≤ γID(G).

Case of transitive graphs

For a vertex-transitive graph G on n vertices, there exists an optimal

solution to the fractional problem where xu =
γIDf (G)
n for any u ∈ V .

Let k be the degree of vertices and d the smallest cardinal of symmetric
differences between two neighbourhoods. The domination and separation
conditions imply that

n

γID
f (G)

≤ min(k + 1, d).

It is even an equality. Hence γID
f (G) = max

(
n
k+1,

n
d

)
≤ γID(G).

NB : The bound n
k+1 is never reached. Indeed, Karpovsky, Chakrabarty

and Levitin showed in 1998 that
⌈

2n
k+2

⌉
≤ γID(G).

When the separation condition prevails

How close is the bound γID
f (G) = n

d to γID(G) ?

A family of circulant graphs : Gm,p with m ≥ 2, p > 4
G2,6 Number of vertices : n = mp

Degree of vertices : k = 2m
Smallest symmetric difference : d = 2
γID(G) = p(m− 1)

γID(G)
γIDf (G)

= 2− 2
m

If m = 2, the bound is tight ! In contrast, the integer solution is nearly twice
the fractional solution for big enough m. This corresponds to the worst case
scenario with d = 2 since

γID(G) ≤ n = dγID
f (G).

Cartesian product of complete graphs : Kp�Kp

Number of vertices : n = p2

Degree of vertices : k = 2p− 1
Smallest symmetric difference : d = 2p− 2
γID(G) = 3p

2 [Gravier, Moncel, Semri (2008)]

γID(G)
γIDf (G)

= 3− 3
p

K3�K3

Q : Can we find examples with d 6= 2 corresponding to the “worst case”?

When the domination condition prevails

Generalized quadrangles GQ(s, t)

GQ(s, t) is an incidence structure, i.e. a set of points and lines such that :

- there are s + 1 points on each line,

- there are t + 1 lines passing through a point,

- for a point P that does not belong to a line L, there is exactly one line
passing through P and intersecting L.

Consider its incidence graph where points are vertices and there is an edge
between two points if they belong to the same line.
For example, Kp�Kp corresponds to GQ(p− 1, 1).

The domination condition prevails in GQ(s, t) iff s > 1 and t > 1.

GQ(3, 5)
Vertices : points of F3

4 = {0, 1, z, z2}3
Edges : between two points A and B if
the direction (AB) belongs to

{(1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 1, 1), (1, z, z2), (1, z2, z)}

Deg. of vertices : k = 3 · 6 = 18
Smallest sym. diff. : d = 26

γID
f (GQ(3, 5)) =

64

19
≈ 3, 36 and γID(GQ(3, 5)) = 9

Q : Identifying code of GQ(7, 9)? Generalization to GQ(2` − 1, 2` + 1)?


