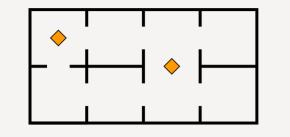
Linear formulation of identifying codes in graphs

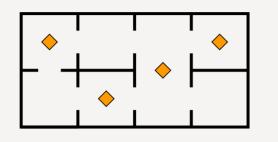
VANDOMME Elise University of Grenoble and University of Liège e.vandomme@ulg.ac.be Joint work with GRAVIER Sylvain and PARREAU Aline

Fire in a building

Consider a sensor-placement in a building such that each sensor can detect a fire in its room and in its neighbouring rooms.

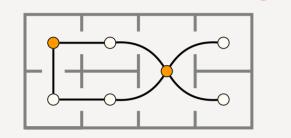
If there is a fire in one room, can we determine exactly where the fire is ?

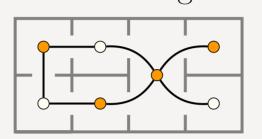




Modelization with a graph : Ve

vertices : rooms, edges : between two neighbouring rooms.





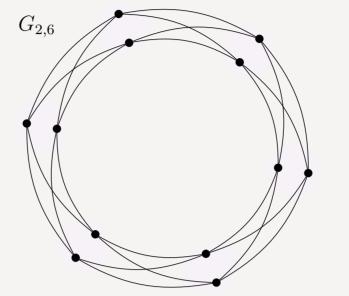
Identifying code of a graph : set C of vertices such that

- (Domination) each vertex must contain at least a vertex of C in its neighbourhood,

When the separation condition prevails

How close is the bound $\gamma_f^{\text{ID}}(G) = \frac{n}{d}$ to $\gamma^{\text{ID}}(G)$?

A family of circulant graphs : $G_{m,p}$ with $m \ge 2, p > 4$



Number of vertices : n = mpDegree of vertices : k = 2mSmallest symmetric difference : d = 2 $\gamma^{\text{ID}}(G) = p(m-1)$ $\frac{\gamma^{\text{ID}}(G)}{\gamma^{\text{ID}}(G)} = 2 - \frac{2}{m}$

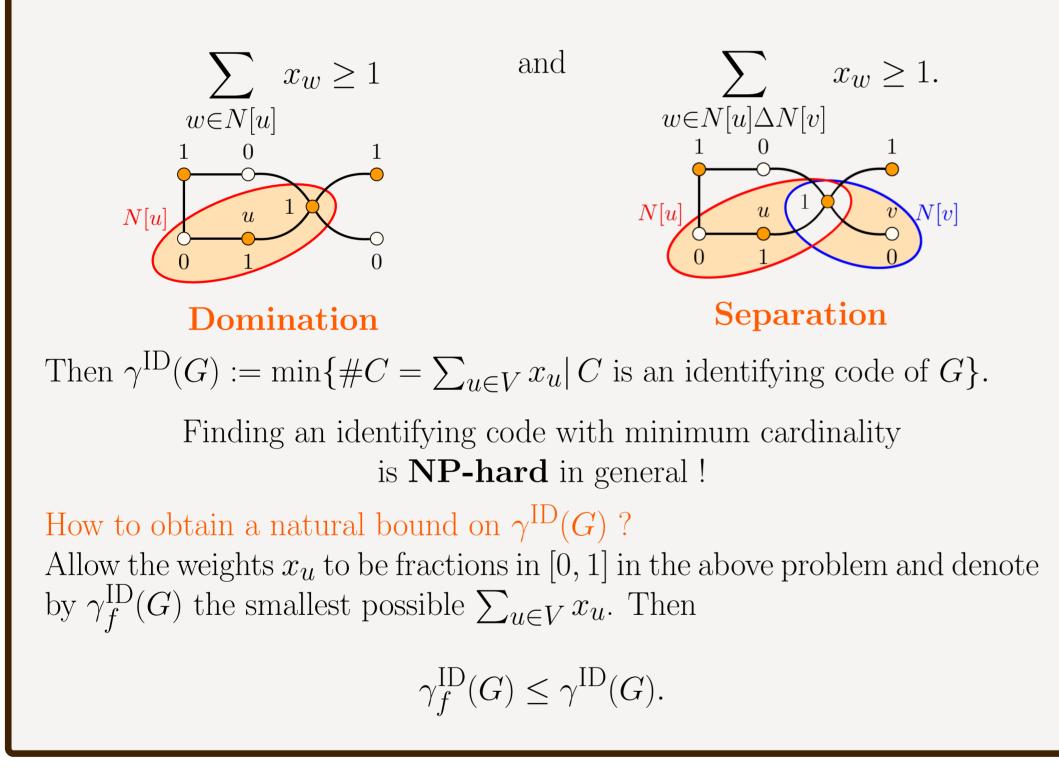
If m = 2, the bound is tight ! In contrast, the integer solution is nearly twice the fractional solution for big enough m. This corresponds to the worst case scenario with d = 2 since

$$\gamma^{\mathrm{ID}}(G) \leq n = d\gamma_f^{\mathrm{ID}}(G).$$

- (Separation) any pair of vertices can not have the same set of vertices of C in their neighbourhoods.

Linear formulation

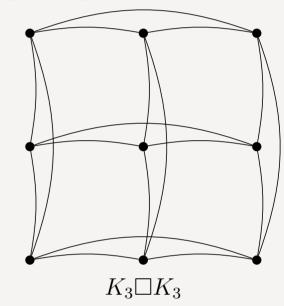
We put weights $x_u \in \{0, 1\}$ on the vertices with the convention that for a set of vertices $C \subseteq V$, $x_u = 1 \Leftrightarrow u \in C$. The set $C \subseteq V$ is an identifying code if for any $u, v \in V$ with $u \neq v$,



Cartesian product of complete graphs : $K_p \Box K_p$

Number of vertices : $n = p^2$ Degree of vertices : k = 2p - 1Smallest symmetric difference : d = 2p - 2 $\gamma^{\text{ID}}(G) = \frac{3p}{2}$ [Gravier, Moncel, Semri (2008)]

$$\frac{\gamma^{\mathrm{ID}}(G)}{\gamma^{\mathrm{ID}}_f(G)} = 3 - \frac{3}{p}$$



Q : Can we find examples with $d \neq 2$ corresponding to the "worst case"?

When the domination condition prevails

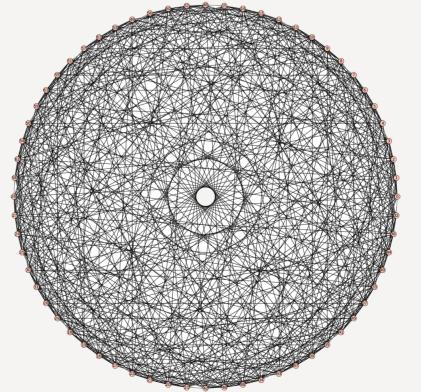
Generalized quadrangles GQ(s,t)

GQ(s,t) is an incidence structure, i.e. a set of points and lines such that :

- there are s + 1 points on each line,
- there are t + 1 lines passing through a point,
- for a point P that does not belong to a line L, there is exactly one line passing through P and intersecting L.

Consider its incidence graph where points are vertices and there is an edge between two points if they belong to the same line. For example, $K_p \Box K_p$ corresponds to GQ(p-1,1).

The domination condition prevails in GQ(s,t) iff s > 1 and t > 1.



GQ(3,5)Vertices : points of $\mathbb{F}_4^3 = \{0, 1, z, z^2\}^3$ Edges : between two points A and B if the direction (AB) belongs to

Case of transitive graphs

For a vertex-transitive graph G on n vertices, there exists an optimal solution to the fractional problem where $x_u = \frac{\gamma_f^{\text{ID}}(G)}{n}$ for any $u \in V$.

Let k be the degree of vertices and d the smallest cardinal of symmetric differences between two neighbourhoods. The domination and separation conditions imply that

$$\frac{n}{\gamma_f^{\text{ID}}(G)} \le \min(k+1, d).$$

It is even an equality. Hence $\gamma_f^{\text{ID}}(G) = \max\left(\frac{n}{k+1}, \frac{n}{d}\right) \leq \gamma^{\text{ID}}(G).$

NB: The bound $\frac{n}{k+1}$ is never reached. Indeed, Karpovsky, Chakrabarty and Levitin showed in 1998 that $\left\lceil \frac{2n}{k+2} \right\rceil \leq \gamma^{\text{ID}}(G)$.

 $\{ (1,0,0), (0,1,0), (0,0,1), \\ (1,1,1), (1,z,z^2), (1,z^2,z) \}$

Deg. of vertices : $k = 3 \cdot 6 = 18$ Smallest sym. diff. : d = 26

$$\gamma_f^{\text{ID}}(GQ(3,5)) = \frac{64}{19} \approx 3,36 \text{ and } \gamma^{\text{ID}}(GQ(3,5)) = 9$$

Q : Identifying code of GQ(7,9)? Generalization to $GQ(2^{\ell}-1,2^{\ell}+1)$?

