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The Thue-Morse word t = tgtyty - - - is the infinite word
limp—s 400 ¢"(0) where

p: 0~ 01, 1+— 10,

t =01101001100101101001011001101001 - - -

n 01 2 3 4 5 6 7 8
repp(n) |0 1 10 11 100 101 110 111 1000
tn 01 1 0 1 0 0 1 1

0 1 0
() ()
oo



The factor complexity of the Thue-Morse word

pe(n) = #{factors of length n of t}
is well-known : p(0) =1, p(1)=2, p(2) =4,

(n) = 4n—2.2M _4 if2.2Mm < pn<3.2m
PA=9 2nta.2m_2 if3.2m<p<4.2m
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S. Brlek, Enumeration of factors in the Thue-Morse word, DAM'89
A. de Luca, S. Varricchio, On the factors of the Thue-Morse word on three symbols, IPL'88



The factor complexity of the Thue-Morse word

pe(n) = #{factors of length n of t}
is well-known : p(0) =1, p(1) =2, p(2) =4,

(o] 4n—2:2m -4 if2.2m<n<3.om
PR = 2n4+4.2m—2 if3.2m<pn<4.2m

Two words u and v are abelian equivalent if |u|, = |v|, for any
letter 0.

The abelian complexity of t takes only two values

Pi(2n) =3 and Py(2n+1) = 2.



Let kK > 1 be an integer. Two words u and v in AT are k-abelian
equivalent, denoted by u = v, if

o pref,_;(u) = pref,_1(v),

o sufy_1(u) = sufx_1(v),

e for all w € AKX, the number of occurences of w in u and in v
coincide, |uly = |V|w.

A = {a, b}, u= abbabaabb, v = aabbabbab,
@ u = v because pref;(u) = a = pref,(v),...,
and |u|aa =1 =|V|aa, |Ulap =3 = |V]abs - - -
@ u #3 v because sufa(u) = bb # ab = sufa(v)
@ abcababb =3 ababcabb



Let kK > 1 be an integer. Two words u and v in AT are k-abelian
equivalent, denoted by u = v, if

o pref,_;(u) = pref,_1(v),

o sufy_1(u) = sufx_1(v),

e for all w € AKX, the number of occurences of w in u and in v
coincide, |uly = |V|w.

@ =, is an equivalence relation

QU= v=>u=k_1vVv,Vk>1
ou=vesu=,v,Vk>1



The first values of the 2-abelian complexity of the Thue-Morse
word
Pt(z)(n) = #{factors of length n of t}/=,

are

(PP (n))nz0 = (1,2,4,6,8,6,8,10,8,6,8,8, 10, 10,
10,8,8,6,8, 10, 10,8, 10, 12,12, 10,12, 12, 10, 8, 10, 10,
8,6,8,8,10,10,12,12, 10,8, 10, 12, 14, 12, 12, 12, 12, 10,
12,12,12,12, 14,12, 10,8, 10,12, 12, 10, 10, 8, 8,6, 8, 10,
10,8,10,12,12,10,12,12,12,12, 14,12, 10,8, 10, 12, 14,
12,14,16,14,12,14,14,14,12,12,12,12,10, 12, 12, . .



The first values of the 2-abelian complexity of the Thue-Morse
word
73(2)( ) = #{factors of length n of t}/=,

are

(PP (n))nz0 = (1,2,4,6,8,6,8,10,8,6,8,8, 10, 10,
10,8,8,6,8,10, 10,8, 10, 12,12, 10, 12,12, 10, 8, 10, 10,
8,6,8,8,10,10,12,12, 10,8, 10, 12, 14, 12, 12,12, 12, 10,
12,12,12,12, 14,12, 10,8, 10,12, 12, 10, 10, 8, 8,6, 8, 10,
10,8,10,12,12,10,12, 12, 12,12, 14, 12, 10,8, 10, 12, 14,
12,14,16,14,12,14, 14, 14,12,12,12,12, 10, 12,12, . .

@ Is the sequence ( (n)),,>0 bounded ?

o Is the sequence "regular” ?



A sequence (xp)n>0 (over Z) is k-regular of its Z-module
generated by its k-kernel

K = {(xken+r)n>0 | € > 0,r < k®}

is finitely generated.

J.-P. Allouche, J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992)

The 2-kernel of t is

K = {(t2entr)n>0 | € >0,r <2°}

={t,t}

where t = (1 = tn)nZO-



A sequence (xp)n>0 (over Z) is k-regular of its Z-module
generated by its k-kernel

K = {(xken+r)n>0 | € > 0,r < k®}

is finitely generated.

J.-P. Allouche, J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992)

A sequence (xp)n>0 is k-automatic iff its k-kernel is finite.



The abelian complexity of the paperfolding word

0010011000110110001001110011011 - - -

is a 2-regular sequence.

The abelian complexity of the period doubling word, obtained as
the fixed point of p: 0 — 01,1 — 00, is a 2-regular sequence.

Is the abelian complexity of a k-automatic sequence always
k-regular ?



The 2-abelian complexity of t is 2-regular.

Notation : xpe;, = (77,:(2)(2en + 1)) n>o0-
We conjecture the following relations (Mathematica experiments)

X5 = x3

X9 = x3

X12 = —Xg + X7 +X11

X3 = X7

X16 = Xg

X7 = X3

X138 = X10

x20 = —x10 +X11 +X19

X21 = X1

X2 = —Xx3 — 2% +x7 + 3x10 + X11 — X19

X3 = —x3 —3xg + 2x7 + 3x10 + X11 — X19
X24 = —x3 + X7 + X10

X5 = X7

X26 = —x3 + X7 + X10

X7 = —2x3 + x7 + 3x10 — X19

X28 = —2x3 + x7 + 3x10 — X14 + X15 — X139
X9 = X5

x30 = —x3+ 3% — X7 — X130 — X11 + X15 + X19
X31 = —3x3 + 6xg — 2x71 — 3x14 + 2X15 + X19



We also conjecture the following relations

X2 = Xg

X33 = X3

X34 = X10

X35 = X1l

X36 =  —X10 +X11 + X19

X37 = X109

x3g = —x3+X10 +X19

x39 =  —x3+x11 +X19

xg0 = —x3+x0+x11

X41 = X11

xg2 = —x3+x0+x11

X43 = —2x3 + 3x10

Xa4 = —2x3 — Xg + x7 + 3x10

X5 = —x3 — 3xg + 2x7 + 3x10 + X11 — X19

Xa6 = —2x3 — 3xg + 2x7 + 5x10 + X11 — 2X19
Xa7 = —2x3 + x7 + 3x10 — X19

X48 = —x3 + X7 + X10

X49 = X7

X50 = —x3 + X7 + X10

X51 = —x3 — 3xg + 2x7 + 3x10 + X11 — X19

X52 = —2x3 — 3xg + 2x7 + 5x19 + x11 — 2X19
Xs3 = —2x3+ X7+ 3x30 — X19

Xs4 =  —4x3+ 3% +x7 + 3x10 — X11 — 2X14 + X15
Xs5 =  —4x3 + 3% +x7 + 3x10 — X11 — 3x14 + 2x15
Xs6 = —x3+X10 +X15

Xs7 = X5

Xsg =  —x3+X10 +X15

Xs9 =  —2x3+3x6 — X7 — x11 + X15 + X19

X60 =  —4x3+6x6 +x10 — 2x11 — 3x14 + 2x15 + X19
X61 = —3x3 + 6xg — 2x11 — 3x14 + 2X15 + X19
X62 =  —X3+3%6 — X7 — X130 — X11 + X15 + X19
X63 = X15

If the conjecture is true, then any sequence x, for n > 32 is a
linear combination of x1,xz,. .., X19.



For all n >0, ’Pt(z)(2n +1)= Pt(2)(4n +1).

X32 = X

X33 = X3

X34 = X190

X35 = X1

X36 =  —X10 +X11 + X19

X37 = X1

x3g = —x3+X10 +X19

X39 = —x3+X11+X19

Xa0 = —x3+Xx10 +x11

X41 - X11

Xg2 = —x3+X10 +x11

X43 = —2x3 + 3x19

X4 = —2x3 — X6 + X7 + 3x10

X45 - Xx23

X46 = —2x3 — 3xg + 2x7 + 5x10 + X171 — 2X19
Xa7 = —2x3 + x7 + 3x10 — X19

Xag = —Xx3 + X7 + X10

Xz9 = X7

Xs0 =  —X3+X7 +X10

Xs1 = —x3 — 3Xg +2x7 + 3x10 + X11 — X19

X52 = —2x3 — 3xg + 2x7 + 5x10 + X311 — 2X19
X53 = X7

Xs4 =  —4x3+ 3% +x7 + 3x10 — X11 — 2X14 + X35
Xs5 = —4x3+ 3% +x7 + 3x10 — X11 — 3x14 + 2x35
Xs6 = —x3+X10 +X15

X57 = X5

Xsg =  —x3+X10 +X15

X59 = —2x3 + 3xg — X7 — X11 + X15 + X19

X60 = —4x3 + 6xg + x10 — 2x11 — 3X14 + 2X15 + X19
X61 - X31

Xg2 =  —X3+ 3% — X7 — X130 — X11 + X15 + X19

X63 = X15



Consider the function

|Pnloo
|Pn|01
|Pn|10
|Pn|11

f N> N n—

where p, is the prefix of length n of the Thue-Morse word.

o f(3-21+1)= (27127 2/ 2i=1)

n [ (27t —1,2121 21y if i is odd
e f(3:2) = { (2i=1,21 27 —1,21=1) if i is even



The function fo1 : n+— |pnlo1 is 2-regular.

t /011 010011001011
(an) 100100100010T100
(b) |11 1111111111111
(fa(n))|1 1 1 2 22333344555

The convolution of two k-regular sequences (a,)n>0 and (bp)n>0

(an)nz0* (bn)nzo = | Y _ a(i)b())

i+j=n n>0

is a k-regular sequence.



Can we find a nice and useful property of the function fy; ?

For example, is the sequence (fy1(n)) 2-synchronized ?
{(repy(n),repy(fo1(n))) : n € N} is accepted by a DFA 7

k-synchronized seq.

k-automatic sequences

= bounded & k-synchronized seq.




If (fo1(n)) is 2-synchronized,
o {(repy(n),repy(fo1(n))) : n € N} is accepted by a DFA.

o L= {(repy(£),repy(for(n+£) — fo1(n))) : £, n € N}
is accepted by a DFA.

o ( — #{(rep,y(¥),-) € L} forms a 2-regular sequence.

Let A, B C N. If the language

{(repy(n), repy(m)) : (n,m) € A x B}

is accepted by a DFA, then n+— #{(rep,(n),-) € L} forms a
k-regular sequence.



@ Assume (fp1(n)) is 2-synchronized.

@ Then (fo1(n) — 3) is 2-synchronized.

o For n with rep,(n) = (10)*, fo1(n) — 5 = -4

@ For such n, the subsequence has logarithmic growth and is

2-synchronized.

@ Any non-increasing k-synchronized sequence is either constant
or linear.

So (fp1(n)) is not 2-synchronized.



k-synchronized seq.

k-automatic sequences

= bounded & k-synchronized seq.




