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• We propose a model for the dynamics of a deformable bouncing object.
• We obtain the equation of motion and simulate numerically the bouncing dynamics.
• Bifurcation diagrams illustrated the influence of the deformations in the dynamics.
• The bouncing threshold curve is analyzed theoretically and numerically.
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a b s t r a c t

We consider the dynamics of a deformable object bouncing on an oscillating plate and we propose to
model its deformations. For this purpose, we use a spring linked to a damper. Elastic properties and vis-
cous effects are taken into account. From the bouncing spring equations of motion, we emphasize the
relevant parameters of the dynamics. We discuss the range of parameters in which elastic deformations
do not influence the bouncing dynamics of this object and compare this behavior with the bouncing ball
dynamics. By calculating the spring bouncing threshold, we evidence the effect of resonance and prove
that elastic properties can make the bounce easier. This effect is for example encountered in the case
of bouncing droplets. We also consider bifurcation diagrams in order to describe the consequences of a
dependence on the frequency. Finally, hysteresis in the dynamics is presented.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The bouncing ball problem is a straightforward experiment
which illustrates complex deterministic dynamical systems [1].
This experiment considers a solid ball bouncing onto a rigid plate
that vertically oscillates. The bouncing is possible according to two
mechanisms. The first one is the impulsion provided by the plate.
The driving parameter is the acceleration Γ which measures the
maximal acceleration of the plate in g units. The second one is the
restitution in kinetic energy at each impact. The restitution coef-
ficient ϵ is defined as the ratio between the ball velocity after and
before each impact. Despite the apparent simplicity of this model,
several behaviors can be observed. For example, depending onboth
parametersΓ and ϵ, the bouncing ball shows bifurcations in its pe-
riodic bouncing modes, i.e. a change of periodicity in the way the
ball bounces. The ball may even bounce chaotically. This system
has been largely studied through past decades as reported in the
articles of Luck et al. [2], Juo et al. [3] or more recently in the arti-
cle of Gilet et al. [4]. Indeed, bifurcations in the bounce have been
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detailed and the stability of the dynamics has also been studied.
Furthermore, periodicity and chaotic behaviors have been inves-
tigated. One also reports numerous applications of the bouncing
ball model in various fields such as granular media [5], nanotech-
nology [6], neuro-sciences [7], gambling [8] or in the bouncing
droplets dynamics [9].

Numerous variations have also been investigated such as the
quantum version of the bouncing ball [10] or the bouncing ball on
an elastic membrane [11]. This last article describes the effects of
the deformations of the oscillating plate. The system has an ana-
logue in fluid mechanics where a droplet can bounce onto an os-
cillating soap film [12,13]. Additional degrees of freedom have also
been included in the dynamics. One can report the experiments on
bouncing dimers [14] and bouncing trimers [15]. In those papers,
two or three metallic beads are linked together and the formed
rigid object possesses new degrees of freedom compared with the
bouncing ball. As a consequence, horizontal motions and rotations
of the compound object are observed.

As far as we know, a model considering the deformations of
a bouncing object and their effects in the motion is still lacking.
Such effects have already been observed in bouncing droplets as re-
ported in the articles [12,16–18]. Indeed, drop deformations store
potential energy thanks to surface tension effects. Thus, we pro-
pose to investigate the role of deformations by using a spring and a
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damper and studying the bounce of the compound object on a rigid
and oscillating plate. In our model, the spring, at impact, stores po-
tential energy that must be taken into account in the dynamics.
Simultaneously, the damper dissipates this energy during the os-
cillations of the spring. Thus, those components aim to model the
elastic and viscous effects of a bouncing object. Unlike the bounc-
ing ball, this bouncing spring is not a point particle and its length
varies during its motion. Furthermore, since the spring is charac-
terized by its natural frequency, its dynamics may change with the
plate frequency. In particular, the bouncing spring may resonate.
This model gives us a handy way to understand the dynamics of
the bouncing droplets, as explained above.

The bouncing ball and bouncing springmodelswill be described
and compared in Section 2. In Section 3, we will determine the set
of parameters that confers the bouncing spring the properties of
a bouncing ball, i.e. the range of parameters in which the elastic
properties of the spring are negligible. Afterwards, the elastic prop-
erties will be considered and studied through the bouncing thresh-
old of the spring. Resonance effects will be highlighted. Some
bifurcation diagrams will be provided in order to illustrate the ef-
fects of deformations. Finally, hysteresis will be described and an-
alyzed before summarizing the work.

2. Models

2.1. Bouncing ball

The bouncing ball dynamics is the starting point of our work.
The bouncing ball model is illustrated on Fig. 1(left) and consid-
ers a mass which bounces on a rigid plate oscillating sinusoidally
with an angular frequencyω and an amplitude A. The plate vertical
position zp is described by

zp(t) = A cos(ωt). (1)

The ball is only submitted to gravity g and to its successive inter-
actions with the plate. Thus, in the laboratory frame, between two
successive impacts, the acceleration of the ball is given by

d2(zb − zp)
dt2

= −g + Aω2 cos(ωt), (2)

where zb(t) is the height of the ball. Defining the dimensionless
time φ = ωt , the dimensionless height of the ball αb = zb/A and
the reduced acceleration of the plate Γ = Aω2/g , one obtains

d2(αb − αp)

dφ2
= −

1
Γ

+ cos(φ). (3)

One needs another equation to complete the description of the
bounces of the ball. Impacts are described as follows: the speed of
the ball after impact (+) is linked to the speed before impact (−) by

d(αb − αp)

dφ


+

= ϵ
d(αb − αp)

dφ


−

, (4)

where ϵ is the coefficient of restitution. Please, note that the impact
is seen as instantaneous. From Eqs. (3) and (4), one observes that
the dynamics is driven by only two parameters: Γ and ϵ. A more
complete description of the bouncing ball dynamics is provided by
Gilet et al. [4] for completely inelastic impacts.

Both parameters Γ and ϵ characterize themechanisms that en-
able the ball to bounce. The parameter Γ is linked to the inertial
effects in the system. When Γ > 1 the ball takes-off only because
of the motion of the plate. The parameter ϵ characterizes the im-
pact dissipation. A non-zero value of this parameter allows the ball
to leave the plate after an impact.
Fig. 1. Schematic representation of bothmodels: bouncing ball (left) and bouncing
spring (right). On the left, the bouncing ball model considers a point particle bounc-
ing on a solid plate. This plate oscillates with an amplitude A at angular frequency
ω. The impact elasticity is tuned through a parameter ϵ. On the right, the bounc-
ing spring model is represented. It consists of two identical massesm linked with a
spring of stiffness k and a damper of viscosity β . The whole system bounces onto a
solid surface oscillating sinusoidally with an amplitude A and an angular frequency
ω. The contact between the bottommass of the bouncing spring and the oscillating
plate is tuned through the coefficient of restitution ϵcoll .

2.2. Bouncing spring

We consider that the bouncing object is vertically deformable.
In order to understand this effect, we propose to model the ob-
ject by two identical masses m linked by a spring of stiffness k
and length at rest L. The vertical positions are respectively z1 for
the upper mass and z2 for the lower mass. Viscous effects into the
bouncing spring are modeled by a dash-pot and tuned through the
dissipation parameter β . A schematic representation of the bounc-
ing spring is provided on Fig. 1(right). Just like the bouncing ball,
the compound object bounces onto a rigid surface which oscillates
according to Eq. (1). One can figure out that this system is charac-
terized by a natural frequency and thus, a deep dependence of the
oscillation frequency, and resonance are expected. The motion of
both masses is described by the following set of Newton’s equa-
tions in the laboratory frame

m
d2z1
dt2

+ β


dz1
dt

−
dz2
dt


+ k(z1 − z2 − L) + mg = 0,

m
d2z2
dt2

− β


dz1
dt

−
dz2
dt


− k(z1 − z2 − L) + mg = N2(t)

(5)

where N2(t) is the normal reaction of the surface. The shape of the
normal reaction is unknown since it depends on the springmotion,
but it can be evaluated through themolecular dynamics algorithm.
This technique, described here-below, needs to use a restitution
coefficient ϵcoll in order to determine the amount of energy lost
by the lower mass during impact. One has to understand that this
coefficient is strictly identical to the one introduced during the
study of the bouncing ball. Note that in the spring case, the con-
tact with the plate is finite in time and not instantaneous like a
bouncing ball. Defining the natural angular frequency of the spring
as ω0 =

√
k/m and the dissipation coefficient as ξ = β/2mω0,

those equations can be rewritten as

d2z1
dt2

+ 2ξω0


dz1
dt

−
dz2
dt


+ ω2

0(z1 − z2 − L) + g = 0,

d2z2
dt2

− 2ξω0


dz1
dt

−
dz2
dt


− ω2

0(z1 − z2 − L) + g

= N2(t)/m.

(6)

If one introduces the dimensionless length α = z/A, the dimen-
sionless time φ = ωt , the dimensionless frequency Ω = ω/ω0
and the dimensionless acceleration Γ = Aω2/g , one can write

αp(φ) = cosφ (7)
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and the set of equations (6) becomes

d2α1

dφ2
+

2ξ
Ω


dα1

dφ
−

dα2

dφ


+

1
Ω2 (α1 − α2 − l) +

1
Γ

= 0,

d2α2

dφ2
−

2ξ
Ω


dα1

dφ
−

dα2

dφ


−

1
Ω2 (α1 − α2 − l) +

1
Γ

= n(φ)

(8)

where n(φ) is the dimensionless normal reaction. The dynamics is
fully described by three parameters: Γ controls the conditions of
oscillation and thus the inertial effects, ξ tunes the dissipation, and
Ω describes the elastic effects. This last parameter has no equiva-
lent in the bouncing ball experiment.

As previously mentioned, the shape of the normal reaction
N2(t) is calculated thanks to a molecular dynamics algorithm. In
this method, the contact between the bottom of the spring and the
oscillating plate is modeled by a contact spring of stiffness kp and
a contact damper of viscosity βp. The contact spring is used for the
repulsion at impact and the contact damper for the energy dissipa-
tion. Therefore, the equation for impacts is

me
d2δ
dt2

+ βp
dδ
dt

+ kpδ = 0, (9)

where δ is the interpenetration between the plate and the bottom
of the bouncing spring and me is the effective mass of the system,
defined as 1/me = 1/mp + 1/m2 with mp being the mass of the
plate. The latter mass could be seen as infinite since the motion of
the spring does not affect the plate oscillation. The stiffness of the
contact spring at impacts is chosen through the formula
1
2
m2v

2
c =

1
2
kpδ2

c , (10)

which illustrates the conversion of the bottom ball kinetic energy
into contact spring potential energy during impacts. In this for-
mula, vc = Aω is the characteristic speed of the system and δc is
arbitrary taken as 10−4L. From Eq. (9), one obtains the contact time
between the plate and the bouncing spring [19], being

1tcoll = π


me

kp


1 −

β2
p

4mekp

−
1
2
. (11)

The energy dissipation at impact can be expressed through a coef-
ficient ϵcoll (cf. Fig. 1(right)). This coefficient is given by [19]

ϵcoll = exp


−
βp

2me
1tcoll


. (12)

To avoid numerical artifacts, due for example to extreme interpen-
etration, the time step 1tint required for the numerical integration
must be linked to the collision time. A common rule to select the
time step is
1tcoll/100 ≤ 1tint ≤ 1tcoll/20. (13)
This choice is a compromise between the amount of information
needed and the efficiency of the algorithm [20,21]. For every nu-
merical result shown in this paper, the time step is fixed to1tint =

1tcoll/20. The value of ϵcoll is set as closest as possible to zero in
order to dissipate all kinetic energy contained in the bottom of the
spring. Therefore, only the elastic properties of the spring are used
for bouncing. Furthermore, setting ϵcoll ≃ 0 makes the bottom
mass of the bouncing spring behaves likes a completely inelastic
bouncing ballwhose dynamics is exactly described in literature [4].

3. Results

3.1. Bouncing modes

Just like the bouncing ball, the bouncing spring bounces in
different ways depending on the value of the parameters Γ (the
Fig. 2. Typical bifurcation diagram for the bouncing spring, the dimensionless flight
time φ is shown as a function of Γ . The parameters are fixed to Ω = 0.5 and
ξ = 0.26. Under the bifurcation diagram are plotted four spatio-temporal diagrams
which represent the spring motion (in gray) above the plate (in black). The vertical
axis is normalized by Γ in order to obtain identical oscillations of the plate. For
Γ = 1.5 (a), the spring follows the (1, 1) mode: the spring bounces once per oscil-
lation of the plate. For Γ = 2.3 (b), we observe the (2, 2) mode: the spring makes
two distinct bounces during two oscillations of the plate. For Γ = 3.6, the spring
follows the (1, 2) mode: we observe one bounce per two oscillations of the plate.
Finally, for Γ = 5 (d), the motion is chaotic-like.

dimensionless acceleration),Ω (the reduced frequency) and ξ (the
dissipation coefficient). This could be observed on Fig. 2. This figure
presents a bifurcation diagram for Ω = 0.5 and ξ = 0.26. Such a
diagram shows the dimensionless time of flight φ of the bouncing
spring as a function ofΓ . This allows us to identify bouncingmodes
and chaos. Different bouncing modes are observed. Some typical
trajectories of the spring are represented and illustrated below the
bifurcation diagram. On Fig. 2(a) (Γ = 1.5), one can observe the
(1, 1) mode. In this mode, the spring bounces once per oscillation
of the plate. On Fig. 2(b) (Γ = 2.3), the (2, 2) mode is illustrated.
Thismode is the result of a bifurcation and consists in two different
bounces during two oscillations, i.e. a long parabolic flight is
followed by a short one. Fig. 2(c) (Γ = 3.6) shows the (1, 2) mode,
the spring bounces once every two oscillations. Finally, Fig. 2(d)
(Γ = 5.0) illustrates a chaotic behavior. The adopted bouncing
mode may also be changed when Ω and ξ are varied. Those
bouncing modes have been encountered for elastic objects, like
droplets bouncing onto liquid surfaces [18,22], rigid objects like
bouncing ball [4] andbouncingdroplets on elasticmembranes [13].

3.2. Bouncing ball behavior

There is a range of parameters values in which the bouncing
spring behaves like a ‘‘rigid’’ object, like a ball. Indeed, the bouncing
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spring is seen as ‘‘rigid’’ if it is able to completely damp its oscilla-
tions between two successive impacts on the surface. In this case,
no potential energy is stored during its flights and its elastic prop-
erties have no effect in its subsequent dynamics. In order to obtain
a criterion tomeasure the proximity to the bouncing ball behavior,
we have to compare the characteristic time of damping τdamp and
the characteristic time between impacts τimp. The first one, τdamp, is
given through the set of Eqs. (6). Let us consider an in-flight spring,
the equation governing its elongation is

d21z
dt2

+ 4ξω0
d1z
dt

+ 2ω2
0(1z − L) = 0, (14)

where 1z = z1–z2. The integration of this equation provides the
following solution

1z(t) = exp (−2ξω0t)

A exp

√
2ω0


2ξ 2 − 1t


+ B exp


−

√
2ω0


2ξ 2 − 1t


+ L, (15)

where A and B are two constants which depend on the initial con-
ditions. From this solution, one obtains the characteristic damping
time τdamp ≃ 1/ω0ξ . The characteristic time between impacts is
given by τimp ≃ 1/ω, since one supposes an impact per oscillation
of the plate. We introduce the dimensionless number Ξ named
rigidity of the spring, defined by the ratio

Ξ =
τimp

τdamp
=

ξ

Ω
. (16)

When τimp ≪ τdamp, one obtains Ξ ≪ 1, the spring does not have
the time to dissipate the potential energy it contains and this stor-
age influences the next rebound. This case will be discussed in the
following section. In the limit Ξ ≫ 1, τimp ≫ τdamp, the spring re-
turns to equilibrium without storing any potential energy into de-
formation, the spring length is always equals to L when the spring
touches the plate. In this case, the bouncing spring acts like a non-
deformable rigid ball. Indeed, the set of Eqs. (8) can be rewritten as
follows. Between two impacts, one has

d2αc

dφ2
+

1
Γ

= 0

d21α

dφ2
+ 4Ξ

d1α

dφ
+ 2

Ξ 2

ξ 2 (1α − l) = 0,
(17)

where the first equation describes the motion of the spring cen-
ter through αc = (α1 + α2)/2 and the second one describes the
elongation of the spring 1α = α1 − α2. In the limit Ξ ≫ 1, the
inertial term d21α/dφ2 can be neglected. Thus, one obtains after
integration

d2αc

dφ2
+

1
Γ

= 0

1α(φ) ≃ l.
(18)

Therefore, the spring behaves like a ball of reduced diameter l sub-
mitted to gravity between two impacts. This behavior is strictly
equivalent to the bouncing ball dynamics. In the case of the rigid
bouncing spring, only two parameters remain: the reduced accel-
eration Γ and the viscosity ξ . Since the effects of elasticity are lost,
the parameter Ω vanishes. Furthermore, one can understand that
the viscosity ξ may act like a kind of restitution coefficient ϵ in
for high Ξ number, i.e. ϵ = f (ξ) when Ξ ≫ 1. The equivalence
between the dynamics of the spring for high Ξ number and the
dynamics of the completely inelastic ball is presented in Fig. 3 for
Ξ = 650 and ϵ = 0. This figure compares the bifurcation diagrams
of both objects. Both diagrams are identical. Themodes adopted by
the rigid bouncing spring during its motion are the same to those
used by the bouncing ball. Those diagrams are fully described in
Gilet et al. [4].
Fig. 3. Comparison between the rigid bouncing spring (Ξ = 650, ξ = 10) and
the completely inelastic bouncing ball (ϵ = 0). Bouncing modes adopted by both
objects are similar and the diagrams cannot be distinguished from each other.

The dynamics of the partially elastic ball can also be reproduced
by changing the spring viscosity for high Ξ number. Indeed, if the
bouncing spring remains rigid, its elastic properties are useless.
But, if the viscosity is decreased, less energy is lost during the
squeezing of the spring at impacts. This could be seen as a partially
elastic collision. Thus, in this case, the bouncing spring behaves like
a partially elastic bouncing ball. An example of the equivalence
between the dynamics of the rigid low-viscosity spring and the
partially elastic ball is given in Fig. 4.

According to the observations above, the elastic properties of a
bouncing object does not become apparent for highΞ number. The
dynamics of this bouncing object is exactly described by the bounc-
ing ball model. Indeed, in the case of the rigid bouncing spring, two
parameters remain to describe the dynamics: the reduced acceler-
ation Γ and the viscosity ξ . This last parameter plays the role of a
kind of restitution coefficient ϵ. Note also that the dependence of
the bouncing spring dynamics toward Ω vanishes in the case of a
rigid bouncing spring.

3.3. Deformations

3.3.1. Bouncing threshold
For Ξ < 1, the spring is significantly constrained by the plate

motion. It keeps some potential energy in its deformations be-
tween two successive impacts and this elastic storage deeply in-
fluences the bouncing dynamics. Depending on the value of the
dimensionless frequency Ω , the energy storage is different, since
resonance can be involved. Thus, the effects of three parameters
Γ , Ω and ξ have to be taken into account. As a consequence, 3D
diagrams have to be considered in order to describe the bouncing
spring dynamics. The axis of those diagrams are the Γ and φ axis
already observed for the bouncing ball, but also the Ω axis which
describes the elastic properties of the bouncing spring.

A handy way to identify the effects of frequency on the motion
is to draw the bouncing threshold of the spring, i.e. starting with a
spring at rest on the plate, which value of Γ is required to observe
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Fig. 4. Comparison between the rigid low-viscosity bouncing spring (Ξ =

650, ξ = 0.5) and the partially elastic bouncing ball (ϵ = 0.15). We observe that
with a lower viscosity, the spring behaves like a partially elastic ball. Only small
differences are seen between both diagrams. In particular, forbidden zones exist in
both diagrams.

a take-off? This approach is the one used by Eichwald [11] or by
Gilet [4] in the case of deformable plates. Furthermore, in so doing,
one can study the coupled effects of both the frequency and iner-
tia in a two dimensional diagram. In order to build those diagrams,
let us start with a spring at rest on the oscillating plate. The lower
mass will follow the plate motion

α2(φ) = cosφ. (19)

And the upper mass is assumed to follow the equation of motion

α1(φ) = α′ cos(φ + θ) (20)

whichmeans that themassm1 oscillates at the plate frequency but
its motion is eventually phase-shifted with a phase θ . The ampli-
tude of this motion is α′. The minimal value of Γ required to take-
off, Γth, is provided by the set of Eqs. (8). Substituting α1 and α2 by
the expression above, one obtains, with the first equation of (8)

α′
=


1 + (2ξΩ)2

(1 − Ω2)2 + (2ξΩ)2
, (21)

θ = −acos


[(1 − Ω2) + (2ξΩ)2]2

[1 + (2ξΩ)2][(1 − Ω2)2 + (2ξΩ)2]

 . (22)

Those expressions give the upper mass amplitude of motion and
phase-shift in terms of Ω and ξ , respectively the dimensionless
frequency and dissipation coefficient. The second equation of the
set (8) gives the threshold. Indeed, one remarks that the moment
when the spring takes-off is characterized by n2(φ0) = 0 where
φ0 is the take-off instant. But, at the same time, both masses still
follow Eqs. (19) and (20). Thus, once those assumptions injecting
in the second equation of (8), one obtains

cosφ0(α
′ cos θ + 1) − α′ sinφ0 sin θ =

2
Γ

. (23)
Fig. 5. Bouncing threshold Γth as a function of Ω for several viscosities (ξ = 0.01,
0.05, 0.2, 1). One can see that a minimum appears near Ω = 1 when the viscosity
is decreased. At this frequency, the spring resonates, absorbs a large amount of po-
tential energy, and is able to maintain its bounce for low values of Γ . For ξ = 1, the
threshold remains constant and equals to Γth = 1. This is the same behavior than
the bouncing ball. Indeed, for this curve, the spring is characterized by ξ > 1 and
thus behaves like a ball. When the frequency is increased, the threshold is slightly
higher than one, the spring leaves the rigid limit. Thus, the deformations start to
influence the bounce.

A minimal value of Γ leads to a maximal value of the left term of
this relation. Canceling the derivative of this term with respect to
φ gives the take-off instant at Γth

φ0 = arctan


2ξΩ3

2 + (8ξ 2 − 3)Ω2 + Ω4


. (24)

Then, the bouncing threshold Γth(Ω) is given by

Γth(Ω) = 2


(1 − Ω2)2 + 4ξ 2Ω2

(2 − Ω2)2 + 16ξ 2Ω2
. (25)

This equation is plotted on Fig. 5 for ξ = 0.01, ξ = 0.05, ξ =

0.2 and ξ = 1. One sees that a minimum appears and moves to
Ω = 1 when the spring dissipation coefficient ξ is decreased. The
spring resonates, stores a large amount of potential energy that it
uses to take-off. As a consequence, the spring is able to maintain
the bounce for low values of the dimensionless acceleration Γ . For
high dissipation coefficients (ξ > 1), the minimum vanishes be-
cause the spring cannot resonate. In this case, the bouncing thresh-
old remains constant with Γth = 1. One can understand this by
calculating the spring rigidity Ξ : for low values of Ω and high vis-
cosities ξ , the spring is rigid and acts like a bouncing ball for which
Γth = 1. Nevertheless, the bouncing threshold increases slightly
because, when the frequency is increased, the spring reaches lower
values of Ξ and no longer behaves like a bouncing ball.

In summary, the excitation frequency deeply influences the
bouncing spring dynamics when Ξ < 1. In particular, resonance
makes the bouncing possible even for Γ < 1. This behavior stro-
ngly contrasts with the bouncing ball dynamics where Γth remains
equal to one for every frequencies. Furthermore, the less the dis-
sipation, the more important the effect of frequency. Indeed, for
low values of ξ , the spring keep a large amount of potential energy
between two impacts.

3.3.2. Bifurcation diagrams
In order to characterize the bouncing when the deformations

are relevant, let us consider the (Γ , φ) and (Ω, φ) bifurcation
diagrams. Those ones represent sections of the 3D bifurcation
diagrams for which Γ or Ω are kept constant. For this purpose, we
propose to analyze three different situations (below, at and above
resonance) for a bouncing spring that is allowed to resonate, one
arbitrary chooses ξ = 0.05.

Knowing that Γ tunes the inertia in the system, the (Γ , φ) di-
agrams are used to characterize inertial effects in the bouncing
dynamics without considering the effects of frequency. However,
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Fig. 6. Bouncing threshold (curve in plain black) and representations of the sections
in the 3D bifurcation diagram for a bouncing spring with ξ = 0.05. In dashed
red (horizontal lines), the (Γ , φ) diagrams and, in dotted green (vertical lines),
the (Ω, φ) diagrams. The spring dynamics in those sections are illustrated in the
diagrams of Figs. 7 and 8.

numerous (Γ , φ) diagrams acquired for several values of Ω can
give a valuable information about the influence of deformations
in the dynamics. The bouncing threshold, in this case, is visible on
Fig. 6. We consider dimensionless frequencies below and beyond
resonance (resp. Ω = 0.67 and Ω = 1.24) but also at resonance
(Ω = 1.00). We observe that the spring behaves differently de-
pending on the value of Ω . At resonance, the dynamics shows nu-
merous bifurcations that lead to chaotic behaviors for Γ ≃ 2 and
Γ ≃ 4. The complexity of the diagram at resonance, in compar-
ison with the others, may come from the transfer of energy form
the plate to the spring at this frequency. Beyond resonance (Ω =

1.24), no chaotic behavior can be seen. Below resonance (Ω =

0.67), the bouncing spring follows a (1, 1) mode in a large interval
ofΓ , chaotic behavior appears beyondΓ ≃ 3. Finally, one observes
that the times of flight decrease when the frequency increases.

Let us now consider the (Ω, φ) diagrams. Because Ω is linked
to the spring elastic properties, those diagrams are used to visual-
ize their effects on the dynamics. Furthermore, they are specific to
the bouncing spring since the bouncing ball is not subject to any
frequency effect. Thus, the differences with the bouncing ball dy-
namics is clearly shown with those diagrams. Some examples of
those diagrams are provided on Fig. 8 for Γ = 1, 2 and 3 and
ξ = 0.05. The corresponding threshold is also visible of Fig. 6.
Bifurcations could be observed while Ω decreases and lead to a
chaotic motion for low values of the reduced frequency. This be-
havior can be explained as follows: the energy of the oscillating
plate is proportional to A2Ω2

∝ Γ 2/Ω2. Thus, if Γ is maintained
constant, decreasing Ω increases the energy of the plate, this en-
ergy being stored into the spring at impacts. One can understand
that diminishing the value of Ω has the same effect on the bifurca-
tion diagrams than increasing the value of Γ : more energy can be
transferred to the spring that performs longer flights. This transfer
also explains the shrinking of the diagrams, observed in the (Γ , φ)
diagrams above,whenΩ increases. However, there is no direct link
between the spring resonance and the length of its flights.

In summary, in order to characterize the effects of frequency,
the bouncing threshold of the spring has been calculated. The ob-
tained formula shows a minimum due to the resonance of the
spring. For this frequency, the energy transferred from the plate
to the spring is maximal and is stored in its deformations. This
behavior explains the minimum. One observes that the bouncing
threshold is significantly modified by the dissipation within the
spring. When the dissipation is increased, the effects of frequency
disappears. In particular, when the coefficient ξ is high, the spring
is characterized by Ξ > 1 and behaves like a bouncing ball for
which Γth = 1. Because the information about the time of flight
are lost in the bouncing threshold diagram, (Γ , φ) and (Ω, φ) dia-
grams have been built. An observation can be made about the in-
fluence of the frequency of the flight time: the dimensionless flight
Fig. 7. Comparison between three (Γ , φ) diagrams made for (a) Ω = 0.67 (below
resonance), (b) Ω = 1.00 (at resonance) and (c) Ω = 1.24 (beyond resonance)
respectively. The dissipation coefficient is fixed to ξ = 0.05 for every plots. One
observes some forbidden regions already seen in the bouncing ball dynamics in
Figs. 3 and 4. In particular, the diagrams press down when Ω increases.

time decreases when the frequency increases. This effect finds its
source in the energy transferred to the plate. Indeed, the higher
the frequency, the less the energy transferred. Nevertheless, the
dependence of Ω is difficult to characterize. The resonance of the
spring seems to have no effect on the flight time, on the possible
bifurcations in the diagrams or even on the appearance of chaotic
behavior.

3.4. Hysteresis

For Ξ < 1, the bouncing spring is subject to hysteresis. Indeed,
depending on the way Γ (or Ω) varies during an experiment, the
result can be different. This fact is illustrated in Fig. 9 for a spring
with ξ = 0.05. The curve in gray corresponds to an acquisition for
increased values of Γ . This is the case one studied in Section 3.3.1.
Indeed, the spring starts its motion at rest on the immobile plate.
The plate starts to oscillate, and the value ofΓ for which the spring
bounces is plotted on the graph. For the second curve, the spring
begins its motion on a plate oscillating with a large amplitude.
The value of the dimensionless acceleration is decreased and the
value of Γ for which the spring sticks permanently to the plate
is plotted. One observes that the curves do not collapse on each
other. Indeed, for the second curve, several minima appear. Those
are not explained by Eq. (25). As a consequence, in the case of de-
creased values ofΓ , the bounce canbe sustained for lower values of
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Fig. 8. Comparison between three (Ω, φ) diagrams made for (a) Γ = 1, (b) Γ = 2
and (c) Γ = 3 respectively with ξ = 0.05. One observes the effect of the reduced
frequency in the dynamics of the spring. In particular, the spring can bounce below
Γ = 1 due to some resonance of the spring. Contrarily to the (Γ , φ) diagrams, the
flight time increases for decreasing Ω and the bifurcation cascades appear for low
values of Ω .

the dimensionless acceleration. This behavior has already been ob-
served in other deformable systems such as the bouncing droplet
dynamics [17]. Nevertheless, this behavior is still misunderstood.
Please note that every diagrams presented before are acquired for
increased value of Γ or Ω .

4. Conclusion

We have proposed the bouncing spring model: two masses
linked together with a spring and a damper, the compound ob-
ject bouncing onto a rigid and oscillating plate. The spring aims to
model the possible deformations of a bouncing object while the
damper dissipates the energy inherent to such deformations. We
show the dependence in three parameters, each of them control-
ling the three essential mechanisms: the inertia through the pa-
rameterΓ , the dissipation through ξ and the elastic effects through
Ω . We also point out that for a given range of parameters, the
bouncing spring behaves like a bouncing ball. We define a param-
eter Ξ = ξ/Ω to measure the proximity with the bouncing ball
dynamics. If Ξ > 1, the bouncing spring behaves like a bouncing
ball and if Ξ < 1, we have to consider the elastic properties of
the spring. In order to characterize the effects of deformations, we
choose to study the spring bouncing threshold and obtain its an-
alytic expression. In particular, we prove that a resonance makes
Fig. 9. Numerical acquisition of the bouncing threshold. In gray, Γ is increased
during the experiment. In black, Γ is decreased. One observes that several minima
appear when Γ is decreased.

the bounce easier. We also show that the effects of resonance van-
ish when the dissipation is increased and, when ξ > 1, completely
disappear. Nevertheless, a deep study on the motion through bi-
furcation diagrams shows that the resonance has no visible effects
on the spring flight time nor in the appearance of bifurcations or
chaos. Finally, we point out the existence of hysteresis in the dy-
namics reported in other deformable bouncing systems.
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