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Abstract

Gammaherpesvirinae, such as the human Epstein-Barr virus (EBV) and the Kaposi’s sarcoma associated herpesvirus (KSHV)
are highly prevalent pathogens that have been associated with several neoplastic diseases. As EBV and KSHV are host-range
specific and replicate poorly in vitro, animal counterparts such as Murid herpesvirus-4 (MuHV-4) have been widely used as
models. In this study, we used MuHV-4 in order to improve the knowledge about proteins that compose
gammaherpesviruses virions. To this end, MuHV-4 extracellular virions were isolated and structural proteins were identified
using liquid chromatography tandem mass spectrometry-based proteomic approaches. These analyses allowed the
identification of 31 structural proteins encoded by the MuHV-4 genome which were classified as capsid (8), envelope (9),
tegument (13) and unclassified (1) structural proteins. In addition, we estimated the relative abundance of the identified
proteins in MuHV-4 virions by using exponentially modified protein abundance index analyses. In parallel, several host
proteins were found in purified MuHV-4 virions including Annexin A2. Although Annexin A2 has previously been detected in
different virions from various families, its role in the virion remains controversial. Interestingly, despite its relatively high
abundance in virions, Annexin A2 was not essential for the growth of MuHV-4 in vitro. Altogether, these results extend
previous work aimed at determining the composition of gammaherpesvirus virions and provide novel insights for
understanding MuHV-4 biology.
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Introduction

The Herpesviridae is a large family of DNA viruses, including

eight identified human herpesviruses. The gammaherpevirinae is one

of the three subfamilies of the Herpesviridae. Two gammaherpes-

viruses are known to infect humans, Epstein-Barr virus (EBV) and

the Kaposi’s sarcoma-associated herpesvirus (KSHV), which are

associated with various types of cancer such as Burkitt’s

lymphoma, nasopharyngeal carcinoma, Kaposi’s sarcoma or

Castleman’s disease [1,2]. Both EBV and KSHV have a very

narrow host range in vivo and display limited lytic growth in vitro.

These characteristics have hampered studies on these viruses and

promoted the development of alternative models.

Murid Herpesvirus 4 (MuHV-4) is a relative of EBV and KSHV

which has been isolated in wild rodents [3]. MuHV-4 offered

therefore the possibility of developing a mouse model of

gammaherpesvirus pathogenesis [3–5]. Moreover, in contrast to

its human counterparts, MuHV-4 readily infects many types of

cells in vitro and replicates to high levels. This virus has therefore

been widely used as a model to study the gammaherpesviruses

biology in host cells [6].

The MuHV-4 genome is estimated to encode at least 80 genes

and is largely colinear with those of KSHV and EBV [7]. MuHV-

4 virions display a morphological organisation which is typical of

herpesviruses [8]. Briefly, infectious virions contain a double-

stranded DNA genome which is incorporated in a large (diameter

.100 nm) icosahedral nucleocapsid. This capsid is assembled in

the nucleus from at least 8 different conserved proteins [9] and is

surrounded by a thick proteinaceous tegument compartment

which is acquired in both the nucleus and the cytoplasm. The

tegument is probably the least understood part of herpesviruses

although it plays important roles during entry, virion assembly and

egress [10–12]. Recent studies have attempted to decipher its

complex architecture [13]. The cytoplasmic capsids with tegument

are finally enclosed within a lipid bilayer envelope spiked with

glycoproteins to form mature infectious virus particles (diameter

,200 nm). MuHV-4 encodes at least 9 envelope glycoproteins

involved in virion entry and egress from the cell [14–21]. Among

these glycoproteins, gB, gH, gL, gM and gN are shared by all the

members of the Herpesviridae family [22].

In addition to virally encoded structural proteins, several

cellular host proteins have also been reported in herpesvirus

virions. While some of these proteins appear to be unique to a
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virus species, others are shared by several members of the

Herpesviridae family. Although some cellular proteins incorporated

in virions have been shown to be important for the biology of

viruses from other families [23], the function of these proteins is

still largely unknown in herpesviruses. A precise knowledge of

herpesvirus composition is therefore likely to allow better

understanding of various processes such as virus production,

virion entry or immune evasion.

The usage of mass spectrometry-based analyses (MS) has

allowed the deciphering of the composition of different herpesvirus

virions [24–36]. Such an approach has been applied more than

ten years ago to MuHV-4 virions [26]. However, this pioneering

work revealed only 14 structural viral proteins whereas herpesvirus

virions likely contain more than 30 different proteins [36].

Moreover, this study identified products of genes ORF20,

ORF24 and ORF29 as virion proteins although their homologues

were not found in most of the analyses of virions of related species.

For example, ORF29 encodes a component of the viral terminase

which is thought to dissociate from the capsid after genome

packaging and therefore to not be incorporated in mature

extracellular virions [31]. The composition of extracellular mature

MuHV-4 virions deserves therefore new analyses.

In this study, 31 structural MuHV-4 proteins were identified by

a recently described mass-spectrometry-based proteomic ap-

proach. In parallel, a small number of host proteins were also

detected although their significance remains unclear. Altogether,

these results extend our knowledge about gammaherpesvirus

virion composition and provide novel insights for understanding

MuHV-4 biology.

Materials and Methods

Cells and Virus
Baby Hamster Kidney cells (BHK-21 (ATCC CCL-10)) were

cultured in Dulbecco’s modified Eagle’s medium (Invitrogen)

containing 10% foetal calf serum (FCS), 2% Penicillin/Strepto-

mycin (Invitrogen), 2 mM glutamine and 1% non-essential amino

acids (Invitrogen). Mouse embryonic fibroblasts (MEF) from wild-

type (WT) and Annexin A2-null mice [37] were kindly provided

by Prof. Katherine A. Hajjar (Weill Cornell Medical College, New

York, NY, United States) and were cultured in the same culture

medium containing 1mM sodium pyruvate. Virions of the MHV-

68 strain of MuHV-4 reconstituted from the pHA3 BAC plasmid

[38] were used throughout this study. This viral strain therefore

expresses eGFP under control of the immediate early promoter of

human cytomegalovirus.

Production and Purification of MuHV-4 Virions
BHK-21 cells were infected with MHV-68 at a multiplicity of

infection (MOI) of 0.01 plaque-forming unit (PFU) per cell. To

reduce cellular contaminants, the supernatant was harvested after

72 hours post-infection (hpi) before complete cell lysis. Extracel-

lular virions were purified from the cell supernatant as described

previously [36]. Briefly, after removal of the cell debris by low-

speed centrifugation (1,000 g, 10 min at 4uC), virions present in

the infected cell supernatant (,1–56106 PFU/mL) were harvest-

ed by ultracentrifugation (100,000 g, 2 h at 4uC) through a 30%

weight/volume (w/v) sucrose cushion. Virions were then banded by

isopycnic gradient ultracentrifugation in a continuous 20 to 50%

(w/v) potassium tartrate gradient in PBS (100,000 g, 2 h at 4uC).

The band containing virions was collected (,3 mL), diluted ten

fold in PBS and pelleted by ultracentrifugation (100,000 g, 2 h at

4uC). The virion pellet was finally resuspended in PBS and virus

enriched preparations (,1–56108 PFU/mL) were stored at

280uC.

Protease Treatment
Virions were treated with proteinase K as described previously

[30]. Briefly, after ultracentrifugation through the sucrose cushion

described above, the viral pellet was resuspended in 1 ml of MNT

buffer (30 mM morpholineethanesulfonic acid [MES], 10 mM

NaCl, and 20 mM Tris-HCl [pH 7.4]) containing 10 mg/ml

proteinase K (Roche, Mannheim, Germany), incubated for

45 min at room temperature and subsequently treated with

2 mM phenylmethylsulfonyl fluoride (PMSF; Fluka) prior to

density gradient centrifugation on a 20 to 50% (w/v) potassium

tartrate gradient in PBS (100,000 g, 2 h at 4uC). The band

containing virions was collected (,3 mL), diluted ten fold in PBS

and pelleted by ultracentrifugation (100,000 g, 2 h at 4uC).

Proteinase K-treated virions were finally resuspended in PBS

and stored at 280uC.

Western Blotting
Purified virions were lysed and denatured by heating (95uC,

5 min) in Laemmli sample buffer (60 mM Tris-Cl pH 6.8, 2% (w/

v) sodium dodecyl sulfate, 12.5% (w/v) glycerol, 5% (v/v) b-

mercaptoethanol, 0.01% (w/v) bromophenol blue). Proteins were

resolved by electrophoresis on Mini-PROTEAN TGX (Tris-

Glycine eXtended) precast 4–15% resolving gels (Bio-Rad) in an

SDS-PAGE running buffer (25mM Tris-base, 192 mM glycine,

0.1% (w/v) SDS) and transferred to polyvinylidene difluoride

membranes (Immobilon-P transfer membrane, 0.45 mM pore size,

Millipore). The membranes were blocked with 3% (w/v) non-fat

milk in PBS/0.1% (w/v) Tween-20, and then incubated in the

same buffer with rabbit polyserum [5] or mouse monoclonal

antibodies (mAb) recognizing MuHV-4. We used the following

mAbs: 3F7, anti-gN IgG2a [39]; T1A1, anti-gp150 IgG2a [40]; 58-

16D2, anti-gp70 IgG2a [15]; MG-4D11, anti-gB IgG2a; MG-

2C10, anti-gB IgM [41]. Bound antibodies were detected with

horseradish peroxidase-conjugated goat anti-rabbit IgG pAb or

anti-mouse IgG pAb (Dako Corporation), followed by washing in

PBS/0.1% Tween-20, development with ECL substrate (GE-

Healthcare) and exposure to X-ray film.

Fractionation of MuHV-4 Virions
Lipid envelopes were removed from capsids-teguments by

incubation with a non-ionic detergent as described previously [42].

Briefly, virions enriched preparations were sonicated and lysed in

PBS containing 1% (v/v) NP-40 for 20 min on ice. Capsids

associated with tegument were then pelleted by centrifugation

(15,000 g, 30 min at 4uC). The supernatant was discarded and the

procedure was repeated two times on the capsid-tegument pellet.

After the last centrifugation, the capsid-tegument pellet was finally

resuspended in PBS and stored at 280uC until further use.

Negative Staining and Electron Microscopy
Copper grids (400 mesh; Agar Scientific) covered by a thin film

of pioloform were incubated for 10 min with 1 % Alcian blue 8G

solution (Gurr Microscopy Materials, BHD) to add positive

charges. After washing, virion-enriched or capsid-tegument

preparations were adsorbed to the grids for 10 min. Viral particles

were then stained by incubation on a 2 % uranyl acetate solution

for 10 s (Agar Scientific). Samples were observed using a

transmission electron microscope (FEI Tecnai Spirit).

MuHV-4 Structural Proteome
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Oligosaccharide Digestion
The deglycosylated extract was obtained by treating virion-

enriched preparations with an Enzymatic Protein Deglycosylation

kit (Sigma) following the instructions of the manufacturer. Viral

proteins were successively denatured for 5 min at 100uC in a

denaturation solution, and treated with Triton X-100, peptide : N-

glycosidase F, O-glycosidase, a(2–3,6,8,9)neuraminidase, b(1,4)-

galactosidase and b-N-acetylglucosaminidase for 3 h at 37 uC.

This extract was then submitted to the one dimensional gel

electrophoresis/Nanoscale liquid chromatography coupled to

tandem mass spectrometry approach (1D gel/nanoLC-MS/MS

approach).

1D gel/nanoLC-MS/MS Approach
Proteins from virion-enriched (treated or not with proteinase K,

deglycosylated or not) and from capsid-tegument preparations

were extracted in Laemmli sample buffer and heated for 5 min at

95uC. The samples were then separated by SDS-PAGE on 4–20%

acrylamide 7 cm gels (Invitrogen). Separated proteins in the gel

were excised in 30 serial slices along the lane. Gel slices were

submitted to in-gel digestion with sequencing grade modified

trypsin as described previously [33,36]. Briefly, gels were washed

successively with 50 mM ammonium bicarbonate (ABC) buffer

and ABC buffer/acetonitrile (ACN) 50% (v/v). Proteins were

reduced and alkylated using dithiothreitol and iodoacetamide

followed by washing with ABC and ABC/ACN. Resulting

peptides were analysed by nanoLC-MS/MS using a 40 min

ACN gradient as described [43].

MS/MS Analyses
Peptides were analysed using the ‘peptide scan’ option of the

HCT Ultra ion trap (Bruker), consisting of a full-scan MS and

MS/MS scan spectrum acquisitions in ultrascan mode (26 000 m/

z s21). Peptide fragment mass spectra were acquired in data-

dependent AutoMS(2) mode with a scan range of 100–2800 m/z,

three means and four precursor ions selected from the MS scan

300–1500 m/z. Precursors were actively excluded within a

0.5 min window, and all singly charged ions were excluded.

Peptide peaks were detected and deconvoluted automatically using

Mascot distiller 2.3.3 and submitted to database search using an

in-house mascot search engine (2.2 version). The default search

parameters used were the following: Enzyme = Trypsin; Maxi-

mum missed cleavages = 2; Fixed modifications = Carbamido-

methyl (C); Variable modifications = Oxidation (M); Peptide

tolerance 61.5 Dalton (Da); MS/MS tolerance 60.5 Da; Peptide

charge = 2+ and 3+; Instrument = ESI-TRAP. All data were

searched against the NCBI Rodents database in order to detect

host proteins or against a MuHV-4 database [44] to detect viral

proteins. Proteins were only considered if reaching a p-value for

identification lower than 0.05. Only peptides with a mascot score

higher than 30 were taken into account. Identifications based on

single peptide were validated manually considering that a

continuous series of at least 5 b or y ions had to be present and

that selected ions had to be among the top 15 ions of the spectrum.

For each approach, the exponentially modified protein abundance

index (emPAI) [45] was calculated to estimate protein relative

abundance for the complete virion extracts. The protein

abundance index (PAI) is defined as the number of observed

peptides divided by the number of observable peptides per protein.

The exponentially modified PAI (10PAI - 1) is proportional to

protein content in a protein mixture in LC-MS/MS experiments.

Proteogenomic Mapping
The complete nucleotide sequence of MuHV-4 (GenBank:

AF105037.1) was translated in silico in all 6 frames. The mass lists

obtained in the different complete virion analyses were searched

against these 6 frames with no mismatches allowed. Detected

peptides were then mapped onto the original MuHV-4 genome

sequence (GenBank: AF105037.1 and [7]). The results were

generated and visualized using R [46] and the seqinr package [47].

Growth Curves
Cell cultures were infected with MuHV-4 virions at a MOI of

0.01 (multi-step assay). After 1 h of adsorption, the cells were

washed then overlaid with Dulbecco’s modified Eagle’s medium

containing 5% FCS. Supernatants of infected cultures or infected

cells were harvested at successive intervals and the amount of

infectious virus determined by plaque assay on BHK-21 cells.

Results

Purification of Extracellular MuHV-4 Virions
The purification of extracellular mature virions is very

important for the characterization of viral structural proteomes.

Indeed, it has to be very pure to avoid detection of non-structural

proteins but in the same time to be highly concentrated. In the

present study, we used a strategy recently used for the

characterization of BoHV-4 virions [36]. Briefly, MuHV-4

extracellular virions were harvested and purified from the

supernatant of BHK-21 infected cells before complete lysis as

described in the Materials and Methods. Transmission electron

microscopic (TEM) analysis of negatively stained samples was used

to evaluate both the concentration and the purity of all the

preparations (Fig. 1). In all samples, typical herpesvirus virions

were observed. These appear as spherical to slightly pleomorphic,

relatively electron-lucent features of 120–200 nm in diameter.

These virions with an intact envelope displayed no specific internal

and surface features in negative staining. Because of the drying

during the negative staining, some of the virions collapsed such

that the envelope was penetrated by the stain (Fig. 1, panel ii). In

that case, the nucleocapsids were observable, surrounded by the

integument and the envelope. Only a few nucleocapsids without

envelope were found (1 to 5% in the different samples). Most

likely, these had no envelope or lost their envelope during virus

purification. We did not observe any contamination by cell debris,

suggesting that the virion samples were very pure. This therefore

indicates that our virion purification strategy could be considered

as successful, at least as evaluated by TEM.

Viral Protein Composition of MuHV-4 Virions
In order to analyse MuHV-4 virion composition, virion proteins

were separated by SDS-PAGE, digested in gel with trypsin and

analysed by mass spectrometry (nanoLC-MS/MS). This approach

allows association of the identified protein with the apparent

molecular mass assessed by SDS-PAGE. This approach was

performed on untreated virions or on intact virions treated with

proteinase K (proteinase K - 1D gel/nanoLC-MS/MS). We also

applied the same protocol on deglycosylated virion extracts.

This approach enabled us to identify 31 virally encoded proteins

in the MuHV-4 particle. These proteins are listed in Table 1

according to their position in the viral genome. This number is

consistent with the numbers previously reported for other

members of the Herpesviridae family. Moreover, it substantially

improved a previous analysis of MuHV-4 virions that identified 14

virally encoded structural proteins [26].

MuHV-4 Structural Proteome
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Despite our multistep purification protocol, detection of some

proteins could result from non-specific sticking to the virion rather

than true integration into the particle. To address this issue, we

treated virions with proteinase K, in the absence of detergent,

prior to density centrifugation as described previously [30,32,36].

We validated this treatment by western blotting (Fig. 2). As

herpesviruses are enveloped within a phospholipid bilayer, only

proteins that are exposed at the viral surface are accessible to

protease digestion. Immunoblotting with MuHV-4 specific mono-

clonal antibodies confirmed that some epitopes disappeared after

proteinase K treatment while some others were not affected

(Fig. 2). Thus, the epitope recognized by mAb T1A1 (recognizing

gp150) was detected only in untreated virions while it was

undetectable in proteinase-K treated virions (Fig. 2). This

therefore suggests that our proteinase K treatment was efficacious.

In contrast, the viral surface epitope recognized by mAb 3F7

raised against gN, which is a small (61 aa among which only 29 aa

are exposed at the cell surface) type I membrane protein lying

probably very close to the envelope, did not appear to be affected

by the treatment (Fig. 2).

Among the 31 proteins described in Table 1, only pORF55 was

not detected in the proteinase K - treated sample. Analysis of the

peptide sequence coverage of viral proteins identified by mass

spectrometry revealed that, although some MuHV-4 envelope

glycoprotein epitopes were sensitive to proteinase K digestion

(Fig. 2), proteinase K treatment did not affect the detection of most

of the viral proteins even those that are exposed at the surface of

the virion. Thus, the peptide sequence coverage of gB, which is the

envelope protein detected by the bigger number of unique

peptides (Table 1), was 51.8% and 53% respectively in untreated

and proteinase K-treated virions. Finally, no additional protein

was specifically detected after proteinase K treatment.

Estimation of Protein Abundance in MuHV-4 Virion
We previously used the emPAI value (exponentially modified

protein abundance index) developed by Ishihama et al. to estimate

the protein contents in our samples [36,45,48]. In order to

relatively quantify viral proteins in virions, emPAI values were

expressed as percentages of the emPAI value obtained for

pORF25, the major capsid protein (Table 1). Based on these

relative emPAI values, the tegument protein encoded by ORF52

was, by far, the most abundant protein detected in MuHV-4

virions. It was more than 20 times more abundant than pORF25.

This apparent abundance could not be biased through the

enhanced detection of a single peptide as 12 different pORF52

peptides were detected in similar proportions by our analyses

(Table 1).

Figure 1. Assessment of MuHV-4 virion purity. The purity of the virions (i and ii) and capsid-tegument fractions (iii and iv) preparations was
assessed by negative staining and electron microscopy. Scale bars are shown on the images.
doi:10.1371/journal.pone.0083842.g001
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Identification of Viral Capsid and Capsid Associated
Tegument Components

In order to identify capsid proteins and tegument proteins

associated with capsids, we purified viral capsid-tegument fractions

as described in the Materials and Methods. We estimated the

purity and concentration of the purified capsid-tegument prepa-

ration by TEM (Fig. 1, panels iii and iv). As expected, the sample

contained only isolated capsids and no trace of intact virions or

envelope debris.

The 1D gel/nanoLC-MS/MS approach revealed the presence

of 18 viral proteins in this sample (Table 2). As expected, no

predicted viral envelope glycoprotein (encoded by ORF4, ORF8,

ORF22, ORF27, ORF28, ORF39, ORF47, ORF51 and ORF58)

was detected in this sample confirming the quality of our

purification procedure. Moreover, proteins encoded by M3,

ORF38, ORF45 and ORF55 were also not detected in this

sample although they had been detected in complete virions. For

ORF38, ORF45 and ORF55, the absence of detection could be

associated with their low abundance as very few peptides derived

from these proteins were detected in intact virions. The absence of

detection could also reflect the fact that they are not directly

associated with capsids. In this case they could be considered as

outer tegument proteins. Regarding M3, as it is a secreted protein,

its absence from tegument was expected.

As performed above for entire virions, the relative protein

abundances were estimated by emPAI values. These values were

expressed as percentages of the emPAI value obtained for

pORF25, the major capsid protein (Table 2). As observed for

intact virions, the tegument protein encoded by ORF52 was by far

the most abundant protein detected in this preparation.

Proteogenomic Mapping
Our identification of MuHV-4 structural proteins by mass

spectrometry is based on the ORFs annotations of the MuHV-4

genome. In order to identify possible MuHV-4 virions proteins

that had not been annotated, we generated a database containing

the entire genome of MuHV-4 translated in the 6 frames. The

mass lists obtained in the different complete virions analyses were

searched against this database as described in the Materials and

Methods. Finally, the detected peptides were graphically mapped

onto the MuHV-4 genome (Fig. 3). The results obtained showed

that all peptides identified by our analyses mapped into previously

annotated ORFs.

This approach allowed us to easily analyse the localization of

detected peptides within protein sequences. This was particularly

useful for the ORF17–17.5 proteins (Fig. 3 and S1). Rhadino-

viruses ORF17.5 encode the homolog of HSV-1 VP22a which

serves as a scaffold protein during capsid maturation and is

therefore mainly found in procapsids and B capsids [9]. As

observed in other herpesviruses, the coding sequence of this

protein is entirely contained within and in frame with a larger

open reading frame, called ORF17 in rhadinoviruses. This larger

open reading frame encodes a protease (homologous to HSV-1

VP24) involved in capsid maturation by degrading scaffold

proteins. Interestingly, analysis of the ORF17–17.5 peptides

distribution showed that these peptides were located into the

ORF17 specific N-terminal region. These results suggest therefore

that the pORF17 protease was the major ORF17-17.5 product

present in our virion preparation. However, it has to be noted that

some ORF17.5 peptides were found in the capsid-tegument

preparation, some trace of the scaffold protein were therefore

detected.

Glycosylation of Virion Components
In order to improve the sensitivity of our approach, we

performed the 1D gel/nanoLC-MS/MS analysis on deglycosy-

lated virion proteins as described in the Materials and Methods.

We validated this treatment by western blotting (Fig. S2). The

apparent molecular mass of glycoprotein gp70 and of the C- and

N-terminal parts of gB appeared to be reduced while the total

protein content revealed by an anti-MuHV-4 polyserum did not

appear to be affected (Fig. S2). However, compared to the analysis

of intact virions, we were not able to detect any new viral

structural protein (Table 1). In contrast, peptides corresponding to

proteins encoded by M3, ORF17, ORF45 and ORF55 were not

detected in the deglycosylated sample.

The comparison of results obtained by the 1D gel/nanoLC-

MS/MS approaches performed on untreated and deglycosylated

samples run in parallel allowed us to predict glycosylation of

several virion proteins. We limited our analysis on detected

envelope proteins as most of them are predicted to be N- and/or

O-glycosylated (Fig. S3). Briefly, both samples were submitted to

1D gel electrophoresis as described in the Materials and Methods.

After protein migration, the gels were cut in 30 slices and protein

composition of each of the 30 slices was determined as described.

Distribution across the gel was then determined for each protein

and compared between deglycosylated or untreated sample.

In comparison with their theoretical mass (calculated from

amino acid composition), all the proteins, excepted gL, displayed a

higher apparent molecular mass, suggesting important posttrans-

lational modifications (Fig. 4). We considered that there were

differences of glycosylation when detection profiles differed by

more than one positive box. In the case of the proteins encoded by

ORF4 (gp70), ORF8 (gB), ORF22 (gH), ORF27 (gp48), ORF47

(gL) and ORF58, the deglycosylation procedure induced a

decrease of the apparent molecular mass, suggesting that these

proteins are glycosylated. It should be noted that MuHV-4 gB has

a theoretical molecular mass (MM) of ,96 kDa. However,

MuHV-4 gB has a furin consensus cleavage sequence at amino

acids 424 to 427 (RRKR) [49]. It has been shown experimentally

Figure 2. Sensitivity of viral proteins to proteinase K treatment
of virions. Western blotting analysis of viral proteins in purified virions
from mock (–) and proteinase K (+) treated samples. Gp150 and gN are
type I transmembrane proteins which have a N-terminal domain
predicted to be sensitive to proteinase K digestion.
doi:10.1371/journal.pone.0083842.g002
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that the cleavage is indispensable for virion incorporation and

results in two derived products of respectively 55 and 65 kDa [49].

Although N- and/or O-glycosylation had previously been

shown for pORF28 and pORF51 (gp150), our experimental

procedure did not allow us to detect it. In the case of pORF51

(gp150), this is probably associated with an aberrant migration of

the protein. This could be due to the high proline content (23%) of

the protein, which is known to increase the apparent molecular

mass on SDS-PAGE gels [50]. pORF39 (gM) and pORF58 also

migrate to aberrant positions. This could be associated with the

multiple transmembrane domains of these proteins [14,39]. This

could also reflect the formation of protein aggregates due to the

conditions used in SDS-PAGE preparation as it has previously

been shown for KSHV gM [51].

Although peptides corresponding to pM3 had been observed in

all the replicate analyses that were performed on intact virions, no

M3-derived peptides were detected in the deglycosylated sample

(Table 1 and Fig. 4).

Host Proteins Associated with MuHV-4 Extracellular
Virions

Several host proteins have been detected in mature herpesvirus

virions. We therefore also searched for proteins of non-viral origin

in the 1D gel/nanoLC-MS/MS analyses performed on intact

virions. In total, we identified 31 cellular proteins that were

detected in at least two of the three replicates (Table 3). Among

these proteins, only 11 proteins were still detected after proteinase

K-treatment (Table 3). Manual categorization of the identified

proteins according to their previously known molecular function

was performed as described for analyses of BoHV-4 [52] and PRV

virions [30]. As for these viruses, many proteins involved in

cellular signalling, cytoskeleton organization and membrane

organization and trafficking were found (Table 3).

We have chosen to investigate more in depth the role of

Annexin A2 in the MuHV-4 cycle for the following reasons: (i) the

estimation of protein abundance by emPAI revealed that Annexin

A2 is one of the more abundant host proteins detected in MuHV-4

virions; (ii) among the host proteins that were still detected after

proteinase K treatment, only Annexin A2 had previously been

associated with MuHV-4 virions [26]; (iii) finally, Annexin A2 is

the protein that is the most frequently associated with herpesvirus

virions (Table 3). Based on these observations, it was therefore

plausible that Annexin A2 plays a role in MuHV-4 biology.

Interestingly, mouse deficient for Annexin A2 have been generated

previously [37]. This was therefore a unique opportunity to

investigate more in depth the role of this protein in the MuHV-4

cycle.

Figure 3. Proteogenomic map of MuHV-4 structural peptides. The 6 possible frames of the MuHV-4 genome (AF105037.1) translation are
shown with rectangle indicating annotated ORFs. Red and blue ORFs represent forward and reverse frames respectively. Detected peptides are
shown by bars whose the height is proportional to the number of detections. Genomic positions in bp are indicated.
doi:10.1371/journal.pone.0083842.g003
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To address this question, we compared the growth of WT

MuHV-4 virus on WT or Annexin A2 deficient MEF cells. The

results obtained showed that MuHV-4 grew to similar titers in WT

and Annexin A2 deficient-MEF cells (Fig. 5). Finally, as Annexin

A2 has been proposed to play a role in the entry of different viruses

including herpesviruses, we examined MuHV-4 entry into WT

and Annexin A2 deficient MEF cells. Briefly, we incubated WT or

Annexin A2 deficient MEF cells with a BoHV-4 WT strain

expressing eGFP (0.4 PFU/cell) for various times before washing

the cells with PBS or with an acidic solution (PBS pH3). The cells

were then incubated in complete medium and the numbers of

infected cells (eGFP+) were then determined by flow cytometry

18 h later. We did not observe any difference in MuHV-4 entry

between the two cell types (data not shown).

Discussion

The composition of herpesvirus virions has already been

addressed by several studies. However the diversity of the

purification and mass spectrometry procedures used has led to

variable results. While analyses of Herpes-Simplex (HSV-1) and

Pseudorabies (PRV) virions identified respectively 44 and 47 viral

structural proteins [30,31], analyses of rhadinoviruses gave much

more variable results. Thus, 37, 33, 25 and 14 viral structural

proteins were revealed in BoHV-4 [36], Rhesus rhadinovirus

(RRV) [32], KSHV [25,34] and MuHV-4 [26] extracellular

virions respectively. Moreover, only 10 proteins were common

between the different analyses. As mass spectrometry approaches

are continuously evolving, we have reassessed the composition of

MuHV-4 virions. Our analyses allowed the identification of 31

structural proteins encoded by the MuHV-4 genome which were

classified as capsid (8), envelope (9), tegument (13) and unclassified

(1) structural proteins. Among these 31 proteins, 27 were also

found in at least three of the four rhadinovirus virions

characterized to date (BoHV-4, KSHV and RRV) (Table S1).

Capsid Proteins
Despite considerable sequence divergence, the structure and

arrangement of the capsid proteins is remarkably conserved across

Herpesviridae [9,53]. Herpesviruses have a T16 icosahedral capsid.

The main component of the capsid is the major capsid protein

(MCP), encoded by ORF25 in rhadinoviruses. MCP makes up

both capsomere structures, the pentons (n = 11) and hexons

(n = 150), which contain five and six MCP monomers, respective-

ly. In the capsid, the hexons form the faces and edges while

pentons are located at 11 of the vertices of the icosahedron. The

last vertice is unique and consists of 12 copies of a portal protein

(ORF43 in rhadinoviruses). These portal proteins are arranged as

a ring through which viral DNA is encapsidated. The pentons and

hexons are bridged together by 320 triplexes which are composed,

in rhadinoviruses, of two copies of pORF26 and one copy of

pORF62. The capsid is firstly assembled (procapsid) around a

morphogenic scaffolding core made of pORF17.5 which under-

goes proteolysis by pORF17 during maturation. Finally, a small

basic capsid protein (pORF65) is added only after procapsid

maturation. Two additional minor capsid proteins, pORF19 and

pORF32, associate with capsid triplexes and form the capsid

vertex-specific complex (CVSC) which is necessary for viral DNA

cleavage and packaging. In this study, we identified all of these

proteins (Tables 1 and 2). Analysis of the protein abundances

(based on emPAI) conformed to the theoretical values excepted for

pORF43, pORF62 and pORF65 which were more abundant than

expected. We do not have any explanation for this high relative

abundance compared to the other capsid proteins. However,

ORF65 encodes the small capsid protein of rhadinoviruses which

decorates the hexon configuration of the major capsid protein. On

the basis of full occupancy, it should be a very abundant capsid

Figure 4. Analysis of MuHV-4 structural protein glycosylation. Control or deglycosylated proteins of purified MuHV-4 virions were separated
by SDS-PAGE. After migration, each sample was divided in 30 serial slices along the lane and proteins of each slice were identified as described in the
Materials and Methods. For the two treatments, slices containing M3, ORF4 (gp70), ORF8 (gB), ORF22 (gH), ORF27 (gp48), ORF28, ORF39 (gM), ORF47
(gL), ORF51 (gp150) and ORF58 proteins are shown with color intensity indicating the mean relative abundance (emPAI). For each lane, the
abundances are expressed relatively to the band displaying the highest emPAI which is taken as 1. For each protein, predicted molecular mass is
shown (theoretical lane). For the gB protein, the dashed slice indicated the predicted position of gB proteins before potential cleavage by cellular
furin. The position of a MM standard is shown on the left.
doi:10.1371/journal.pone.0083842.g004
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Table 3. Cellular proteins detected in MuHV-4 virions and comparison to other herpesviruses.

Relative
eMPAI
(%)a pKc Gammaherpesvirinae Alphaherpesvirinae Beta-b

Rhadinoviruses Maca- b Lymph- b Simpl-b Varicel- b
Cyto- b

Protein description Acc. N6 KSHV d BoHV-4 d AlHV-1 d EBV d HSV-1 d PRV d HCMV d

Small GTPases

Rab-1A isoform 1 gi|4758988 9.7 - +

Rab-6A isoform 2 gi|13195674 10.3 + + +

Rab GDP diss.inhib.beta-like gi|354465044 0.9 + +

Immunity-ass.nucleotide 4 gi|13569476 1.2 -

Vesicle transport protein gi|344256341 2.0 -

ADP-ribosylation factor 2 gi|6671571 8.7 - +

Ras-related protein Rab-14 gi|16758368 4.3 + +

Signalling

Casein kinase II subunit beta gi|7106277 3.1 - + + +

Annexin A3 gi|344255510 1.3 +

CD 81 antigen gi|194135609 10.5 -

S/T-protein Pase PP1-alpha gi|4506003 5.3 + + +

Thy-1 membrane glycoprotein gi|344240805 3.0 - +

Cytoskeleton

Cofilin-2 gi|6671746 3.6 - + +

Microtubule-ass prot.RP gi|7106301 3.1 -

Protein 88B gi|109463441 0.4 -

Moesin gi|344240889 1.4 - + +

Tetraspanin gi|685221 1.8 -

DNA binding

Histone H2A type 1 gi|344240017 14.9 +

Histone H4 gi|344240018 3.7 - +

Membrane organization and trafficking

VAMP 3 gi|6678553 12.3 + +

Annexin A2e gi|6996913 8.3 + + + + + + +

Annexin 1 gi|235879 2.0 - + + + + +

Metabolism

GAPDH gi|56188 2.2 + + + + +

F1-ATPase beta subunit gi|203033 1.3 -

Ion channel

VDAC-1 gi|344238883 2.8 -

Cell adhesion

Protein CLEC16A-like gi|348584902 0.4 -

Protein folding and protease

PPIase A gi|351706205 13.0 +

Anionic trypsin-1 precursor gi|6981420 4.3 +

Polyubiquitin gi|1050930 4.7 - +

GroEL_like type I chaperonin gi|51452 0.8 -

Immunity

C4BP gi|354471099 0.6 -

aRelative eMPAI values were calculated as the eMPAI values calculated for each analysis relatively to the abundance of pORF25 taken as 100%.
bBeta-, Beta-herpesvirinae; Maca-, Macaviruses; Lymph-, lymphocryptoviruses; Simpl-, simplexviruses; Varicel-, varicelloviruses; Cyto-, cytomegaloviruses.
cpK: Proteinase K treatment. +, proteins detected in the Proteinase K - 1D gel/nanoLC-MS/MS.
dBased on previously published studies.
eProteins previously identified in MuHV-4 virions [26] are highlighted in bold.
doi:10.1371/journal.pone.0083842.t003

MuHV-4 Structural Proteome

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e83842



protein. Our results are therefore in accordance with this

hypothesis. In contrast, we had shown that pORF65 was not

abundant in BoHV-4 virion [36]. This could reveal different roles

of this protein in these two species. Interestingly, pORF65

homologues are non-essential in alpha- and beta-herpesvirinae, but

KSHV pORF65 is required for capsid formation [54]. The roles

of pORF65 in BoHV-4 and MuHV-4 could therefore be different

and will require further investigation.

Similarly to what we observed with BoHV-4, none of the viral

terminase components, pORF7, pORF29 and pORF67.5, were

detected in our analysis of mature MuHV-4 virions in contrast

with KSHV and human cytomegalovirus (HCMV) and with the

previous analysis on MuHV-4 virions (Table S2) [26,34,35]. This

result reinforces therefore the model in which the herpesvirus

terminase complexes dissociate from the C-capsid after genome

encapsidation. Moreover, the absence of the terminase complex,

the high levels of pORF65 and the very low levels of pORF17.5

(homologous to HSV-1 VP22a) (Fig. S1) suggest that our virus

preparations contained mostly mature extracellular virions.

Tegument Proteins
In contrast to the capsid, herpesvirus tegument remains largely

undefined. The first step toward the understanding of its

organization is therefore the identification of all of its components.

Our analysis identified 13 potential viral tegument proteins

associated with MuHV-4 virions (proteins encoded by ORFs 11,

21, 23, 33, 36, 38, 45, 52, 55, 63, 64, 75c and 75b). Among these

proteins, proteins encoded by ORFs 11, 21, 33, 45, 52, 63, 64 and

75c have all been detected in KSHV tegument [25,34,55] while

proteins encoded by ORFs 23, 36, 38, 55 and 75b were not.

Although being conserved among gammaherpesviruses, the

function of ORF23 is unknown and a recent study of MuHV-4

showed that pORF23 was not essential for in vitro or in vivo growth

[56]. Its presence in the MuHV-4 virion is possible based on its

similarity with the tegument protein pUL21 of alphaherpesviruses

which is involved in egress of capsids from the nucleus [57].

ORF36 encodes a conserved gammaherpesvirus protein kinase

[58,59] which has also been detected in BoHV-4 [36] and RRV

[32]. Proteins encoded by ORF38 and ORF55 are fatty acylated

proteins conserved throughout the herpesvirus family. They have

been detected in the tegument of many herpesviruses and are

involved in virion envelopment and/or egress [60,61]. Finally,

pORF75b has been described as a virion component [62]. All

these proteins, except pORF55, were detected after proteinase K

treatment of virions (Table 1) and should therefore be considered

as real tegument components. pORF55 was only detected by two

peptides and its absence in proteinase K treated virions likely

reflects its low abundance in viral particles.

In contrast to these proteins, our analyses did not detect proteins

encoded by ORFs 6, 20, 35, 42, 48, 50, 67 and 75a which had

previously been described as potential tegument proteins in KSHV

[55]. In particular, pORF20 [26], pORF42 [63] and pORF75a

[62] had previously been associated with MuHV-4 virions. Our

results suggest that these proteins are absent or extremely rare in

MuHV-4 virions. The absence of pORF75a was quite surprising

as its two homologues, pORF75c and pORF75b, were among the

most abundant proteins of MuHV-4 virions (on the basis of the

emPAI values). This therefore suggests that these proteins have

diverged to acquire new functions as proposed by Gaspar et al.

who observed that these proteins do not substitute functionally.

As observed in our analysis of BoHV-4 virions [36], the most

abundant MuHV-4 virion protein is encoded by ORF52 (Table 1).

ORF52 is conserved in gammaherpesvirinae and encodes a small

protein of ,20 kDa. In MuHV-4, ORF52 is essential for

tegumentation and secondary envelopment [26,63–65]. pORF52

seems to function as a dimer and the N-terminal a-helix is likely

involved in interactions with other virion components [66] such as

pORF33, pORF75, gM and gN in KSHV [67] and pORF42 in

MuHV-4 [63]. Even if pORF52 is a very abundant component of

MuHV-4 virion [64], its abundance in MuHV-4 could be

overestimated by the emPAI value. Indeed, emPAI calculation

integrates an intrinsic property of a protein which is the number of

peptides that will be generated through trypsin digestion.

However, the nature of the tryptic peptides and in particular

their capacity to get ionized in the mass spectrometer ion source is

not taken into account. pORF52 is a highly basic protein (pI

around 10) and its tryptic peptides could be more efficiently

ionized. These peptides could therefore appear as more abundant

Figure 5. Growth of MuHV-4 on Annexin A2 deficient mouse
embryonic fibroblasts. MEF cells from WT and Annexin A2-null mice
were infected with BAC+ MuHV-4 virions at a MOI of 0.01 for multi-step
assay as described in the Materials and Methods. Supernatants of
infected cultures or infected cells were harvested at successive intervals
and the amount of infectious virus determined by plaque assay on BHK-
21 cells. Plaques were visualized by fluorescent detection of eGFP. The
data presented are the average 6 SEMs for triplicate measurements.
The data were analyzed by 2way ANOVA and Bonferroni posttests.
MuHV-4 growths on these two different cell types were not statistically
different.
doi:10.1371/journal.pone.0083842.g005

MuHV-4 Structural Proteome

PLOS ONE | www.plosone.org 11 December 2013 | Volume 8 | Issue 12 | e83842



during mass spectrometry analysis. EmPAI has therefore to be

considered as an estimation of the abundance. Within a sample,

the relative proportions have to be mainly used to classify proteins

based on their abundance.

Based on emPAI analysis MuHV-4 pORF52 appears even

tenfold more abundant in virion than BoHV-4 pORF52.

However, mass spectrometry relies on on the flight selection by

the instrument of most abundant peptides to be fragmented and

identified. This selection can thus be biased by numerous

experimental condition factors such as the efficiency of protein

extraction or the method used for their separation. Therefore,

comparison of quantitative data concerning different proteins in

different biological matrices (BoHV-4 pORF52 and MuHV-4

pORF52) has to be considered cautiously and can be subject to

numerous experimental bias. The main conclusion that can

therefore be drawn from the analysis of pORF52 abundance in

MuHV-4 and BoHV-4 [36] virion analyses is that pORF52 is the

most abundant protein in virions of both species.

Finally, among these potential tegument proteins, 11 were

copurified with capsids (Table 2). The two proteins that were not

detected after removal of envelopes are pORF38 and pORF55.

This could be linked to their low abundance as only a few peptides

corresponding to these proteins were detected in entire virion

samples. However, pORF38 was also not detected in a similar

BoHV-4 capsid-tegument preparation [36]. This could be

explained by the association of pORF38 with some envelope

glycoproteins, as observed for its HSV-1 homologue pUL11 [68].

Envelope Proteins
The approach used in this study allowed the detection of 9

MuHV-4 envelope proteins encoded by ORFs 4, 8, 22, 27, 28, 39,

47, 51 and 58. These proteins were categorized as such based on

the extensive literature about them, on the presence of at least one

predicted transmembrane domain (excepted for gL encoded by

ORF47) and on their disappearance after removal of virus

envelope (Tables 1 and 2). Comparison of the relative abundance

of these proteins suggests that pORF4 (gp70), pORF8 (gB),

pORF22 (gH), pORF27 (gp48), pORF28 and pORF39 (gM) have

comparable abundance as their relative emPAI values (in

comparison with pORF25, the major capsid protein) range from

19 to 46%. In contrast, the relative abundance of pORF47 (gL)

was lower. As observed in other viruses, MuHV-4 gL associates

with gH to form a heterodimer that plays a central role in virus

binding [18] and in membrane fusion [69]. Our previous results

suggested that gH exists in two distinct forms at the surface of

MuHV-4 virions, either in association or not with gL [69]. This

fact could explain the difference of abundance between the two

proteins that we observed in this study. The relative abundance of

pORF51 (gp150) and pORF58 was also very low. In the case of

gp150, this apparent low abundance could be due to the high

degree of glycosylation of this protein as proposed for the

homologous BoHV-4 gp180 [36]. Concerning pORF58, this

could be linked to the low penetration of the protein in the

electrophoresis gel (Fig. 4) or to the formation of protein

aggregates as described above. Most of the detected envelope

proteins appeared to be glycosylated (Fig. 4).

Similar to what we observed with BoHV-4 [36], we did not

detect any peptide corresponding to gN which is encoded by

ORF53 (Table S2). gN and gM form a complex in herpesviruses

[39,70] and gN is needed for the proper processing of gM. gN

could dissociate from gM in mature virions as suggested for

HCMV [35]. However, it is not the case here as gN was readily

detected by western blotting on MuHV-4 virions even after

proteinase K treatment (Fig. 2). The absence of gN in our analysis

is therefore likely due to a detection failure by our mass

spectrometry approach. Similarly to what was observed for KSHV

and RRV, the viral G-protein coupled receptor encoded by

ORF74 has not been found in MuHV-4 virions.

Finally, the protein encoded by the M3 gene was found in all

our analyses of complete virions (n.10) even after proteinase K

treatment but not after deglycosylation (Table 1). M3 encodes a

MuHV-4 specific secreted 44 kDa which is highly expressed

during lytic infection [71]. This protein has a broad chemokine-

binding activity [72,73] and could prevent the migration of CD8+

T cells into sites where immunogenic latency antigens are

expressed. In accord with this suggestion, M3 disruption resulted

in reduced amplification of latently infected B cells [74,75].

However, the effect on lytic replication was less clear [75,76]. Our

results suggest that M3 could be associated with the surface of

MuHV-4 virions. Interestingly, glycoproteins G of alphaherpes-

viruses are chemokine-binding proteins that are present on the

viral particle and on the plasma membrane of infected cells

[77,78]. Although gGs are virulence factors [79], the mechanisms

beneath this phenotype remain unclear. Some reports highlighted

a role in virus entry [80,81]. MuHV-4 M3 disruption did not lead

to an apparent binding deficit in the cell-types that have been

tested so far. In the future, binding of M3-deficient virions to a

range of cell types will have to be tested.

Host Proteins Associated with MuHV-4 Extracellular
Virions

Host proteins are frequently associated with the structure of

virions from various families [82,83]. Despite some exceptions

[23], the functions of these proteins in virus biology are poorly

characterized. Host proteins have also been found in most of the

analyses of herpesvirus virion composition [24–36]. In our analysis

of MuHV-4 virions, we found 31 cellular proteins that were

detected in at least two of the three replicates (Table 3). Only 11 of

these proteins were still detected after proteinase K-treatment

(Table 3) and their relative abundances were quite low. Our results

suggest therefore that cellular proteins are minor components of

MuHV-4 virions. However, several of these proteins are small

GTPases (Rab-1A, Rab-6A, Rab-14) or proteins linked to

membrane organization and trafficking (VAMP3, Annexin A2)

that could reveal the egress pathway used by MuHV-4.

Interestingly, Annexin A2 was also proposed as a constituent of

several other herpesviruses (including KSHV, BoHV-4, AlHV-1,

HSV-1, PRV and HCMV) as well as influenza [84], HIV-1 [85],

papillomavirus [86] and Hepatitis C [87]. Annexin A2 is a 36 kDa

Ca2+-regulated phospholipid binding protein which exists both

free in the cytoplasm and associated with plasma membrane

surfaces. Annexins can function as organizers of membrane

domains and membrane recruitment platforms for proteins with

which they interact [88]. The role of Annexin A2 in herpesvirus

infection has mainly been studied with HCMV. Thus, Annexin A2

has been shown to associate with HCMV virions [89,90] through

specific interaction with gB [91,92]. Although this association is

well established, its functional importance is still subject to

controversies. Some studies showed that virion incorporated

Annexin A2 could accelerate fusion of membranes during entry

[93] in accordance with the observation that some Annexin A2

specific antibodies could inhibit HCMV infection [94]. In contrast,

other studies showed that Annexin A2 has no effect on HCMV

entry into fibroblasts [95]. Our results similarly showed that

despite being incorporated in MuHV-4 virions, Annexin A2 does

not influence growth of this virus in mouse embryonic fibroblasts

(Fig. 5). In the future, these results will have to be confirmed in
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other cell types as the effect of Annexin A2 on MuHV-4 biology

could be cell-specific as recently observed for HIV-1 [96].

In summary, we extended our comprehension of the compo-

sition of MuHV-4 virions in particular and of rhadinoviruses

virions in general. We identified 31 viral proteins as constituents of

MuHV-4 virions. Among these proteins, 30 were resistant to

proteinase-K treatment. Based on the literature, it appears that

this composition is very similar to those of BoHV-4 [36] and of

RRV virions [32]. This therefore allowed us to draw a schematic

MuHV-4 particle (Fig. 6) which is likely representative of the

general architecture of rhadinoviruses. Moreover, we identified 31

cellular proteins as potential structural components of MuHV-4

virions. However these proteins were not abundant and one of

them, Annexin A2, which has been detected in many herpesvi-

ruses, was non-essential to viral growth in vitro. In the future, these

results could improve our knowledge about different steps of the

biology of gammaherpesviruses.

Supporting Information

Figure S1 Analysis of peptides identified in the different
expression products of MuHV-4 ORF17-17.5 locus. The

predicted product of expression of ORF17 and ORF17.5 and their

respective cleavage products are represented by rectangles. Black

bars indicate the tryptic fragments identified by mass spectrom-

etry. Open triangles indicate protease cleavage sites.

(TIF)

Figure S2 Deglycosylation of MuHV-4 virions. Purified

MuHV-4 virions were either left untreated (/) or deglycosylated

(N2/O-) as indicated in the Materials and Methods. The samples

were then immunoblotted with mAbs 3F7 (anti-gN), 58-16D2

(anti-gp70), MG-4D11 (anti-gB C-terminal end), MG-2C10 (anti-

gB N-terminal end) or with rabbit polyserum raised against

MuHV-4 virions.

(TIF)

Figure S3 Prediction of N-glycosylation sites for the
different MuHV-4 protein sequences detected by our
approach using the NetNglyc 1.0 and NetOglyc 3.1

Figure 6. Schematic representation of the protein composition of mature extracellular MuHV-4 virions. Capsid proteins are represented
as hexagons, tegument proteins as circles, envelope proteins as triangles. As the location of the M3 protein is unknown, it is represented as a putative
structural protein (square). The predicted protein mass is directly proportional to their surface. The mean relative abundance (emPAI) determined by
the different analyses of complete virions is indicated in color intensity (see scale).
doi:10.1371/journal.pone.0083842.g006
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algorithms. The red lines indicate significative threshold.

Vertical blue lines indicate potential glycosylation sites.

(TIF)

Table S1 Comparison of MuHV-4 proteins identified in
virions with other herpesviruses.

(PDF)

Table S2 Comparison of MuHV-4 proteins non-identi-
fied in virions with observations in other herpesviruses.

(PDF)
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