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Abstract 

 

Introduction: The neural mechanisms underlying electrophysiological changes observed in patients 
with disorders of consciousness following a coma remain poorly understood. The aim of this article is 
to investigate the mechanisms underlying the differences in spontaneous electroencephalography 
between patients in vegetative/unresponsive wakefulness syndrome, minimally conscious state, 
emergence of the minimally conscious state and age-matched healthy control subjects.  

Methods: Forty recording of spontaneous scalp electroencephalography were performed in 27 
patients who were comatose on admission, and on healthy controls. Multivariate Granger Causality 
and Transfer Entropy were applied on the data. 

Results: Distinctive patterns of putative bottlenecks of information were associated to each 
conscious state. Healthy controls are characterized by a greater amount of synergetic contributions 
from duplets of variables. 

Conclusion: A novel set of measures was tested to get a novel insight on the pattern of information 
transfer in a network of scalp electrodes in patients with disorders of consciousness. 
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1. INTRODUCTION 

The neural mechanisms underlying electrophysiological changes observed in patients with disorders 
of consciousness (DOC) following a coma remain poorly understood. The vegetative state, recently 
renamed the unresponsive wakefulness syndrome (VS/UWS), is a state of preserved arousal without 
awareness of self and surrounding 1,2. The minimally conscious state (MCS) is a state characterized 
by inconsistent but clearly discernible behavioral evidence of consciousness, and emergence from 
MCS occurs when patients regain functional communication or functional use of objects (EMCS)[3]. 
In this article, the mechanisms underlying the differences in spontaneous electroencephalography 
(EEG) will be investigated with the aim to objectively measure difference in cerebral activity related 
to the state of consciousness. With the advent of EEG technology, the computation of complex 
parameters has been made possible and measuring directed interactions in neuroimaging data in 
terms of information transfer is one of the promising approach, which is mathematically treatable 
and amenable to encompass several analytical methods. 

Determining how the brain is connected is crucial in order to understand how it works. Each time we 
record brain activity we can monitor the activity at the nodes of a network. To gain a better 
understanding of which neurophysiological processes are linked to which brain mechanisms, 
structural connectivity in the brain can be complemented by the investigation of statistical 
dependencies between distant brain regions (functional connectivity), or by the development of 
models aiming at elucidating drive-response relationships (effective connectivity)3. Advances in 
imaging techniques guarantee an immediate improvement in our knowledge of structural 
connectivity. A constant computational and modeling effort has to be done in order to optimize and 
adapt functional and effective connectivity to the qualitative and quantitative changes in data and 
physiological applications. The paths of information flow throughout the brain can shed light on its 
functionality in healthy and pathological conditions. 

Concerning effective connectivity, two main families of methods exist: those purely data-driven, 
identified as Granger Causality4, and the biologically inspired ones, named Dynamical Causal 
Models5. In addition to these model-based approaches, Transfer Entropy6 has emerged in the last 
years as a powerful alternative. This approach is rooted in information theory, and measures the 
rate of information flow between two variables, as a violation of the Markov property. An important 
characteristic of this measure is that it does not rely on any model. 

It is worth to note that Granger causality is a measure of dynamical connectivity, and is not meant 
toevaluate actual causality, which requires an intervention on the system, such as Transcranial 
Magnetic Stimulation (TMS)7. 

Recently, it has been proven that Granger Causality and Transfer Entropy are equivalent for Gaussian 
variables7, and for other quasi-Gaussian distributions8. Under this approximation, Transfer Entropy 
can be evaluated from the covariance matrix, and a numerically and analytically convenient 
framework can be established.  

In this study, we propose to use this framework to look at the patterns of information transfer 
between electroencephalographic (EEG) signals recorded on the scalp of patients with DOC as well 
as in age-matched healthy control subjects. In particular, we will investigate two quantities derived 
in the framework described above. The first one relies on the fact that each node of a complex 



network can handle a limited amount of information. In information transfer networks, this results 
in a peculiar pattern describing the overall balance of information through a node, in which the 
distribution of ongoing information is wider than the distribution of incoming information. This 
indicates the likelihood of a node to become a possible “bottleneck” of information flow9. The 
second quantities regard the joint role of groups of variables in the prediction of a future state of the 
system. The standard formulations of Granger Causality and Transfer Entropy evaluate how much 
each individual source variable influences the future of a target one. But what happens if the 
putative source of information is constituted by a group of variables? Is their contribution as a whole 
greater than the sum of the individual contributions, i.e. are the variables synergetic? Or conversely 
are they redundant, i.e. the joint contribution is smaller than the sum of the individual 
contributions? The aim of the study is to use a recently developed methodology to group the EEG 
channels according to their informational content and their joint role in predicting the future of 
other channels in patients with DOC as compared to healthy subjects. 

 

2. METHODS 

2.1 Clinical assessment 

The study was prospectively performed in 21 patients who were comatose on admission (aged 
46±25 years; 13 males). Repeated behavioral measurements of consciousness were obtained by 
trained, experienced neuropsychologists using the Coma Recovery Scale-Revised (CRS-R)10. This scale 
has been specifically developed to differentiate between patients in UWS from MCS, and consists of 
six subscales: auditory, visual, motor and oromotor/verbal functions as well as communication and 
level of arousal. Repeated evaluations were carried out in order to obtain a stable clinical diagnosis 
and to avoid misdiagnosis due to fluctuations in responsiveness.  

A total of 26 recordings for which several good quality segments were available for all the 19 10-20 
channels were retained for the present study, and 3 patients were assessed more than one time. As 
assessed by the CRS-R, one patient was recorded while recovering consciousness and evolving from 
VS/UWS, through MCS to EMCS.  Two patients were assessed during MCS and EMCS and the last 
patient was assessed in VS/UWS and in EMCS. The total sample consisted of 11 recordings in 
VS/UWS, 10 in MCS and 5 in EMCS. Etiology was traumatic in 12 patients; the non-traumatic cases 
(n=9) comprised patients with post-ischemic or hemorrhagic stroke (n=6), anoxic-ischemic 
encephalopathy (n=1) and subarachnoid hemorrhage (n=2). Patients were assessed free of centrally-
acting drugs or neuromuscular function.  

Scalp EEG at rest was also recorded from a matched group of 10 healthy controls (45±22 years old; 4 
males). 

The study was approved by the Ethics Committee of the Medicine Faculty of the University of Liege. 
Informed consents were obtained by the patients’ legal surrogates and by the patients when they 
were able to communicate. 

 

 



N Clinical 
diagnosis 

Gender Age Etiology Time since onset 
(days) 

1 VS/UWS 1 M 19 trauma 172
2 VS/UWS 2 M 81 stroke 19
3 VS/UWS 3 M 67 stroke 247
4 VS/UWS 4 F 15 anoxia 23

5 VS/UWS 5 M 68 trauma 21 
6 VS/UWS 6 F 43 stroke 20
7 VS/UWS 7 M 13 trauma 259 
8 VS/UWS 8 F 26 trauma 808
9 VS/UWS 9 F 77 stroke 25 
10 MCS 1 F 54 trauma 3220 
11 MCS 2 M 72 stroke 38
12 MCS 3 M 29 trauma 2545

13 MCS 4 F 62 stroke 20 
14 MCS 5 M 20 trauma 1334
15 MCS 6 M 19 trauma 191
16 MCS 7 M 46 trauma 9598 
17 EMCS 1 M 23 trauma 422 
18 (a) VS/UWS 10 F 60 subar hem 31
 MCS 8    46 
 EMCS 2 74
19 (b) VS/UWS 11 M 16 trauma 12 

 EMCS 3    41 
20 (c) MCS 9 M 77 trauma 16 
  EMCS 4       59 
21 (d) MCS 10 F 76 subar hem 28 
  EMCS 5       70 

Table 1: the patients used in this study 

 

2.2 EEG acquisition 

Spontaneous EEG recordings of 5-minute epochs were obtained during a resting state condition. 
Patients were awake and were seated on their beds. The arousal facilitation protocol11 was 
performed before the recording to ensure a high level of arousal. EEG was recorded with a 60-
channel transcranial magnetic stimulation (TMS) -compatible amplifier (Nexstim; Helsinki, Finland). 
Electrode impedance was kept below 5kΩ.  EEG signals were referenced to an additional electrode 
on the forehead, filtered (0.1–500Hz) and sampled at 1450Hz. Eye movements were also recorded 
with two additional electrodes placed near the eyes. EEG and TMS-EEG data of 17 of the patients 
reported in this study have been previously published elsewhere12.  

2.3 EEG analyses 

For the current study, 19 scalp channels selected according to the 10-20 scheme were used; the data 
were resampled at 145 Hz, and the recordings from each subject were divided in several artifact-free 
segments of 5 seconds each. 



A) MULTIVARIATE GRANGER CAUSALITY AND INFORMATION BOTTLENECKS 

Multivariate Granger causality is a well-established approach to recover directed interactions from 
the dynamics of a group of simultaneously recorded variables.  

Let’s consider ݊ ൅ 1 time series ሼݔఈ(ݐ)ሽఈୀ଴,…,௡. The lagged state vectors are denoted 

ఈܻ(ݐ) ൌ ݐ)ఈݔ) െ ݉), … , ݐ)ఈݔ െ 1), (1)

 ݉ being the order of the model, which can be determined using a standard cross-validation scheme. 
Let ߝ(ݔఈ|ܻ) be the mean squared error prediction of ݔఈ on the basis of all the vectors ܻ, 
corresponding to linear regression. The multivariate Granger Causality index ܿ(ߚ ՜  is defined as (ߙ
follows: consider the prediction of ݔఈ on the basis of all the variables but ఉܻ and the prediction of ݔఈ 

using all the variables, then the Granger causality is given by the variation of the error in the two 
conditions, i.e. ܿ(ߚ ՜ (ߙ ൌ ln ఌ(௫ഀ|௒\௒ഁ)ఌ(௫ഀ|௒) . (2)

The Granger Causality was first evaluated using the selection of significant eigenvalues, as described 
in Marinazzo et al.13 to address the problem of overfitting. In the Gaussian approximation, this 
quantity is twice the transfer entropy, equal to ܫሼݔఈ; ఉܻ|ܻ\ ఉܻሽ, and Granger causality can be 

interpreted in terms of information transfer. 

The way in which information flows through a complex network is related to both the capacity of the 
nodes and to the structure of the network itself. This constraint suggests that information transfer 
networks should exhibit some topological evidences of the law of diminishing marginal returns14, a 
fundamental principle of economics which states that when the amount of a variable resource is 
increased, while other resources are kept fixed, the resulting change in the output will eventually 
diminish15. This results in a peculiar pattern of the information flow between nodes: the distribution 
of the outgoing information is characterized by a fat tail, while the average incoming information 
transfer does not depend on the connectivity of the node. In the proposed model, the units at the 
nodes of the network are characterized by a transfer function that allows them to process just a 
limited amount of the incoming information. In this case, a possible way to quantify the law of the 
diminishing marginal returns can be the discrepancy of the distributions, expressed as the ratio of 
their standard deviations, that here indicated as ܴ. 

B) IDENTIFICATION OF IRREDUCIBLE SUBGRAPHS 

Information theoretic treatment of groups of correlated degrees of freedom can reveal their 
functional roles as memory structures or those capable of processing information16. Information 
quantities reveal if a group of variables may be mutually redundant or synergetic17,18. Most 
approaches for the identification of functional relations among nodes of a complex networks rely on 
the statistics of motifs, subgraphs of k nodes that appear more abundantly than expected in 
randomized networks with the same number of nodes and degree of connectivity19. A formal 
expansion of the transfer entropy to put in evidence irreducible sets of variables which provide 
information for the future state of the target has been proposed by Marinazzo et al.13. Multiplets 
characterized by a high value, unjustifiable by chance, will be associated to informational circuits 



present in the system, with an informational character (synergetic or redundant) which can be 
associated to the sign of the contribution. 

The fundamental ideas behind this approach are reported in the following lines. Given a stochastic 
variable ܺ and a family of stochastic variables ሼ ௞ܻሽ௞ୀଵ௡ , we can define the mutual information I(X;{Y}) 
as the difference between S(X), the entropy of X, and S(X|{Y}), the same entropy conditioned to {Y}. 
The following expansion for the mutual information has been derived in Bettencourt et al.20: ܵ(ܺ|ሼܻሽ) െ ܵ(ܺ) ൌ െܫ(ܺ; ሼܻሽ) ൌ ൌ ෍ Δܵ(ܺ)Δ ௜ܻ௜ ൅  ෍ Δଶܵ(ܺ)Δ ௜ܻΔ ௝ܻ ൅ ڮ ൅  Δ௡ܵ(ܺ)Δ ௜ܻ … Δ ௡ܻ௜வ௝ , (3)

where the variational operators are defined as Δܵ(ܺ)Δ ௜ܻ ൌ ܵ(ܺ| ௜ܻ) െ ܵ(ܺ) ൌ  െܫ(ܺ; ௜ܻ), Δଶܵ(ܺ)Δ ௜ܻΔ ௝ܻ ൌ െ Δܫ(ܺ; ௜ܻ)Δ ௝ܻ ൌ ;ܺ)ܫ  ௜ܻ) െ ;൫ܺܫ ௜ܻห ௝ܻ൯, (4)

and so on for the higher order terms. 

Now, let us consider again the variables introduced in the previous paragraph and their state 
vectors. Firstly, expansion (4) can be used to model the statistical dependencies among the ݔ 
variables at equal times. Considering ݔ଴ as the target time series the first terms of the expansion are 

௜ܹ଴ ൌ ;଴ݔ)ܫ ௜) (5)ݔ

for the first order, ܼ௜௝଴ ൌ ;଴ݔ)ܫ (௜ݔ െ ;଴ݔ൫ܫ ௝൯ (6)ݔ|௜ݔ

for the second order, and so on for higher order terms.  

In order to measure to what extent the remaining variables contribute to specify the future state of ݔ଴, in Marinazzo et al.13 it was proposed to consider: ܵ(ݔ଴|ሼ ௞ܻሽ௞ୀଵ௡ ) െ (଴ݔ)ܵ ൌ ෍ Δܵ(ݔ଴)Δ ௜ܻ௜ ൅  ෍ Δଶܵ(ݔ଴)Δ ௜ܻΔ ௝ܻ ൅ ڮ ൅  Δ௡ܵ(ݔ଴)Δ ௜ܻ … Δ ௡ܻ .௜வ௝  
(7)

Furthermore, in order to remove shared information due to common history and input signals, it is 
necessary to condition on the past of ݔ଴, i.e. ଴ܻ. This is achieved by introducing the conditioning 
operator ࣝ௒బ: ࣝ௒బܵ(ܺ) ൌ ܵ(ܺ| ଴ܻ) (8)

which allows to obtain an expansion of the transfer entropy as follows: 

  
଴|ሼݔ)ܵ ௞ܻሽ௞ୀଵ௡ , ଴ܻ) െ |଴ݔ)ܵ ଴ܻ) ൌ 



െݔ)ܫ଴; ሼ ௞ܻሽ௞ୀଵ௡ | ଴ܻ) ൌ (9)෍ Δܵ(ݔ଴| ଴ܻ)Δ ௜ܻ௜ ൅  ෍ Δଶܵ(ݔ଴| ଴ܻ)Δ ௜ܻΔ ௝ܻ ൅ ڮ ൅  Δ௡ܵ(ݔ଴| ଴ܻ)Δ ௜ܻ … Δ ௡ܻ .௜வ௝  

The variations at every order in the above expansion are symmetrical under permutations of the ௜ܻ. 
Moreover statistical independence among any of the ௜ܻ results in vanishing contribution to that 
order: each nonvanishing term accounts for an irreducible set of variables providing information for 
the prediction of future values of the target. 

An important property of the expansion is that the sign of nonvanishing terms reveals the 
informational character of the corresponding set of variables: a negative sign indicates that the 
group of variables contribute with more information, than the sum of its subgroups, to the state of 
the target (synergy), while positive contributions correspond to redundancy. 

The first order terms in the expansion are given by: 

௜଴ܣ ൌ Δܵ(ݔ଴| ଴ܻ)Δ ௜ܻ ൌ  െݔ)ܫ଴; ௜ܻ| ଴ܻ), (10)

and coincide (with opposite sign) with the bivariate transfer entropies ݅ ՜ 0. The second order 
terms are ܤ௜௝଴ ൌ ;଴ݔ)ܫ ௜ܻ| ଴ܻ) െ ;଴ݔ൫ܫ ௜ܻห ௝ܻ , ଴ܻ൯ (11)

and describe the duplets of variable that contribute jointly to the future of the target, in a redundant 

௜௝଴ܤ) ൐ 0) or synergetic (ܤ௜௝଴ ൏ 0) way. 

Another important point is how to get a reliable estimate of conditional mutual information from 
data. In this work, the assumption of Gaussianity is adopted and we use the exact expression that 
holds in this case7 and reads as follows. Given multivariate Gaussian random variables X,W and Z, the 
conditioned mutual information is 

;ܺ)ܫ ܹ|ܼ) ൌ 12 ln |Σ(ܺ|ܼ)||Σ(ܺ|ܹ ْ ܼ)| , (12)

where |.| denotes the determinant, and the partial covariance matrix is defined Σ(ܺ|ܼ) ൌ Σ(ܺ) െ Σ(ܺ, ܼ)Σ(ܼ)ିଵΣ(ܺ, (13) ٹ(ܼ

in terms of the covariance matrix Σ(ܺ) and the cross covariance matrix Σ(ܺ, ܼ); the definition of Σ(ܺ|ܹ ْ ܼ) is analogous. 

In the present study a model order ݉ ൌ 5 was selected according to leave-one-out crossvalidation21. 

3 RESULTS 

3.1 Information bottlenecks 

For all the groups of subjects, the distribution of the values of outgoing Granger Causality is wider 
than the distribution for incoming values (figure 1). 



  

 

Figure 1: Distribution of outgoing and incoming values of multivariate Granger Causality (c). 

 

The spatial modulation of this pattern shows substantial differences across the groups. 

In the group of VS/UWS, the central, temporal and occipital electrodes display evidence of 
dissymmetry between incoming and outgoing information. Moving to MCS, and then to EMCS 
groups, the bottleneck regions get confined towards more occipital areas, while for healthy controls 
the areas with bigger disparity between outgoing and incoming information are in the lateral 
parietal electrodes (figure 2), as previously reported9. 

 



 

Figure 2: Topology of the values of R, the ratio between the width of the distribution of outgoing 
information and incoming information values. 

 

 

3.2 Identification of informative multiplets 

In this study, we evaluated exactly the first two terms of the expansion of the Transfer Entropy, that 
is the bivariate Transfer Entropies and the duplets of variables characterized by a significant 
contribution. For each dataset, we also generated a null distribution randomizing the order of the 
target time series. 

The overall balance between synergy and redundancy was computed for each subject by summing 
all the contributions whose magnitude was greater than the 100th percentile of the null distribution.  

 

The difference between groups was assessed by performing the Kruskal Wallis one-way ANOVA on 
the distributions of the values of net  synergetic contributions. The test rejected the null hypothesis 
(p<1.2 10-6). The post-hoc Wilcoxon Rank Sum tests indicated significant differences between all the 
groups. The difference between EMCS and controls is barely significant, where the differences 
among all the other pairs of groups are much more marked (see table 2). The simple value of 
transfer entropy (first term of the expansion) does not separate the four classes of subjects (fig.3, 
right). 



 

Figure 3: Boxplot of the values of net synergetic contribution (redundancy-synergy) for the four 
groups of subjects. 

 

VS/UWS-
MCS 

VS/UWS-
EMCS 

VS/UWS-
controls 

MCS-
EMCS 

MCS-
controls 

EMCS-
controls 

p<0.0005 p<0.0005 p<0.0002 p<0.03 p<0.0002 p<0.04 

Table 2: p-values of the post-hoc Wilcoxon rank sum test to evaluate differences among the 
distribution of the overall synergy/redundancy balance for the four groups of subjects. 

 



Figure 4: distribution of synergetic duplets (white) and redundant ones (black) for a sample target 
channel (T8) in healthy subjects. 

 

4. DISCUSSION AND CONCLUSION 

A novel framework to analyze interdependencies between electroencephalographic time series 
recorded on the scalp in terms of directed information transfer was applied to patients with 
disorders of consciousness. These measures are situated in a general framework to assess the level 
of consciousness by looking at where and how information is stored and transmitted in the brain, at 
rest23,24 or after magnetic stimulation25. 

It was possible to retrieve distinct patterns resulting from the interplay of the dynamics of the nodes 
of a network and their limited capacity to handle information, given the network structure, and to 
associate them to the degree of consciousness. The location of bottleneck regions across the 
scalpcould be interpreted in terms of the different pathways of information transfer observed in 
controls versus DOC patients and reported in Varotto et al.26 .That study found that the information 
transfer increased among the central regions and decreased to and from the lateral regions for DOC 
patients compared to healthy controls. 

Furthermore we have shown that clustering the variables in terms of the shared informational 
content of their dynamics can disclose information on network function. It is important to underline 
for example that the difference across states of consciousness is related to the joint contribution of 
duplets of variables sharing similar informational content, and not to the information transferred 
between individual nodes. 

Further studies aimed to a more subject-specific evaluation or interpretation should include the 
effect of specific lesions and use controlled reduced consciousness states, such as anesthesia. 
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