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We reconsider first the representation of solutions defined by a condition at the origin and recognize the
difficulty of extending the representation outside simple cases. By eliminating the study of solutions
defined at the origin in further studies the translation kernels for velocity dependent interactions are
constructed only for solutions defined by their behavior at infinity. Two methods are proposed. Their

domains of extension are compared and shown to be different.

1. INTRODUCTION

The translation kernels were brought to consideration
in the early 1950’s within the framework of the inverse
scattering problem.! Their use by Gel’fand— Levitan?
and Marchenko® was decisive in the mathematical solu-
tion of the inverse problem for systems without singu-
larities; Ref. 3 contains, in addition to this mathemati-
cal solution, an indirect attempt to solve a particular
case of a system with singularity, the particular case
which appears in the deuteron problem with a tensor for
force. Almost at the same time, within his theory of
perturbations, Friedrichs! introduces the idea of simi-
litude between operators.

Let A; and A, be two operators with the same domain.,
If there exists an operator U with a bounded inverse
U1 such that the equation

UA{ =AU (1)
holds, the operators A; and A, will be called similar
and U a similitude transformation. The existence of
U™ leads to the equation

UA U = 4,. (2)
If A{ and A, operate on a Hilbert space and are both
self-adjoint, Eq. (2) leads to the equation

UUA U U = A,y @)

from which it follows that U is a unitary transformation.
The point is important when the spectra of A; and 4,
are compared.

The translation operators satisfy Eq. (1); in addition
we require they be integral transformations and belong
to the category of Volterra operators.

Recently the Clarkson school® while developing an
idea of Lax® constructed a class of nonlinear equations
whose solution is connected to that of an inverse scat-
tering problem. By so doing they renewed interest in
the inverse problem and it becomes more compelling
to specify the class of equations for which a transla-
tion kernel exists.
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In a first work on the inverse problem, ! the theory
of translation operators was re-examined so as to use
them in the inverse problem at fixed energy. Recently,
we moved to problems at fixed angular momentum with
singularities but we restricted our investigation to
differential operators and to systems of coupled dif-
ferential operators of the form

d2
+ =X
i Vix) =2, (4)
where I is the unit matrix and A is a constant diagonal
matrix, 81 The matrix V(x) called potential was
separated into

Vix) = Volx) + Vy(x) (5)

with a reference potential V(x) and a nuclear potential
Vy(x). In most of the cases we took the reference po-
tential to be
a(a+1
O Gl V. I (6)
x x
When V, is defined by Eq. (6), it contains a centripetal
and a Coulomb part, the usual singularities of the
nuclear problem.

In each case we examined, the task was to specify
the conditions the nuclear potential Vy(x) has to satisfy
for a bounded translation kernel to exist. The conditions
were, of course, sufficient conditions. However, the
method of proof used for their specification was a con-
structive method. The translation kernel was, in prin-
ciple, constructed. It is a general remark that sufficient
conditions obtained by a constructive method are hard
to improve. The construction was obtained by trans-
forming partial differential equations of hyperbolic
type into Volterra integral equations which incorporate
their boundary equations. This latter transformation
has, in our opinion, its own importance; therefore
another distinct example which uses different boundary
conditions is included in this present paper. Extensions
of the transformations may be obtained by using the
appropriate elementary solutions which are here the
Riemann solutions.

To specify the notations and the object of this present
paper, we give the following definitions. Let Ay and A,
be two (systems of) differential operators together with
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boundary conditions necessary to specify the solutions
their respective equations may possess.

The two types of boundary conditions we studied were
conditions of regularity at the origin or conditions of
behavior at infinity. The new case discussed in the
present paper incorporates conditions at the origin
which do not involve regularity. The two first types of
conditions are the usual conditions considered in scat-
tering problems. A translation operator X is defined
as a bounded operator with an inverse X,

X=1+K, X'=1+K.

The operator K of the definition is always an integral
operator. As a consequence of the definition, X trans-
forms the solutions of the differential operator A, into
the solutions of the operator A;. The operator A; was
written as A+ Vy; A, contains the reference potential
which may be zero. If the solutions thus transformed
are the regular solutions, we call the kernel K a
Gel’fand—Levitan kernel: The notation of the Gel’fand—
Levitan representation is retained here, but it is ex-
tended here to any representation of solutions specified
by a condition at the origin. In the case of solutions
defined by their behavior at infinity, we will have a
Marchenko kernel and a Marchenko representation,

In all the cases we investigated, the conditions were
expressed in terms of conditions the nuclear potential
Vy should satisfy; whether it was attractive or repulsive
was unimportant. Its strength also was irrelevant. The
conditions were dependent upon the absolute moments of
the potential V as are the usual conditions for the
existence of solutions of the Schrodinger equation. It
is important to note that they were, in addition, depen-
dent upon the choice of the reference potential.

Systems of coupled differential operators defined by
Eq. (4) belong to a restricted class of operators. How-
ever when, for the first time, Levitan!! defined the
concept of translation operation, he stated its use for
differential operators of the more general form:

2
a(x) (%7 +b(x) d_{i - V{x) + X, (7)

The extension was obtained, he said through a straight-
forward extension of the Liouville transformation. ?

As we will see later, he was a little optimistic; the
Liouville transformation cannot be used directly except
for the b =0 cases, but the idea of Levitan can be
pursued and a transformation shown to exist. Already
a desire for such an extension appeared in Ref. 7. At
that time it was simply recognized that the conditions
for existence depend upon the solution of a Cauchy
problem but this quest was not pursued. Now many
years have passed, progress has been made; not only
do we possess, in the Riemann method, a tool for
specifying the conditions a nuclear potential has to
satisfy, but also we possess the inotivation for pursuing
the physical application of the extension which once
seemed far away and has now become real. While

the forms of operators discussed in Ref, 5 are related
to the problem of the string amplitude, 1% a subject
dear to dual theorists,!® the Sturm—Liouville operators
for Eq. (7) contain the differential operators with
velocity dependent interactions. 1® The latter have been
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shown to be equivalent to static interactions with a hard
core. !’ After additional work on the inverse problem
by Marchenko!® and Faddeev,!® Zachariev? had just
formulated the inverse problem for potentials which
depend on the velocity. He has, in addition, proposed

a solution for the approximation which involves the re-
placement of the differential operator by a difference
operator.

Attention cannot be restricted however to differential
operators; systems of coupled differential operators
described by Eq. (8) have to be treated. The extension
to such systems is actually realized in the present
paper.

The reader is warned that the advice of Levitan of
using a Liouville transformation is not followed all the
time; we found it more convenient to use a simpler
transformation, precisely the one advocated for the
construction of equivalent local potentials in Ref. 21,

In Sec. 2 the Riemann solutions method is reviewed and
a new representation for a solution which is not regular
but is defined by a condition at the origin is given for the
{ =0 case.

In Sec. 3, systems of coupled equations with velocity
dependent interactions are discussed. The systems are
transformed into simpler ones prior to being subjected
to the translation operators techniques. The use of a
more direct method is discussed in the conclusion.

2. INTRODUCTION OF THE RIEMANN’S SOLUTION

Before proceeding to this introduction, we consider
the construction of an irregular solution for a local
Schrodinger equation defined by a condition at the origin.
For this construction we consider the Volterra equation

Lk, ) =0, ) + [ g (s, ) V(3 £yl )y (8)
with
gt(k;x, y) = [ux(k, x) Ul(ky y) - ul(k: y)
X v (ky %)/ Wty 0,). (9)

In the Green function g; of Eq. (9) the Riccati—Bessel
v, and v; are inserted together with their Wronskian.
One has

. 1

ky %) = oy
Limov,( ,X) @I (Ex) ?
. ()™
limuik, x) = o 311

Obviously, Eq. (8) is meaningless for 7+ 0 except for
special classes of interactions.

We will limit ourselves to the I =0 (s-wave) case.
Then Eq. (8) reads

Eo(k, x) =coskx+f sink(x - y)
0

A V() Eg(k, ) dy.
(10)

Together with Eq. (10), we consider the possibility of
representing £q(k, x) by an integral

Eolk, x) = coskx + fox K, (x,y) coskydy. (11)

M. Coz and P. Rochus 2233

Downloaded 01 Jun 2006 to 128.40.70.35. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



{s) UsSs+y-x

1 uss
{xeyW2p==—pfpmmm-t---- Uz-S+X+y
|
XX |
\\ |
(x-y) 12— = !
v u/:l—s+x-y -—-D; D.=02+D4
ll —04|D=0,-04
L >
Y {u)
FIG. 1.

In order to exist, the kernel K,(x, y) has to satisfy the
partial differential equation

2 2
(g;, - %7) K, (x, ) - V(x) K,(x, ) =0, (12)
K,(x,x)=3% [*V(s)ds, (13)

0
==K, (%, 9) | yu0=0. (14a)

dy

In order to prove the existence of K,(x,y) one has to
transform Eqs. (12), (13), and (14a) into a Volterra
equation.

This can be done by using the identity

Uex=8

sink(x - s) coskt dt. (15)

cosku = 3

utSex

After trivial interchanges of variables valid if y > x/3
and which are justified by the Tonelli—Fubini’s theo-
rems, one obtains

Kb, 9) =4[ vs)as+ [ vis) as)]
+3fE Visrds [T K (s, u)dul
+ %[f(:::)/z V(s)ds j;x's'y K,(s,u)du
+ fox-y V(s)ds fos K. (s,u)du
+ fo("'y)” V(s)ds fosK,(s,u) du
- f(;y)/z V(s)ds fosK,,(s,u) du

+ fx :‘W? Vis)ds fy N

+S=X

K, (s, u)dul. (16)

As we said in the introduction we decide to call this
representation a Gel’fand—Levitan representation,
denoting K,(x, ) the kernels of the two Gel’fand—Levitan
representations. Equation (16) of this paper and Eq. (16)
of Ref. 8 can be summarized as follows:

K, (x,) =%[f0(’"””2 V(s)ds = fo""”” V(s) ds]
i (x XuS+y
+ z[f(xw)/z V(s)ds fo K (s,u)du
xay X=5=y
£ f(x-y)/z V(s)ds fo K,(s,u)du

(x=y)/2

+ fox'y V(s)ds fosK*(s,u)du:t fo V(s)ds
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x [$ (= s
fo K, (s,u)du f(m)/z V(s)dsf0 K,(s,u)du

(xey) /2 s
+ oy V(s)ds fws_xK*(s, u) dul,

(17)

K_ must satisfy the same equations (12} and (13) as K,
but the condition (14a) is replaced by

K_(%,9)],.0=0. (14b)

At this point it is interesting to visualize the two
domains. Let Dy and D, be the two domains described
in Fig. 1,

D§:D1iD27
so Eq. (17) reads

(x+3)/2

K (x,9) =3/, Vis)ds+ [“* V(s)ds]

+§[ffDiV(s)K(s,u)duds1 fszV(s)K(s,u)duds]°

(18)

Retaining the same segments (u=0,u=s,u+s=x+y,
u-s=y-x), wu=0,u=s, s+y=x-y) as boundary, D,
and D, can be defined for 0 <y <x. With this extension,
one can prove that Eq. (18) is quite general and valid
for 0sysux.

Using the method of successive approximations, the
reader can verify that the two kernels K, and K_ exist
under the conditions that the local potential V possesses
absolute moments of order zero and of order one. Inter-
est in the two kernels K, and K_ has been displayed by
Mehta?? and more recently by Dyson®® but until now no
integral representation has been given for both these
kernels. Before proceeding further a discussion of the
Gel’fand— Levitan domains is in order. Both are bound-
ed at finite distance and are built up with more than
three segments. When one desires to extend the repre-
sentation to a reference potential p(x)#0, the Riemann
solution R for the operator

82 82
Pyl +p(x) - p(»)

enters into the picture. Then the Riemann—Green
formula for the domain D and its contour C, is used,

0 a3 ] 0
/ [R(Ede+a—stu)]—[-a—1;RdS+-é—s—du] K

c

:ﬂ RVK(s,u)duds.
D

Two segments C, are characteristics, a third u=s
carries the boundary condition K(x, x). Consequently,
except in special circumstances, the reduction

(x4y)/ 2

K,(x,9) =1l ], RVds+ fo(x'y)/zRVds]

+3lf fp RVEKduds+ J fp RVEduds]
will not result. Such a special circumstance occurs

when the reference potential is the scalar centripetal
barrier
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FIG. 2. Marchenko domain,

pE)=-I{I+1)/x*
and when the K_ kernel is considered.

Because of this fundamental deficiency of the two
Gel’fand~—Levitan representations only the Marchenko
representation is considered in the rest of the present
paper.

Although Riemann’s method can be introduced, as
it has been done by Riemann himself, a simpler heuris-
tic presentation is given here. In the following, D
denotes Marchenko’s domain (Fig. 2).

Let L denote the scalar partial differential operator,

EL a*
L=7g- 27 —{ptx) - p()} (19)

and finally let R(x, y;s,#) be Riemann’s solution for
Eqg. (20a), which follows:

LR=0,
0
<——a~+—) R=0 ify-x=u~s,
dx oy (20)
3 d .
(5;_8—3;> R=0 ify+x=u+s,

R(s,u;s,u)=1.
From the last three Eqs. (20) it follows that
R(x,y;s,u)=1 if y-x=u-s,

One can now prove the two following equalities using
Eqgs. (19) and (20):

LffDR(x,y;s,u) Wy(s, u) duds =2Wy(x, y), (21)
L f(m)/zR(x,y;s, s) Wy(s)ds =0. (22)

The conditions for Eqs. (21) or (22) to be valid are
simply the usual conditions for the differentiation under
the integral sign.

In addition to Eqs. (21) and (22), provided that the
convergence of the integrals is uniform, the following
limits exist and have a common value which is zero:

zi_rg ffo R(x,v;s,u) Wi(s, w) duds, (23)

lim f(:w)/z R(x, y;s, s) Wy(s)ds, (24)

1yim ffo R{x, y;s,u) Wy(s,u)duds. (25)
~x

In addition to these zero-value limits one has
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lim f(:w)/zR(x,y;s,S) Wg(S)dS:fx Wy(s)ds. (26)

¥~ x

The Marchenko integral representation for the transla-
tion kernel is obtained as a consequence of these equa-
tions. Let us consider the partial differential equation
the kernel has to satisfy:

LK(X, y) = V(x)K(x, y)’

lim K(x,y)=0=1lim 2 Klx, ), (27)
y=w y+© 0y

Klx,x)=1% f: V(s)ds.

In view of Egs. (21)—(26), Eq. (27) is equivalent to the
Volterra integral equation

K(x,31)=%f° R(x,v;s,s) V(s)ds

(x+3)/ 2
+3 ffﬁ R(x,y;u,s) V(s)K(s,u)duds. (28)
Since we emphasized the dependence of the conditions

on the nuclear potential on the choice of the reference
potential, we report the following statement,

If the two potentials Vy and V; belong to the class
of acceptable potentials for the Marchenko representa-
tion, the reference potential V, being chosen, then the
potentials V,+ V, are members of the same class. We
write Vi, Voe C(V) to denote this property. Further-
more the potential V,e C(V}), resp. Vye C(V;), belongs
to the class of acceptable potentials, the reference
potential being Vy, resp. V,. The result can be obtained
by estimates on the Riemann’s solutions involved; it
also results from a simpler argument, %

If V; and Ve C(V), then
b4(x) = Polx) + f: Kol ») ¢o(y) dy, (29)
Bolx) =a0) + [ Ky, 3) do() dy. (30)

Equation (30) follows the fact that the existence of K,
implies that of the inverse kernel K.

We consider now the integral operator
A(x: y) =K10(x; y) +K02(x, y)
+ [7 Kyolx, 2) Ko (2, 9) dz. (31)

From Eq. (31) one gets
ST AG, ) ¢a(p)dy

= [ Kyolx,9) $o(3)dy + [ Kipx, ) $a(3) dy
+ [T [ Kyolx, 2) K (2, 9) () dz dv. (32)
Using Eq. (30) and a permutation of variables, one gets
rhs= [T Kyo(x, 3) $a(3) dy + o) = ¢y (x)
+ [Tdz [T Kyglx, 2) Kip(z, 9) () dy
= [7 Ko, 9) 6y(9) dy + bolx) — ¢y (x)

+ [7 Kqolx, 2) dol2) = dy(2)]dz = ¢y (x) = ¢y (x).
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The law of composition of Marchenko’s kernel is thus
established and the statement proved.

The kernel A(x, y) is identical to the kernel Kj,(x,y)
we wanted to construct.

An interesting feature of Eq. (31) follows. Let us
assume Vy=1V,, then

0=Kyolx,y) + Ky lx, y) + fxy Kyolx, 2) Koyz, y) dz. (33)

Equation (33) is an integral equation for the inverse
kernel Ky (x,y) of Kyo(x, ).

3. THE TRANSLATION KERNEL FOR VELOCITY
DEPENDENT INTERACTIONS

In this section the use of the transformation for
Schrédinger equations with velocity dependent interac-
tion (effective mass dependence) is discussed. Two
types of methods are used. The first one transforms
the velocity dependent potential into an energy dependent
operator. The second one transforms the same poten-
tial into an angular momentum dependent operator. Ad-
vantages of both methods are compared and an exten-
sion is proposed for systems of coupled differential
equations.

In the n-dimensional space, the Schrddinger equation
reads
h—?

- ﬁ{v[1 +p(N]V - U@) + E}dlxg, 25, -« -, %) =0, (34)

In Eq. (34) the following notation was used,

v:<_8 i 784) ,,2:%;;\,2. (35)
axy? Axy ' 7 Ax, ) i

As in the three-dimensional case, a partial wave
decomposition can be used followed by the construction
of the reduced radial equation (u,(»)/7) in the three-
dimensional case. For the reduced radial function #,,(7)
one has the equation valid for all values of n,

d d viv+1) _
('5’ [1 +p(’}’)) E’ — [1 +[)(7’)] —*72— - W+ k2]1lm(1’) =0.
(36)
In Eq. (36) we have denoted by W(») the potential
W) =U(r) + ___(n; D -p;, ,

and by the index v, the number obtained from the integer
m by

v=m+(n-3)/2.

In the physical situations the form factor p(r) propor-
tional to the density p(7) of the medium, is

p(n)~p(r).
This proportionality leads to these two consequences:
p'(0)=0 (37)
and
lim »p(v) =0. (38)

In addition to this assumption, we impose a positivity
condition
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1+p(r)>0 V7, (39)

If this positivity condition is assumed, no singularity
is brought into the operator through the effective mass.
Also if Eq. (36) is a matrix equation and p(») denotes
the diagonal matrix

i)i(’i’) 6” = (P("’))ij s (40)
one can define two diagonal matrices,
[1+pM]V? and [1+p()]V2, (41)

In what follows, solutions may be scalars or matrices.
When they will be scalars, the index m is used.
A. Method number one
Let us define (see Refs. 21 and 25)
u, () =[1+p)]V 20, (r). (42)

The factor 1 +p(»}] is the Wronskian of two linearly
independent solutions of Eq. (36). The transformation
defined by Eq. (42) is exactly the transformation from
a nonlocal potential to its local equivalent used in
Ref. 21.

The new radial equation for v, (r) follows,

(C%ZJ - V—(%;—l—) - W(r, k*) +k2) v,(r) =0.

We have therefore defined:

Wiy, k?) = Wy(r) + Wy (v) + B Wy(#),

wy(r) == [1+p(r)]* (— ip7+ip 1+ p]7 - (";1) p'),

W, () =[1+pN)]V U@L +p()]H 2,
W,(r) =p )1 +p(r)].

When the equation for v,(r) has been obtained one is in
a situation to inquire about the existence of translation
operators, For this inquiry one infroduces the two
operators

& vv+1)
—_2__._ +

= _ 2
Ao_dx x k,

d* v(iv+1) — W

pre x, B*) + B,

A=
and defines the solutions wg,(x), v,(x) specified by their
behavior at infinity, by

AOUOm(x) =0, Avm(x) =0.

The existence of the integral representation

V(%) = Vg (x) + f: KB x, v) vom(v) dy,

can be discussed. The kernel K(¥;x, y) satisfies the
partial differential equation

(22D @] K5,

92 v +1)
= [ - 1Y ke,

limK(E, x, y) =lim 2 K(F,x,y)=0, (43)
y® yao 0y
K, x,x) :%j: W(s, #*)ds.
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With the help of the Riemann solution R,
R,=P,(1 - 2x; — 2x; + 2x,7),

for the equation
9° - v(iv+1) R _[ o2 N V(V+1)] R
oxt < v Loy P v?

Eq. (43) with its boundary condition can be transformed
into a Volterra equation. Using Eq. (28), one has

KB x,y) =3 (:MIQR,,(x, v;s,x) W(s, K)ds

+§ff0 R, (x,y;s,u) W(s, B*) K(K*;s,u)duds.

(44)
According to previous studies the existence of K follows
the possession of moments of order 1 and order v by
the energy-dependent potential W(x, k).

Since
Wix, k') = Wylx) + Wy{x) + B Wy (x),

and W, and W, contain the density related form factor
p(¥) and its derivatives, the condition reduces simply
to the possession by the original nuclear potential U(s)
of moments of order 1 and order v.

A natural question arises, that of the analytical
dependence of K with respect to the energy A =#%,

Let us define a new function
_ 0 )
L\ x,y)= Py K(x, y;k*).

The integral equation for L is

LOGxy) =3 B35, ) p(s)1+p(s)] ds
+3J J, B, v;s, 1) p(s)1+p(s)
XK(\;s,u)dsdu + éf fo R, (x,v;s,u)

X W(s,\) L(A;s,u)ds du. (45)

Equation (45) can be solved by the method of successive
approximations. The upper bound

(x)¥ fK(X;x,y) ’ <30, <2C—2—+2) expdy(x)

can be used to obtain an estimate for the zero-order
term

LOO" X, y) = %f(xw)/?

+ éffa Rv(x, ¥;s, u)i’(s)[l +P(S)]4
XK, s,u)duds. (46)

By looking to Eqs. {45) and (46) it is obvious that the
analyticity of K follows its very existence.

dsR,(x, y;s, 8) p(s)[1 + p(s)]

The method just outlined extends itself to systems
of coupled differential equations of the form:

vi(v; +1) ()

2 120 L 1) - [14.p,0)]

- (ngl) Pyg'(?’) u.-(?’)-; Ui (7 uy(n) + By (7) = 0,

(4m
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where we have separated the diagonal operators from
the nondiagonal ones. Defining the matrix solution

v (x) =[1+p, () ]V 20y (),

and operating as we did, we obtain

4 00~ [ﬂ‘—’;fii’ A (2) + 12 wgﬂ(x)] ()

—; Wib(x) v;(x) + Ko; (x) = 0. 48)
Definitions used in Eq. (48) are
W (x) =1+ p; (x) ] (— p! i pfPll+p )t

(-1 piw)
2 x ’

WP (0) =1+ p; )]V 2 U (01 +p (]2,
WP (x) = p, (0)[1 + p, (x)] .
The matrices

WO (x) = W, 0 (x) P

W(“(x) — Wf})(x),

W(Z)(x) — W§2)(x) 5” ,

A=y (y;+1)5

B2 =E25.

ivij

ijs

are defined and the two operators

d A
Ao=ga tH -

2 A (49)
A= W +k2 _ ;2_ + W(O)(x)+k2W(2’(x) + W(“(x)

are introduced together with the matrix solutions
gp, Uy

The translation kernel K which is now a matrix
satisfies:

2
(58;1 + B - % - WO ) = P P (x) - W“’(x)) K(x,y)

= (53) Ko+t (kﬂ—f;{) .

31)1};_3 K(x,y)= O:E’i_n_g ai K(x,y),
3 Y (50)
K(x, x):éfx [W®(s)+ WD (s) + B WD (s)]ds.

For the discussion of the existence of K, the Riemann
solutions

Vi, 4]

X1y Xy
are used. *® Conclusions are identical to the ones we

reported in Ref. 9; they don’t need to be repeated in
the present paper.

When the matrix kernel K(k%;x, y) for the operators
defined in Eq. (50) has been obtained, one writes the
final representation for the matrix solution uy(x),

up (1) =1+ p(0)]V 2 {vg, () + f: K(k:x, ) vga (9) dy}. (51)
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8. Method number two (the Liouville transformation)

Although less extensive than the first method, this
second method has the advantage of not introducing an
energy dependence into the transformed interaction and
consequently into the transformation kernel. Its lack of
extension comes first from the requirement of the same
effective mass in all the channels. It comes also from
the appearance of potential decreasing like %% infinity.
The second method has nonetheless enough interest to
be developed for its own merits. The Liouville trans-
formation takes place in two steps. In the first step,
one defines a new radial variable x by

r

at
e 62)

The definition implies again 1+ p{f)> 0. Then one has a
one to one mapping between » and x. With this definition
and the assumption that p(t) goes to zero when ¢ goes to
infinity,

dx 1

RIET )

}1_@3 ar

So instead of Eq. (52) we write definition (53) for x
which is its equivalent

x:r+/r {@+p®]V = 1}at. (53)
0

From Eq. (53) one sees that v goes to zero with x and x
with 7.

Using Eq. (52) one gets
d a d, 1 1 . d
o VP =g e Trp Pan (54)

In Eq. (54) p denotes (d/dx) p(r(x)) (not to be confused
with dp/dv which we denoted earlier p’).

With the help of Eq. (54), Eq. (36) becomes

& 1 p 4 v(iv+1) B
(d’;f T 15p dx —<1+P)7r’ Wix )+k2) () = 0
(55)
with
W(x):U(x)+£f’_;_12 p7’ :U(x)+91';—1—2 _71;(14.17)-1/2.
(56)

Again the index m denotes scalar solutions.

The second step of the Liouville transformation is to
renormalize the radial wavefunction so as to eliminate
the velocity dependence from the equations.

For this purpose one defines

Ux) = (1 +9)V 4y, (x) (57
and uses
Lyt y i), (58)
dx dx *
2238 J. Math. Phys., Vol. 18, No. 11, November 1977

& e & s d
a?u:(1+p) “435;‘5 ,U_Ep(1+p)~5/4 _d_x_ v
+ =P+ o 51+ p)H o (59)

Inserting Egs. (57)—(59) into Eq. (65) gives

vy +1)

2
(Edg_[]‘+p(x)]7—(;)——V+kz) V=0 (60)

with 1 3
V:(l +p)1/4 U(x)(l +p)~1/4 + .(_n_;_ ;{Z (1 +p)-1/'z

- 3P+t - 4pl +p)t. (61)
As x goes to infinity the centripetal barrier goes to
v(iv+1)
(x+c)F °

where ¢ is the constant defined by
c—f {1~ /2 ar.

In the same way, by a Taylor expansion, as x goes to
Zero

[1+p@)

=x[1+pO)Jt/2,

dr
IV(X) x d~x x=0

The centripetal barrier at the origin is therefore

pio]l JUE L verD,

Equation (60) is first rewritten as

& vy+1) viv+1)
[W——Tc - (V+[1+p ]T—(x)
- -‘i"};l—)>+ k2] (%) = 0. (62)

To shorten the notations, we define

(v +1)

VO ={1+ p(x)] T

Notice that the potential V'V does not possess any
singular point at the origin and decreases like x~ 3 at
infinity.

V(V+ 1)

Back to Eq. (61) where V is defined, and still assum-
ing the relationship between p(r) and the density, we
have

»(0) =0,

The only singularities at the origin or at infinity of
vV + V1 are those possessed by the original potential
Ur).

According to the normal procedure the two differen-
tial operators

2

AE%, _fz SV V)R,
& A

AQE—de - ;2- +k2,

where V may be a jXj matrix. If present, nonzero
threshold energies would require an exponential de-
crease from V' and V. The x decrease of V! obliges
? to be a scalar. Furthermore, 0, found in the bound
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x (2}

5B

FIG. 3,

for K, together with the x~° decrease, restrict the ex-
tension to systems with maximum v, =3. Matrix solu-
tions of the differential matrix equations

Avy(x) =0, Age ) =0,

are now related through an integral transformation. We
write this transformation as

val) = va () + [ Kx, y) va(y) dy. (63)

The equations for K(x, y) are similar to Eq. (27), within
the restricted class of operators specified earlier.
K(x,y) exists if the original potential U possesses the
appropriate absolute moments. % From Eq. (63) one
returns to the original variable x by

ur () =[1+p ]V o) + [ K(x, ) vgaly)dy] (64)

and
uy(r) =[1+p )V Hogule] + L7 Klx(), y(s)]

Xv[ y()1x[1+p(s)]V/ 2 ds}. (65)
From Eq. (53) one obtains the asymptotic relation
x=v-c+ frm {1-[1+p(s)I %} ds
:r-c+0[f: dsf(s)]. (66)

For illustration in Fig. 3, typical curves x(r) are con-
structed. Returning to the scalar case we have the fol-
lowing asymptotic behaviors:

u,(r)~ a, sin (!zr— mTﬂ + ém) ,

(67)
¢,(x)~ b, sin (kx - 1;1 +n,,,> .

Using Eq. (66), one sees that the limits (67) as x and »

go together to infinity imply the simple equation
kr—c) +n,=kr+3,

or (68)
N, = 0, +kc.

Equations (66) and (68) are the basis for Calogero choos-
ing a new variable x =7 — ¢ and identifying velocity de-
pendent with static hard core interactions.
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4. CONCLUSION

In the paper we assumed Schrodinger equations with
an effective mass and showed the existence of transla-
tion operators, in the sense of Marchenko, between the
free Schrodinger equation and the Schrodinger equation
with an effective mass in addition to the nuclear poten-
tial. Two methods were used to achieve this; they had
a common characteristic, the full Schrodinger equation
was subjected to some transformation prior to being
considered for translation kernel purposes. One may
wonder whether this preliminary transformation is
necessary: The answer is no, but it is convenient as the
following will show. The two operators

dt d
Ag=aylx) a2 +bx) I + cylx), (69)
d d
A=alx) EQ‘ + b(x) EJ—C +c(x), (70)

may be directly considered. When Eq. (1), XA,=AX,
is developed one obtains the partial differential equation
for the kernel

K(x,y).
They are

2
a%z[K(x, y) ay(y)] - a—i}[K(x, M b W]+ Kx,y) co( 9)

2
— a,(x) -aa? K(x, y) + by (x) a—i K(x,9) +c;(0) K(x, y),

(11)

with complicated boundary conditions. The restriction
for the translation operator to be of the Volterra type
leads to the following two constraints on the coefficients
of Egs. (69) and (70):

aqy(x) = ay(x) (72)

and

by(x) = bo(x) = = K(x, x) ay(x) + ay(x) K{x, x). (73)

Inspection of the system thus obtained, convinced us it
was not worth pursuing except when the two conditions

a=ay=scalar, b=>5b,=0

are realized.

At the termination of this paper we can assert the
validity of the Marchenko representation in a wide
variety of physical situations: many-channel scattering
in a »-dimensional space with centrifugal force or
Coulomb force or even both, with or without an effective
mass. Along our study we were led to abandon the
Gel’fand—Levitan representation. It is not such a dam-
ageable result, the connection of the regular physical
solution with the physical solution is not maintained
when the passage from a one-channel to a many-channel
problem is operated. In addition one should say the
Marchenko approach is the one which is appealing to the
creators of the solution of nonlinear problems via in-
verse scattering methods.’

We must emphasize that the determination of the con-
ditions the nuclear potential should satisfy for the
existence of the translation kernel, is only a first step
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into the inverse problem. When translation kernels for
a class of potentials have been proved to exist, one ob-
tains upper bounds for.these translation kernels. With-
in this class of potentials, it may be possible to con-
struct a fundamental equation between K(x, y) and some
spectral matrix F(x, y) as Marchenko or Gel’fand—
Levitan did. The upper bounds satisfied by K(x, y) in-
duce upper bounds that the spectral matrix F(x,y) it-
self verifies, Considering now the fundamental equation
as an equation for K(x,y), the necessary bound, which
the spectral matrix verifies, becomes the important
element in deciding whether or not the fundamental
equation possesses a unique solution., This discussion
is the essence of the inverse problem.
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Page 1163, just before Eq. (11): the following are the
corrected versions of Types I and II:

m,
C
my My My
O O==~=0 O O=~ =0 O (Typel)
1 2 » -2 1-1
wy my m m,
C—e———O= = =0 * &= = = = ® (Type II)
1 2 z z+1 -1 )

Page 1163, at the end of line (- 2) A, should belong to
line (-3).

Page 1165, line 1, left column: The word “will” was
blotted out in the printing process.

Page 1167, first line immediately after Eq. (35): the
1hs of the equations should read

5(S{4) and B8(xiH)).

r=1

Page 1168, Table V: the second line should read

11 (#-1 i=k
+2; (Z)(l = k) 2im; + 25 [pP+ 2= p) il - k) m;
k=p ‘i=i izp

-1
+ zZ}1[¢>2+(2—p)k](l—i)m,..

izk+

2240

Journal of Mathematical Physics, Vol. 18, No. 11, November 1977

Page 1169, Table VII, rightmost part of lines for
1 ="T7: The numbers blotted out in the printing process
are 16 (first line) and 15 (second line).

Page 1169, Table VII, last column for 7 =8 (last
entry under 3): the condition 1 <7< 16 should apply to
both equations in that last /=8 entry.

Page 1170, Table VIII: the large brace should only
extend to include the equation &, = i(ey — ¢, — e3- ¢y).

Page 1171, Table IX, left-hand entry 2: the first
factor on the rhs of the I,(D,) equation should read

(m, +1).

Page 1172, Eq. (46): The lhs partially blotted out in
the printing process, should read: (H, );;.

Page 1173, Table XI, bottom line of the E; entry:
C%, and C%; should read C%; and C};, respectively,

Page 1174, Table XII, under 1st labeling:

-1 -1
(2 —2l—> should read 2 ( 37 >

Page 1175, the third to last line should not include .
Page 1176: the rhs of H, 2 equation should read
diag(my/c, my/c +1,my/c +1-2/c, ete.).
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