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The results of Marchenko and Ljance are unified and extended. We prove the existence
of a fundamental equation for an / # 0 non-Hermitian system and identify which the
scattering data are. However we have included neither threshold energies nor Cm;'igmb
interactions. Conventional methods are used to determine which necessary conditions
must be imposed upon the scattering data so that they can be used in the inverse pr'ob.lem
for definite angular momentum. Indications are given on how to overcome our restrlctx(?ns
for the proof of the existence of the fundamental equation and the analysis of its properties.

1. INTRODUCTION

The present paper contains no new tool. The methods used were proposed by
such theorists as Newton [la—c), Marchenko [2a], and Ljance [3a]. The interest of
the paper lies in its extension of these methods: it concerns non-Hermitian differentia.tl
systems so it applies to dissipative systems. However in contrast to Refs. [2a, 3a] it
allows for I = 0 angular momentum coupling. As such it extends Eq. (4.13) of Ref.
[1a] and has the same generality as Eq. (9.32) of Ref. [1b]. Except for its noninclusion
of Coulomb forces and of channel threshold energies, the present paper, which extends
Marchenko’s formalism, deals with a many-(finite-) channel effective Hamiltonian.
Cox [1d] studying the Gel’Fand-Levitan formalism includes the channel threshold
energies. '

We have proved the existence of translation kernels in a very large set of circum-
stances (roughly speaking, all the circumstances that one can encounter when dealing
with nuclear scattering [4a-g]. The conditions for the existence of a translation kernel
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were expressed in terms of inequalities that integrals of the potential U(x) must satisfy.
Their general form (notation o) is

o) = [ 1A Ui ds < oo,
V@I = sup 3| Ui

the | f(s)| and | U;(s)| are the absolute values of f(s) and U,(s). The expression o(x)
contains the case where f(s) reduces to |s[*. We will refer to these inequalities as
“moments” of the “nuclear potential.” These conditions changed when the “reference
potential” itself was changed. At no time however, while in the process of establishing
our results, have we made any use of the Hermitian property of the matrix nuclear
potential. Since translation kernels exist whenever the conditions of moments appro-
priate to the choice of a reference potential are satisfied, and this, whether or not the
nuclear potential is Hermitian, one can wonder whether it is not possible to go further
inside the inverse problem.

As is well-known, the final goal of the inverse problem is the reconstruction of the
differential Schrédinger equation trom a reterence equation. Following Marchenko,
the steps tor this reconstruction are as follows:

(a) to prove the existence of a fundamental equation;
(b) to recognize and enumerate the scattering data;

(c) toformulate necessary and sufficient conditions to be imposed on the set of
data candidates to be the “scattering data’ for a Schrédinger equation;

(d) finally, to construct the nuclear potential. To these steps, Marchenko in
Refs. [2b. c] added the important philosophical discussion of the stability of the
reconstruction,

The first step therefore is t: ask whether a fundamental equation exists. A first
result of this paper is to prove such an existence, in a case which extends Refs. [2a,
3a] and to suggest that4he Marchenko method of special transformations may be
avoided in the solution of physical inverse problems. In the proof we follow Mar-
chenko, that is, we do not postulate the existence of a Parseval identity. Alihough
threshold energies and Coulomb forces have not been considered, their incorporation
in the first step of the work does not generate essential difficulties as will be shown.
Unbhappily this is not true for the subsequent steps.

During Sections 2, 3, and 4 of this work it becomes apparent that an essential
difference exists between Hermitian and non-Hermitian systems; while for the first
one the existence of translation kernels and behavior of T-matrices for k = 0 guarantee
a Marchenko equation, for the second, one must make sure that the point spectrum
and the set of spectral singularities remain discrete.

This difference leads us in the second step (Section 5) to separate Hermitian from
non-Hermitian systems. We found that it was important to specify why the methods
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which worked in Hermitian cases were of no use in non-Hermitian cases. A separate
paper, on the subject, was therefore written; it is summarized here where we will
simply insist on the results already obtained in Ref. [2a]: while for Hermitian systems
the uniqueness of the solution of the fundamental equation depends on properties
possessed by the homogeneous equation associated with the continuum part of the
spectrum, no such dependence exists in a non-Hermitian system. The incentive to
analyse the non-Hermitian problem develops when we become aware of Ref. [3a]
and its development in Ref. [3b].

Since the solution for the / == 0 complex but scalar case was given by Ljance, it was
appropriate to look for an extension to a system and if possible to an I % 0 system.
In the same way, it was appropriate to solve the inverse problem at fixed energy as in
Ret. [5] using the tools provided by Ljance.

Our development is restricted to the discussion of the fundamental equation related
to non-Hermitian systems and stops at the point when one needs to determine whether
a set of elements has the properties required in order to constitute a set of authentic
scattering data.

To proceed with the study, the potential is separated into a reference potential
plus a nuclear potential; it is then assumed that the nuclear potential allows the
existence of a translation kernel Refs. [4a—g]. A limitation of our work should however
be indicated; we restrict ourselves to solutions specified by a condition at infinity
{Jost’s solutions). Reasons for this limitation are also found in the aforementioned
set of references.

We can now delineate the general plan of our paper. In Section 2 notations are
recalled and an important function denoted A(k) is defined. In Section 3, the zeros of
A(k), possible eigenvalues for the differential system, are discussed. Section 4 estab-
lishes first the existence of a fundamental equation. Afterwards remarks are formu-
lated to orient the remainder of the work. In Section 5 the uniqueness of the solution
for the fundamental equation and the complete continuity of its kernel are proved.

2. NOTATION

To fix the notations, we consider the non-Hermitian system of operators

e [ HLED

dx? x2

— U(x)] — A2 0y

where /2 is a scalar matrix with 43, = k2 8,;. In Eq. (1) we note

Ui(x) = Vis(x) + iWy(x),
(L) = I 81‘3‘ .
The system defined by (1) is not Hermitian, i.e., it does not possess the Hermitian
symmetry
U;';(x) # Uy(x),
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where the asterisk denotes the complex conjugation. The following notations are
used:

(U*)if - U:; 3
(UNy = Uy,

Ut=u™ o (U"y=U;.

Throughout the paper it will be assumed that the matrix (—1)* is scalar, ie.,
parity conservation is assumed. Together with the system of operators defined by (1),
we consider the following adjoint system:

77 1 d? L{L + 1
H——A&::_[dx2 - (x2 )

— U+—] — A @

We will also note U+ as U.
A reference system of operators is introduced by
@  LIL+ 1) \
e = T4
for (1) and (2). The nuclear potentials U and U* satisfy the conditions for the exist-
ence of translation kernels. These conditions are rederived in Section 5 when it is
necessary to establish a bound for the kernel of the fundamental equation. Let / be the

largest angular momentum present in (1) or (2); the necessary conditions include
the moments of order 0 and 1 of the interaction U(s). They are

f: sl Ulids < 00, a=0,1. (3a)

If one wants the translation kernel to be absolutely integrable, one needs to require

(3a) for « = 0,..., I, I + 1. In the non-Hermitian case we replace (3a) by the Naimark
condition of Ref. {3¢]: .

f: exples) || U(s)| ds < co. ' (3b)

The Naimark condition assures the analyticity of the S-matrix in the strip | Im k | <
€; it guarantees also that the point spectrum and the spectral singularities remain
discrete and do not accumulate on the real axis. Condition (3b) is not a necessary
condition for this discreteness as shown by the example where the interaction contains
an imaginary part which is a “small” perturbation over a real part verifying (3a).

A third condition similar to (3a) and denoted (3c) is also introduced:

fo s UG)lds < 0,  a=1,2. (3c)
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To complete our notations we use “barred” and “unbarred” elements: unbarred
elements refer to (1), barred to (2). Unless it is explicitly stated the solutions of the
equations, we consider are n X n matrices.

The solutions ¢ and ¢ of the equations (H — A% = 0 (1) and (H — A2 =0 (2),
their limits, and the S-matrix depend on the wave number &; they can therefore be
studied within the framework of the theory of complex variables and their analyticity
can be discussed as depending on k.

Now we consider the special solutions of the Egs. (1) and (2) which are defined by
their behavior at infinity: they are denoted F and F and called the Jost solutions. Their
Fourier-like integral representation is what we call the Marchenko representation.
Since we assume the existence of a translation kernel, for the Marchenko representa-
tion, we write directly:

Fyle, %) = k) + [ KCx, 3) Hiky) dy, (4a)
Fo(k, x) = Hykx) + [ KCx, y) Hy(ky) dys (4b)

H(kx) denotes accordingly the diagonal matrix:
[ (khn)]y = (k) 8, o e D, )
We will introduce later F_(k, x) related to Hy(kx) by an equation similar to (4a)
Hiykx) o 7/t

Due to condition (3b), F,(k, x) is well-defined for Im k > —¢/2. Due to the existence
of K, when x goes to infinity for (Im &k > —e/2, we can write

[Falk, D] ~ [Falk, 0)ly; ~ ™08,
When x goes to zero, the following limit Refs. [1b, ¢} is introduced
H,(kx) = QL — DN (kx) L ++ O(k—Lrex-L+2), (6)

If U = U+, we have

F.(k, x) = F (k, x)
and

K(x, y) = K(x, y).
If U = U7 we have instead

[Fu(—k*, 0)]* = (=) Fuk,x) for Imk = —¢2.
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As in the scalar case, solutions which are regular at the origin may be defined.
However, in contrast to the scalar case it is difficult to define a regular solution by a
boundary condition. The integral equation for the matrix case which would have been
the direct generalization of the integral equation for the scalar case diverges at r == 0
unless negative moments of the off-diagonal part of the interaction are assumed.
Newton [la, c] has shown that if one adds to the inhomogeneity of the previous
integral equation an appropriate and constant term, dependent on the ofl-diagonal
part of the interaction, and which is a right multiple of the regular solution of ()
without interaction, the integral is made to converge. The convergence is obtained
via a counterterm. The result is a quite complicated equation which is not given in the
present paper since we do not use it; the interested reader may refer to Ref. [la] or
[1c] where an explicit form for the equation is found in the neutron-proton case. The
solution G(k, x) for this corrected equation will be called, from now on, the regular
solution of Eq. (1). It can be shown [la, c] that G(k, x) is an analytic matrix function
of k for k = 0, under the simple condition (3¢); in addition we have the equality:

G(k?, x) = [G(K**, D)]*. M

In general, we consider U % Ut and F (k, x) 5 F(k, x). This is the reason for
introducing the bar symbol.

A lemma is now established which extends the Wronskian theorem to non-Hermit-
ian systems. We consider the two adjoint systems of differential equations:

d? LL+1) g '
[+ ke = = = U] w9 = 0 (&)
72 L{lL 1
e+ 1or = 252 — v e =0 (80
Taking the adjoint of Eq. (8b) gives
. d* LL+1n_
o e e (8

Equation (8c) is postmultiplied by u, while Eq. (8a) is premultiplied by v*. Sub-
tracting one result from the other yields
d? d?
+orexy S % 2% ——
vtk )dxzu dx2l'(k Yu =0,
)

vk*) u’ — vt (k**) u = const,
Wronskian [vt, u] = Wr[vt, u] = const. We state the following lemma.

LemMa.  Let u(k?, x) and v(k**, x) be solutions of Eqs. (8a) and (8b); the Wronskian
Wrlv*, u] is independent of the x-variable.
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As a consequence of the lemma, some Wronskians are computed since they will be
used later. We denote by e-tko-Lr/2 the diagonal matrix whose elements are
o-itka=tm/d §.. . Due to Egs. (3a) and (3¢) and due to the existence of K and Eqs. (4a)
and (4b), Egs. (1) and (2) have a f andamental system of solutions for any nonzero
value of k in the strip | Im & | < ¢/2. These independent solutions have the following
asymptotic behavior:

Fulk, x) o exieini,
Fik, x) = exitha=Ln/),
In the strip | Tm k | < €/2 we have
Fu(—k, x) = (=)"Fa(k, %), (10a)
Fu(—k, x) = (—) Flk, x). (10b)
Wwith (10a) one completes (7) by
[Fi(—k*, x)]* = (—DEF(k, x) = F_(—k, x).

Consequently, the Wronskians between solutions with the same -+ of — subscript are

We[F+(£k*, x), F(k, X)] = +2ik, (10¢)
Wr[F+(FFk*, x), F(tk, x)] = 0. (10d)
We also have
Wr[Fst(k*, x), Fuk, ¥)] = -2ik, (10e)
Wr[Far(k*, x), Felk, x)] = 0. (10f)

Until the end of this section we assume k + 0 and introduce the solution G(k, X)
regular at the origin.

The irregular solutions F.(k, x) and F.(—k, x) of Eq. (4a) constitute a fundamental
system for Eq. (1). The same is true for the two irregular solutions F.(k, x)and F_(k,x).
One can therefore find two constant matrices 4 and B (A4’ and B') and express the
regular solution G in the strip | Im k | < €/2, k #0, by

Gk, x) = [Filk, )4 + F_(k, x)B), (1)
G(k, %) = [Falk, x)4’ + F(—k; x)B']. (12)
Use of the system of Eqs. (10) gives

WilF, +(k*, x), Glk, ¥)] = 2ik4, (13)
WrlF_+(c*, ), Glk, )] = —2ikB. (14)
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We are led to define

Fit(k*) = Wr[Fyt(k*, x), G(k, x)] k-
for a.ll values of x including x = 0
With the help of Eq. (15), we obtain 4 and B:

E]

il
A=~ F ok Kk

B =t} P ko,

The i ' i
regular solution G(k, x) is therefore expressed by the equatio
n:

4 - J— i Fal
Gk, x) = 5 [F_(k, x) F (k™) — Fo(k, x) F,* (k)] -
J L+l

. ( >

l Inl K I < 6/2‘ ‘]ULt as we Wllte Eq‘ (] ‘)s we can expless G(k’ ;()'

- i [ -
Gk, x) = 5 [F_(k, ) F(k*) — F(k, x) F,(k*)] 1
] pRs)

In Eq. (17b) the following definition has Been used:

Fuot(k*) = Wr[Fet(k*, x), G(k, x)] k&
The Wronskian |

HI[G (IC s "‘)’ G(“’ "‘)]
1S I .
< € 2

|  FA)F_A(k*) = F (k) F (k™).
We rewrite Eq. (17a) as

1
Gk, x) = — [F_(k, x) — Fy(k, X) S(k)] F_+(k*) 1

J LA

where we have defined

S(k) = Fi}(k) F_(k) = F,*(k*) F*7'(k*)
We might also have obtained

Gty — =
(ks X) = S [Fu(—k, x) — F,(k, %) S00) FH(—k*) o)

ja2s)

(15a)

(16)

(17a)

(17b)

(15b)

(18)

(19)

(20)
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using the factorizable matrix S'(k) associated with S(4); the matrix §'(k) is defined as
follows:
S'(k) = FyMk) Fyo(—k) = F &) F, (k") 2y
since F (—k, x) == (—L)* F_(k, x), one has (— 1" §'(k) == S(k).
Equation (20) shows that the zeros of det F,(k) occurring for Im & > 0 play an
important role in any forthcoming discussion.

3. Zeros OF A(k) == det F(k)

In this section all the F’s are F,’s so we omit the subscript --. 1n addition to remain-
ing in a physical situation we restrict ourselves to wsirix nuclear potentials

U=V +iWw
with ¥ and W real and symmetric matrices. Such symmetry belongs to the optical
model potential and to its generalized forms as derived by Feshbach [6] or by Fonda
and Newton [7a, b]. Due to this symmetry, F and F are no longer independent

matrices but are related by the following equality:

F(Tk*, X)) = F(+k, x)(—)* for Tmk > €2, (22a)
and
G(k2, x) = [G(k®*, x)]*. (22b)

If U = U7, then due to Egs. (22a) and (22b), Ref. [8],
F A(Fk*) = (—DFF.I(xk) = F.T(Fk) and S =57, 23)

Thus a symmetric potential gives a symmetric S matrix. Let ¢(x) be a normalizable
vector solution of Eq. (1); we get

d? L(L +1
(G + ) g — (KD v ) g = . 24)
The formal adjoint of Eq. (24) is
(6_1_,_2. 4 k2 *) ¢ (x) — (ﬁ'l'(x)( ( + ) + Vo W) =0, (25)
Since ¢ is a normalized vector, we have

f FHx) $(x) dx < 0.
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Therefore we obtain
Im k2 f $H(x) d(x) dx = j () W(x) ¢(x) dx.

Let us assume that for any vector solution of Eq. (24)

B

[ $7@) W) ¢x) dx <0, 26)

Then Im k? <C 0. The inequality (26) applied to scattering states measures the loss in
the current density. It guarantees that the potential is absorptive. Absorptive poten-
tials are the only ones obtained by the reduction of a Hermitian Hamiltonian to one
of its subspaces [6, 7]; they appear also in any closed physical system [8]. A sufficient
condition to have inequality (26) is that the skew-Hermitian part of H be semi-
definite negative. Condition (26) is considerably stronger for local interactions than
for nonlocal ones.

Normalizable states occur for the eigenvalues £, = R, 4 iI", (I, < 0); then k,, =

+ iB, (B, = 0), that is, n/2 < argk,, <, and F(k,)* has a pole Then A(k,,)
vanishes. To discuss the zeros of 4(k,), we define a matrix solution H(k, x) of Eq. (1),
after Newton [Ic] by the equation

H(k, x) = Hykx) A(k)
(Hl(k*c) f u(ks) + ukx) f Hl(ks)) U(s) Hik, s) ds. (27
The matrix u(kx) which appears in (27) is the Ricatti-Bessel matrix; it behaves as
(kx)- /(2L + 1)!! when x goes to zero and as sin(kx — Lw[2) when x goes to infinity.
As x approaches infinity one obtains
H{k, x) ~ H,(kx)A(k).

As a consequence the following yields H(k, x) = F(k, x)A(k), where the matrix A(k)
is defined by the equatien

AR = 46 T~ [ ulks) % U(s) Flk, 5) ds A(K), 28)

and F(k, x) is defined by Eq. (4a). To obtain a more transparent expression for
H(k, x), the integral equation for F(k, x) is considered:

F(k, x) = Hy(k, x) -+ f: [H(k, x) u(ks) — Hy(ks) u(kx)] —}; U(s) F(k, s) ds. 29)
By Eq. (15b) one gets

F(k) = —k* We[GH(k*, x), F(k, %)).
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Since U = UT, we also have, using (22b),
F(k) = —kt Wr[GT(k, x), F{k, x)].
Therefore defining

—J(k) == ljg‘} Wr[G(k, x), Hy(kx)]
and using Eq. (27), we write
k) = ) |1+ [ utks) 7‘(- UGs) Fik, 5) ds]. (30a)
0

We have assumed in (30)

>3 1
0= Iﬂ% Wr[GT(k, x), u(kx)] f Hy(ks) ~;(— U(s) Flk, s) ds. (30b)

According to [1¢c] this conjecture is verified when the nondiagonal elements of the
potential satisfy

j | V()] xmdx < 0,  m o= |l — |
1]

We show that the conjecture has a larger domain of validity by particularizing a
theorem of [2a, p. 167} concerning the coupling of an / = 0 with an / == 2 wave. The
particularization of the theorem reads: if the interaction is constant for x +=0;
there exist two independent solutions S; and S, whose behavior at the origin is as
follows:

5 = (x -+ O(x%), 0(x4)) G = (1 -+ O(x), O(l/x))
L70(x?), x3 + O(xy))’ 2 0(x), 1/x* + o(1/x))"

The symbol O(:++) denotes a quantity whose ratio to that contained in the bracket is
finite on passing to the limit.

With GT ~ S, and F ~ S, one obtains in (30b) a matrix which vanishes as O(x)
when x goes to zero.

With Eq. (30), we write Eq. (28):

A(k) = AR — [JM(k) k~LF(k) — 114(k)

or
A(k) = Ak) F1(k) K2J(k).

The matrix F-1(k) is constructed in the usual way by using the determinant of F
and the transposed matrix of the cofactors y(k): .

F(k) == TE@ 38,
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This yields the final definition:
H(k, x) = F(k, x)x(k) kXJ(k). 3D

The exact form of (31) is less important than the existence of a matrix A(k) such that
[see also Eqs. (44a) and (45b)]

H(k, x) = F(k, x)A(k).

With Eq. (31) we consider the case where I', is a nonzero negative number. The k,,
itself is strictly complex, not merely imaginary. Therefore the elements of H{k, , x)
decrease exponentially when x goes to infinity as exp(—p,x) does:

ky = a, -+ B, .
On the other hand, since 4(k,) == 0, there exists a vector solution
Hky , x)n,

where 7 is some specific vector. This 7-vector solution represents therefore a normali-
zable state which is regular at the origin.

In other words if 4(k,) = 0, Im k,, > 0, we have proved the existence of a singular
matrix A(k) or equivalently that of p < n linearly independent vectors. The rank of
A(k) is p and the dimension of its kernel is n — p. Now the left product of 4(k) by
F(k, x) reproduces the physical solution.

For the same discussion of the zeros of A(k), instead of (27), we may consider the
Wronskian

—k+L Wr[GT(k, x), F(k, x)] = F(k). 32)

If 4(k) has a zero of order m for k = k; , there exists a vector a(k;) such that
lim WrlGT(k, x), F(k, )] alk;) = (k — kp)? Ekp), 1 <p<m<n, (33)
where E(k,-) is a complex number, Following [1b, Eq. (9.15)] we write
Gk;, x) by = F(k; , x)a(k;). €5

The Lh.s. of (34) represents a vector which vanishes at x = 0, while its r.h.s.
decreases exponentially. It represents therefore a normalizable state giving us the
result we wanted.

Bound states may also exist for I', = 0 for k, = if, purely imaginary if 4(i8,)
vanishes. Now if 4(k) vanishes for k,, > 0, the state is not normalizable. The vanish-
ing A(k) for k = 0 represents or does not represent a normalizable state: a special
discussion is needed [la).

In the case of absorptive potentials I', <0 and 8, = 0, &k, corresponding to a
normalizable state belongs to the third quadrant.
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The possibility of 4(k) == 0 for real k, is not excluded by the discussion. If A(k)
vanishes for real k one has a spectral singularity. Since 4(k,) == 0 implies A(—k,) =
for real k, , spectral singularities are excluded for Hermitian interactions.

if the interaction is absorptive, a general argument of [3b] shows that a spectral
singularity occurs only for k, < 0. If the potential is simply complex, it may occur
at any real k.

Of course there is no way of proving that the poles of F(k)~! are simple. However,
it can be proved that the number and the order of these poles is finite.

Since the solution for the scalar case has been given by Naimark [3b], we extend
his solution to the matrix case. Results obtained in [lc] are used. The idea of the
proof is that 4(k)™* [resp. F(k)™'] is a meromorphic function [resp. matrix] in the
upper half plane whose limit at infinity is one [resp. unity]. In a first step one shows
with [1¢] that

. |

lim 4(k) =1+ o (,:) (35)

Equation (35) excludes the possibility of an accumulation point at inﬁni?y for the
zeros of A(k). In a second step one discusses the zeros of 4(k) on the real axis k% >0,
When one deals with a non-Hermitian potential a condition stronger than (3a) is
necessary. Here is the first essential difference between Hermitian and non-
Hermitian systems. Let us assume condition (3b), although a somewhat weaker
condition (3d) has been shown to be sufficient.

j * explex] | UMl dx < oo, (3b)

0

[ ® explext/?] || UGl dx < oo. Gd)
(i}

If there exists some ¢ > 0 such that (3b) is satisfied, the function 4(k) wh%ch goes
to one at infinity is a holomorphic function of k in Im k > -—e/2. The set of its zeros
in Im k > 0 is therefore finite in number and in multiplicity.

Since in the Hermitian case the equality

Ak = A5(—k*)

excludes the zeros from the real axis k 5 0, a strong condition, as (3b) or even (3d)
is not necessary to obtain the finiteness of the set of zeros.

With (3b) real zeros of 4(k) may exist but they will be discrete. A further result
which uses (3¢) can be obtained if the potential is absorptive, then real zeros are
restricted to the k <C 0 part of the real axis; obviously if it is emissive, they are
restricted to k > 0. They belong to the continuum spectrum and have received the
name spectral singularities (elements of the continuum spectrum where the Fredholm
determinant vanishes).

When scalar potentials are concerned, the analysis of these zeros is simple. When
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they happen for & < 0, they describe the absorption by a black sphere. The wave-
function vanishes at the origin and has the asymptotic behavior of a purely incoming
wave [10]. Their presence in the resolution of identity limits the Parseval identity
to the subset of L,(0, c0) made of elements with an exponential decrease. Happily
this subset is dense in Ly0, o).

There is no presently known condition on the functional form of a complex
potential which prevents the existence of spectral singularities. Condition (3a)
guarantees the existence of a translation kernel and condition (3c) guarantees in the
Hermitian case that the regular solution introduced previously is an analytic function
of k. The same two conditions guarantee also, in the Hermitian case, that the discrete
spectrum remains bounded and finite.

In the non-Hermitian case (3a) and (3c) still guarantee the analyticity of the regular
solution but a stronger condition must be used to keep the set of spectral singularities
and the point spectrum discrete as does Naimark’s condition (3b).

Section 3 may be extended to situations which incorporate threshold energies; a
first price to pay is to require more from the interactions, a second price is to allow
bound states in the continuum.

4, THE FUNDAMENTAL EQUATION

In the present section, we follow Marchenko’s method, that is, we do not postulate
the Parseval identity. Another attitude can be accepted: it consists in proving that
the class of equations under scrutiny possesses Parseval’s identity. When the Parseval
identity has been obtained, one deduces the fundamental equation. This aititude is
that of Refs. [la, d].

Following Ref. [2a] we rewrite Eq. (18) for [ Im & | < /2, k % 0, using Eq. (23)
valid for a symmetric matrix potential:
(—20)G(k, x) KE[F,T(R)) T, = [F (k, x) — F.(k, x)S(K)]. (36)

Now we transform (36) by the introduction of translation kernels. The right-hand
side becomes

rhs, = Hykx) + f: K(x, y) Hyky) dy — Hy(kx) S(k)

= [ K y) Hitky) SO0
The matrix 1 — S(k) = T'(k) is inserted for a second modification. One gets

r.hs. = [Hylkx) — H,(kx)] + Hy(kx) T(k)

-+ fm K(x, z) dz[Hy(kz) — H{(k2)] + ij K(x, z) Hy(kz) T(k) d=.

595/126/2-14
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Finally with —2iJ(kx) = [Hykx) — H,(kx)] we have
r.hs = —2iJ(kx) + Hykx) T(k)

— 20 | K(x, 2) k) dz + [ K@, 2) thka) dz TG,

So we get the equation

—2i[Gk, x) KHET(R) b — J(n)]
— Hykx) T(k) — 2i | °° K(x, 2) J(ka) dz + | * K(x, 2) Hy(kz) dz T(k). (37)

The identity

8(x — ) — 8¢ + (=D = = [ W) Hihky)] dk

which contains the unit matrix 7 is used to transform Eq. (37). Both sides of (37) are
postmultiplied by
Hy(ky) dk;

and a k-integration is performed using the upper half plane.
For the sake of simplicity, spectral singularities are excluded; then the contour is
made of the segments [—L, —8} and [0, L}. We use the symbol integral from —L

to L to denote
- L
[Tl ]

where the half circle of radius 8 centered at k = 0 is called I.
Now we define F-continuous, in short F;, by

—5 —~L
2wF (x, y) = lim [ L + L ] H(kx) T(k) Hy(ky) dk; (38)

in an obvious way Fr(x, y) is also defined. Integration is performed using the identity
for the 8-functions and remembering that K(x, y) =0 if x > y. With (38) one gets

L o L
lim [ f H,(kx) T(k) Hyky) dk — 2i f dz K(x, z) f dk J(kz) Hy(ky)
G Ve : X

© L
+ f dz K(x, z) f  Hy(ka) T (k) ak]

xT

=2 {mx, 3) -+ Felx, ) + K(x, ) — KGx, —9)(=)*

- [7 e K DIF ) + Fele, D (39)
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1t will be proved later that F, is a continuous matrix of its arguments for y 2= x > 0.
This very continuity leads to restrictions on the T-matrix which can no longer be
required simply to possess a Fourier transform as in Ref, [2a].

To be specific, using estimate (3.9) of Ref. [1b}, one has

]li | Ty | e tmen [ L2 20 m ]” dk.

This restricts the class of available T-matrices. (See Ref. [lc, Eq. (15.118)], for low-
energy behavior of T-matrices); therefore high moments of the interaction are
required for F.(x,y), to exist. We consider now the transformation of the Lh.s.
for Eq. (39):

L
lim-2i [ [ Gk, x) ki T — 1) Hithy) ke dk
14793 L

8-0 -

— k) — Gk, x) kBN Hytky) dk].
-L

The method used consists in using the properties of analytic functions of complex
variables. It happens that the Lh.s. of Eq. (37) represents the “physical” rather than
the “regular” solution. In the case of nonzero threshold energies, the integrants
contain the projection operator onto the open-channel system. As shown in Ref. [1d}
the end result is an analytic matrix; the methods described hereafter will therefore
apply with only minor difficulties. When no threshold is included, the situation is
easier: the value of (39) can be obtained by the evaluation of the integral along C
together with that of the residues of the integrant for Im k = 0. Since

Jim | Gk, x) KLHF T(ky™ — 11 Hyky) k| — 0, (404)
l}‘il[gm | J(kx) — G(k, x) k¥ | — 0. (40b)
The integral along the circle | k | = oo vanishes and we are simply left with the

contributions of the poles. The latter come from the zeros of
(det F,7(k)]* = 4.(k)1 = (47,
at k :kj :aj—}—ib,-.
We write, therefore,

Lhs. = 2in Y Res.[kG(k, x) k2F,7(k)™ Hy(ky))(—2i).

In contrast to the case of Ref. [2a] the poles of F,7(k) are not necessarily simple.
We write F,T(k)™ as (d)~1x,”(k) by introducing the transposed matrix of cofactors
x.T(k) of F,T(k). Let k; = a; + b; be the value of k& for which 4 vanishes. Assume
that k; is a m;-order pole of F,7{k)™; the residue for k = k;is obtained by the formula:
(mj—1)

[G(k, x) k") x. (k) kHy(ky)k — k)" L, -

(4D

Residue = ﬁ (}%’Z)
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Since Eq. (36) represents the physical solution in the strip | Im & | << /2, one cz.mnot
as shown in [la, b], except in special cases, use Eqs. (17) and (19) to aftirm that in the

—2iF (k, x) S(k) Hy(ky)(k — k;)™.
What must be done is to find an expression for
Gk, x) F,T(k)™

valid in the half plane Im &k = 0.

To obtain such a representation one must use two solutions of Eq. (1) linearly
independent and analytic in the upper half plane of k.

One such representation uses an irregular solution I(k, x) which is analytic in the
k-plane, as the regular solution G(k, x) is Ref. [la], which satisfies the Wronskian

Wrllt(k*, x), Gk, x)] =1

and is defined as a linear combination of two independent solutions constructed at
some finite x4 = 0.
We write G(k, x} as a linear combination of F,(k, x) and I(k, x)

Gk, x) = F (k, x)A" -+ I(k, X)B",
and use
F t(k*) = Wr[F "(k*, x), G(k, x)] k*,
F, (k) = WrlF,t(k, x), I(k, x)].
Thus we obtain
A= F0),
B" = F k¥ F T(h*) kn
A representation for G(k, x) is therefore
Glk, x) = F,(k, X) F7k) + Ik, x) FHK*™ x FL5(T) Kt (42a)
Consequently we have
Gk, x) kMF T(k)1
= {F (k, x) FMk) + Ik, x) F*Y T F (Y Y o (3
In the bracket of Eq. (41) we replace
Gk, x) k"F, (k)™ kHy(ky)(k — k)™

Fo(k, X) Fk) KF (Y™ kH Ky — k)™
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In other words we make the substitution
Gk, x) kKLF . T(k)™ — F (k, x)C(k). (42¢)

The matrix C(k) is defined by identification (42b) and (42¢). An m-order differential
operator !Z,,,]_(k) expressed by Eq. (43),

(m 1)

[ @ = 0] “

is introduced. With Eqs. (41), (42a), and (43) the Lh.s. becomes

Lhs. = —2mi ¥ 2, (IF,(k, x) C(k) Hy(kp))ims, - (44)

Now we use the Marchenko integral representation of Eq. (4a) to replace F (k, x) in
Eq. (44). So we get after dividing by 2:

—i Z (D, (k) [Hy(kx) Clk) Hy(kp))ims,

. (43)
~i | dz K(x, 2) . (@ (OIH:(k2) CK) Hyk )]s,

J

A new kernel F(x, ) is defined by adding the residues and the I'contour contribu-
tions

Fc(x’ y) + FI‘(xa y) “+‘ Z 9m)r(k) l[Hl(kx) C(k) Hl(ks y)]k=kj == F(X, J’) (4())

Since for y < x, K(x, y) == 0, we obtain the following fundamental matrix equation
which is valid for 0 < x < y:

0 = F(x, ») + K(x, ) + | K(x, 2) F(z, ) dz. (47)
x

If a finite number of spectral singularities is present the method remains valid;
the contour integration of (38) must be modified [3a]. After proving the existence
of a fundamental equation in their respective cases, Marchenko and Ljance
derived Parseval’s identities from this very existence. Marchenko added the converse
result that Parseval’s identities allow the derivation of his fundamental equation.
When one follows Marchenko’s arguments, one sees that if the kernel K*(x, y) relative
to Eq. (2) is bounded, the existence of Marchenko’s fundamental equations are
reciprocal. The reciprocity was already used in Ref. [1b] for obtaining Gel'Fand-
Levitan fundamental equations: Newton proved in a first step that the interactions,
of the class he was concerned with, possessed Parseval’s identity. In a second step
which was the consequence of the first, a fundamental equation was established

between any two equations of the class.
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When Coulomb interactions were present the proof of a fundamental equation
results from the knowledge that the Parseval identity exists.

At this stage of our inquiry Eq. (47) can be regarded as an equation for F(x, y) the
spectral matrix. For fixed K(x, ), Eq. (47) is a Volterra equation. In Appendix B,
using our assumptions on the interaction U, we find an upper bound for F(x, ). In
the inverse problem, the situation is reversed; the spectral matrix F(x, y) is now known
and the translation kernel K(x, y) becomes the unknown element. For fixed x, Eq. (47)
is a Fredholm equation: its study requires the knowledge of the properties of F(x, y).

Equation (47) has the same form as the equation obtained in Ref. [2a]; it is valid for
Hermitian as well as for non-Hermitian systems. It contains the coupling of angular
momenta diffcrent from zero. One assumption used in its derivation was that the
translation kernel K(x, y) exists. This assumption contains an explicit upper bound
for K(x, y) which will allow the analysis of #(x, 3} We present now three remarks as
orientations for the continuation of the paper.

Remark 1. The construction of F(x,y), Eq. (46), is first recalled: F(x, y) is
symmetric, i.e., F(x, y) = FT(y, x); its general form is a weighted product of irregular
solutions of Eq. (1), x being the variable, with irregular solutions of the same equation,
y being the variable. Letting ¥, be the interaction, the matrix F(x, y) obeys the partial
differential equation:

-;;“z F(x, y) — ai;g F(x, y) = Vo(x) F(x, y) — F(x, y) V( y).

In our case Vy(x) == +L(L -+ 1) x2 Since the remark has a heuristic character, we
assume therefore that all derivations and integrations under the integral sign are
allowed. The operators 82/0x® and &*/0y* applied to Eq. (47) give

&
ox

) o d
£) A(xs )’) + 7@}3 F(X7 y) - -d—}c— [K(X, X) F(x’ y)]

_ —:; [K(x, $)loms FCx, ) + fw -5—); K(x, 2) F(z, y) dx = 0; (48)

PK(x,y) | PR ¥)

o o ..
dyz ayz - K(x’ X) _5; b(x’ )’) + "5; {1\('\’ s)]sza: F(X, y)

+ f dz; [K(x, 2)] F(z, y) dz — Jj K(x, 2) V(2) Fz, y) dz
-+ Jm K(x, 2) F(z, y) Vi(p) dz = 0. (49)

In deriving Eq. (49) use has been made of the equation satisfied by the kernel
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F(z, y) and also of the technique of integration by parts. The operators 4,( ) and A(x)
are introduced:

2
A0) = 55— Vi) + & (50)
AG) = 2 k® d
X) = g5 = Volx) + & + 2 - [K(x, 0)]; (50b)

A(x) is. applied to the lefi-hand side of Eq. (57), while 44( y) is applied to the right-
hand side of Eq. (47). Subtraction gives

HEs, ) + [T HG, 2 Fa ) dy =0, lim H(x, ) = 0. )

In Eq. (51), H(x, z) denotes

H(x, z) = (—38;2« — 86:2 ) K(x, z) — Vo(x) K(x, 2)

K 2) V@) + 2 [KCx, 2] K, 2) (52)

If Eq (47) has a unique solution, H(x, y) must vanish. In other words K(x, y) is the
solution of a non linear partial differential equation. The necessity for the vanishing
of H(x, y) results from the fact that Eq. (51) is the homogeneous equation associated
with Eq. (47).

We conclude the first remark. If the equation, candidate for the title of fundamental

equation, has a unique solotion with derivatives up to the second order, then its
solution is such that

, lim K(x, y) = 0,

(53)
0% 0% d
[ = 3 — V) + 2 Ko )] Ks, )+ K 3) Vi) = 0.

It results from Eq, (53) that the uniqueness of the solution of Eq. (47) is a necessary

element for its use in the solution of the inverse problem. It is not however a sufficient
condition [2a].

Remark 2. Let us assume that the transiation kernel has a bound of the following
type
K )l < 4.(6)g(y), 0 <e<x <y (54
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with

fw | f(1) dt < oo,

Jw | g(0) di < .

&

The following theorem can be proved:
Tureorem 4.1, If the kernel F(x, y)is constructed from data leading to a trans-

lation kernel having the separable bound (53), then the fundamental equation as the
equation for the unknown matrix K(x, y) has a unique solution.

To prove the theorem we consider the homogeneous equation:
$0) + [ $ul)Fz, 1) dz =0 (558)

and prove that its only bounded solution is the trivial solution. To Eq. (55a) for
$.(t), we associate Eq. (55b) for ¢.(¢) which follows:

) = ) + [ Yo Kis, 0y ds, s> x, (55b)

where K is the translation kernel associated with F. If the only bounded solution for
Eq. (55b) is (1) = 0, then the solution ¢,(¢) for Eq. (55a) vanishes identically.

Following Ref. [3a] we introduce Eq. (55b) into Eq. (55a). Interchanging the order
of integration we get

b0+ [ ) K 0 ds + [ @) Fls, 0 ds
T f; ds (s) f:’ K(s, 2) F(z, 1) dz = 0. (56)
From the fundamental equation we get
f KGs, 2) Fz, 1) dz + K(s, 1) + F(s, t) = 0. (57)

Equation (57) is introduced into Eq. (56) and identical terms on both sides of the equal
sign are suppressed. These techniques yield

lt) = [ ds als) KGs. ). (58)

We prove that the only bounded solution of Eq. (58) is the trivial solution.
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By transforming Egs. (55) into Eq. (58), immense progress has been made. No longer
are we discussing a Fredholm equation, instead we are dealing with a Volterra equa-
tion [11]. Following Goursat [11] we symbolize Eq. (58) as

$ = K.

By iterations of the kernel K which is bounded by a rapidly decreasing function, one
gets
’ lp:lﬁK:lpKz: :"[JKH'

[f ¢ is bounded, it is easy, using the bound for K, to prove that | | = lim,,,., | $K* | =
0. Therefore, | 4 | and ,(¢) vanish and the theorem is proved.

Remark 3. We now develop a remark concerning the construction of the solution
K(x, y) of Eq. (40). To this end we assume that the symmetric kernel F(x, y) can be
approximated by a finite-rank kernel;

Fx, y) =} ¢*(x) C**¢#(), (59)

aB

where the ¢*’s form a complete set of orthonormal matrix functions. As proved in
Rietz and Nagy [12] this assumption means that the kernel F(x, y) is completely
continuous in L2 or is compact. With this assumption, the solution K(x, y) of Eq. (47)
can be written:

K(x, y) = ), ¢°(x) D*5(x) ¢*(y). (60)
aff
The following definition is introduced:

430 = [ $) #() dz, (61)

with A*%0) = §*¢ and 4*¥(c0) = 0. Equations (59)-(62) are introduced in Eq. (47).
This yields

% 45 IC + DU + ¥ ¢o(x) DO(x) 47 (x) C7 = .

N-RY

Defining M#%(x) = 3", A*(x) Cr®, we obtain
Y ¢(x) DB(x)[8 + MPe] = — ¥ ¢(x) C.
x,8 4

Since we assume the unigueness of the solution of Eq. (47), we define the matrix

I+ M7 =1
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and we obtain

3 ) Do) = — T go(3) I,

Kx, y) = — ¥ ¢:(x) CI%(x) ¢%(y)

@, 8.8

= — ZB $*DCI* $(). (63a)

When F(x, y) has been constructed as in Eq. (46) it is symmetric in x and y and the
indices of the C,, matrix are related to its k dependence: the matrix is diagonal in k.
We will assume that F(x, y) can be represented by a discrete sum and write Cof =
C~ §,; ; by redefining the ¢’s accordingly, Eq. (63a) becomes

K(x, x) = — 3 ¢%(x) C*I"*¢H(y). (63b)
%]

In the scalar case (n = 1) the ¢#(p)’s as well as the C*’s are scalar quantities: the
order of the terms in (63b) can be permuted; thus we get

K(x, %) = — T F24o(x) $9(x) €
[1:
—17aB8 d Bm.
=T 10+ M7 [ 0 M) s (64)
K(x, x) = Tr [(1 + M) —é’; {1+ M)]

== —dff? la det(1 4 M), (65)

where Tr stands for trace and where we have used the well-known property
djdx [in(det U)] d/dx = Tr[U7*U’]. Equation (65) extends a result of Faddeev [13]
to scalar fundamental equations admitting a finite-rank approximation.

Let us denote by K# the translation operator from an operator with a potential V!
to an operator with a potential V2

d

20

K2(x, x) = Vi{x) — V¥x). (66)

Equations (65) and (66) give;

2
Vix) — V3(x) = 2 & In det[l + M*%].

Ix2
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In the same way one has
V3(x) — Vi(x) =2 dii% In det[l -+ M*],
N d?
V3(x) — V¥Hx) =2 P In det[l + M%)

Use of the property of the logarithmic function then gives
det[l + M3)/det[l -+ M32] = det[l + M*]exp[C; + Cyx];

Use of A(o0) == 0 implies C, = C, = 0. From Remarks 2 and 3, estimates for F(x, y)
are essential for the constructive solution of the nuclear potential, a construction
which is the aim of the inverse problem.

5. THE KERNEL OF THE FUNDAMENTAL EQUATION

In Section 4 the existence of a fundamental equation was proved for any 0 << x < y.
Existence of translation kernels, behavior of T-matrices for k == 0 and discreteness
of the set of spectral elements were used in the proof. In order to possess these
properties, non-Hermitian systems need strong condition is not needed by Hermitian
systems. Using the continuity argument we extend its validity for any y (0 <
x < y). In addition we will show that its kernel called the spectral matrix is such
that F(x, x) is continuous even when x goes to zero. The results are obtained from the
estimates for the spectral matrix and its (x and y) partial derivatives: these estimates
are derived from estimates on the translation kernel. In the search for the estimates
for K(x, y) a clear separation is again found between Hermitian and non-Hermitian
cases. While the bound concerning the former tells which conditions the interaction
must satisfy for the theory to develop, the non-Hermitian bound is a consequence of
a prior condition on the interaction.

'3

(s)

(O x+y)

0x y)/2)

{O,x)
ok

{y,0) (x+y,0) {u)

FiG. 1. Marchenko’s domain.
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The integral equation for K;{(x, y) is now recalled:

1
Ki(x, y) = 3 , Ri(x, y; 5, 8) Uy(s) ds

(w+v) /

1 ﬂ Rij(x, y; 14, 8) Y. Up(s) K,ui(s, u) du ds. (67)
2 Mg _

"

In Eq. (67), & is the Marchenko domain: it is represented in Fig. 1.
The R,; of Eq. (67) is the Riemann solution for the equation

Li(x) Rif(x, y) = L) Ris(x, ),
with
L) = g — D),

! x2 x2

The expression of the Riemann solution is found in Ref. [14]. Appendix A proves,
following [4g], that

In
B Ay i
| Ri; | < (A 7}(;) .
Since y/x and ( y/x)(s/u) are greater than 1, we use with / == /.5 the bound
y sy
Rol < (45 5)
We define a modified translation kernel

K(x,y) < (A %)lii’(x, »)

and a modified Riemann solution

Use of the method of successive approximations and of Marchenko’s norm for a
matrix 4 defined as [2a],

Al =sup 31 dyl,

yields

1R < o (42 exp (),
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where

olx) = J'w I UGs)I s* ds.

&

it results that

1K < (4 2) a0 (252 exp ot (68)

For K(x, y) to be absolutely integrable an /-moment is required. Furthermore,
K(x, y) is continuous for y >= x and K(x, x) is continuous for x = 0.

We show now that the derivatives 9/0x K(x, y) and 0/0y K(x, y) are bounded. For
this purpose, we use characteristic variables:

= 2T B uts u-—s
T’ '_— 2 3 § - 2 ) 7]0 —— 2 N fo = .

From the equation for K;(x, »),
- l ®
Kif(n, §) = 3 f dny Rij(n, & 1o, 0) Usiny)

+ Z fw dny fﬁ dé, Ry(m, & Mo » &) Ui(ne ~— IN) Ky(n, &),
1 *n 0

the equation for 8/dy K; is derived:

0 1 | = 7]
“;9‘17“ Kii(y, £) = — 3 Ri(n, & 7, 0) Uy(n) + EJ; dng :’3"7; Rikm, € 165 0) Uyslny)

- z J: dgl) Rij(n’ g; M, fo) Uu(n — f(]) Klj("]; ‘fo)

: o ¢
TR J] e o Rl €0, €0 Ustro = €0) Kufubo). (69)

Bound (68) for K;; together with the bounds for R;; and &/én R;; found in Appendix A
are used. A bound for the sn-derivative of K, valid for x > 0, results. The extension of
the domain of validity of the fundamental equation to any y > x > 0 results directly
from the bounds for 9/6§ K. The continuity of F(x, x) when x goes to zero results
from the continuity of K(x, x).

If we are dealing with a non-Hermitian system and if we assume the Naimark
condition,

fm exples] || U(s)l| ds < oo; (70)
0
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it is necessary to specify which bound the translation kernel receives as a consequence.
For this purpose, we define another modified kernel (x, y) as follows:

Ayt . .
(51) #xy) = KCx, y) exple + 2]
Its equation deduced from Eq. (67) reads:

H(x, y) = % exple(x + »)] f:w) N R(x, y; s, 5) U(s) ds -+ %@m[e(x + »

AN
% f j R(x, y: u, s) U(s) exp[—e( + 5)] (,) H(s, u) duds. (1)
@ 5
By the method of successive approximations and with the definitions
sa(x) = | exples] || Ul ds,

o) = [ s UG ds

we get
190G D 2 550 (g2 exp 1),

Returning to the original kernel K(x, y), we have

. YA ey (X
I KCo I < (42) exp [ <52 s (F55) exp o).
With (70) the existence of s; and of oy for all x > x, is assured. Therefore we have

| KCe, I < (4/x0)" expl—e(x + y)[2]f (%o)- (72

According to the preceding discussion the analysis of the Hermitian case must be
separated from that of the non-Hermitian case.
I1.}. The Hermitian Case

Two scalar differential operators where the superscript / denotes the angular
momentum

d 1
)
D, X Tc 5
L (73)
i 13
D xt dx x5
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are introduced. When they are applied to the Riccati-Hankel functions hy'(kx), Eq.(5),
they give

D+lhlt-1(kx) = —kh,"(kx),
D_'hl(kx) = khy M (kx).

We consider now the integral transformation

7] = [ hike) 918 dé

and assume that ¢(£) is well behaved at infinity and at the origin:
$(€) € L¥(— 0, 0);

L¥(— o0, o0) is the dense subset of L¥(— oo, co) made of elements vanishing as x**! at
the origin and having derivatives up to the order / which belong to L*— o, co).
With our assumption we obtain

1041 = | Ak 1 DHO) d,

after one integration by parts.
Defining now

P P=D'X DX XD

we have
D hikx) = k' exp ikx,

11 = [ exp iké i @101 di. (74)

The notations &_ and %_ are used to denote operations from the left or from the
right.
In a straightforward fashion diagonal differential operators are introduced

[Q—]ij = Sia'DE . (75)
When ¢(x) is a matrix, the two operators
62_  and  D_¢

are obviously different.
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If each element of ¢ belongs to L¥(— 00, ), one gets

[ de 9@ oty = | de $© Dkt exp ikt
and similarly

[ de me) &) = | de exp ikt kD6

With (73)-(77) we transform y(t) which we define as

y0) = [ ) Felx, 0 di,
0y = Z $(x) dx 2-'7; | :0 HkO — S(k)] Hy(kt) dk.

We note y(2) == Tufe].

y0) = Tl = | " de[ " dk 4 Bkt T®) ik
The operator G_is applied to both sides of the equation:
01 = 5[ dg[ " dk $&) Hk&) TUNR* exp ikt
The r.h.s. of [y(1)] P_is integfated by parts:
O] 9. = [$(—1) D_ — —217; f : dx[$(x)] D
x| : dkc exp ikx (%)I S(k) kL exp ikt.

Let us introduce <f» by

k) — [ 4@ Gkt exp ikt d — [ 9©) Hik) de.

We can write

- o 1 ¢= L ooy
01 9. = (=019 — 5 | (k) SK) k- exp ikt dk.

(76)

(amn

(78)

(79)

(81)
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If ¢(¢) belongs to L*— o, o) and if in addition there exists an ¢ > 0 such that
$(€) and the necessary derivatives of ¢(£) vanish for £ < ¢, then

DOVE- = [[" 9@ Folt 0 de] 9. = — - [ d—brswiar, )
where )
H(—K) = k().

With Eq. (82) we can show that the homogeneous equations related to Eq. (47) can be
reduced to the homogeneous equations related to the ordinary / = 0 Marchenko
equation [15]. In addition, one shows that the constant matrices which for / = 0
intervene in Eq. (47) are still normalization matrices: they are singular Hermitian
positive semidefinite matrices. The Marchenko results obtained for / = 0 can therefore

be naturally extended to the / = 0 Hermitian case by requiring a proper behavior
of the T-matrices. So we get:

LemMa 1. Adny solution of the equation ¢ = 0

A(t) + f C O Fo&, ) dE =0 (83)
| A| = 1, which belongs to L'(e, w), belongs also to L¥(e, o).

LemMMA 2. The eigenvalues A of Eq. (83) when € > 0 are all smaller than unity

[A] <1,

LemmA 3. (It cannot be applied to non-Hermitian interactions since it is based on

the assumption U = U which implies that the M2 are hermitian semidefinite matrices).
For € == 0 the solution of the equation

0+ [ MO FE D dE =0 (84)

is also a solution of Eq. (83), A = | and in addition satisfies the equation

Hikn) = §(—ikn) M, ,
where M, ? = C(ik,).

Now we can consider the € = 0 case. To do so we define F(x, y) from the scattering
data, that is, we write

F(x, y) = Fx, y) + Fyx, y).

(When this last definition is meaningful we say that F(x, y) has a double Hanke!
transform.)

595/126/2-15
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Correlatively we have
Fylx, y) = ), Hy(ik,x) M, 2H(ik,y)

with
M,? = C(ik,).

Let us assume that the matrix S(k) has a double Hankel transform so that the
spectral kernel for F,(x, y) is meaningful,

TueorReM 5.1. The equations (e = 0)

I x0) + [ %@ F&, 1y de =0, 0<1<w,

b0+ [ WO FE -0 dE =0, 0<i<w,

have no nontrivial solution in L,(0, oo) (see Appendix C for definition of L). In addition,
the number of linearly independent solutions of the equation

L z() = | A FE DdE 0 <1< oo,

is equal to the sum of the rank of the matrices M.

The proof of the statement concerning I uses Lemma 3 and cannot therefore be
applied to non-Hermitian interactions. In addition it can be shown [15] that the
statements concerning I, I, and I1I is equivalent to the statements that the unitary
matrix S(k) has a double Hankel transform and that the set of discrete elements obeys
Levinson’s formula concerning the normalizable states.

11.2. Non-Hermitian Case

Its solution requires that the spectral singularities and the discrete spectrum remain
finite in Im k£ = 0.

To guarantee this finite character we assume (70). We have now, within this class
of short-range interactions, the existence of a fundamental equation and the bounds
(72) and (BS5). With these bounds we are in a situation to approach the inverse problem
but first we need to specify what we mean when we say that the spectral kernel is
constructed from the scattering data.

Back to Eq. (46) we see that if a differential equation (1) satisfies (3b) a spectral
matrix F(x, y) exists. s construction uses the S-matrix and a set of constant matrices
obtained when the Z,,(k) are applied to the matrices C(k) for k = k;. When an
S-matrix and the appropriate number of constant matrices have been obtained from a

MARCHENKO'S EQUATIONS 491

differential cquation (la) obeying (3b) and an F(x, y) constructed as in (46), the
F(x, y) matrix will be said to be constructed from scattering data.

THEOREM 5.2, If the kernel F(x, y) is constructed from the differential system, that
is, from the scattering data, the fundamental equation has a unique solution.

We now have (72), that is,

I K(x, )| << (Afxo)" expl—e(x + y)[21f (xo).

The conditions of factorization expressed in Theorem 4.1 are realized. Theorem 4.1
can be used and consequently Theorem 5.2 is proved.
From the fundamental equation (47), one gets

0 0 ©
S P + o KO + [ KO, ) B y) ds — KGx, %) Fx, ) = 0. (85)

Equation (85) provides an upper bound for 8F/ox (x,y) for y = x = x,>>0
which depends on the bound for 8/6x K(x, y). From the bound (72), one checks that

lim F(x, ) = 0.

Using conventional methods it is not hard to prove the two following inequalities:

[T 1 Fs, pi s < oo,

[ s1FGs i ds < o,

Lo

for all x > x, > 0; F, is simultaneously integrable and square integrable.

We move now to the second theorem for the constructive solution of the inverse
problem. If the potential realizes the conditions expressed in (70), we can write
(Appendix B) .

I F(x, W < Ti(xg) expl—e(x + ). (86a)

| K(x, I < T'(xo) expl—e(x + y)). (86b)

The x and y derivatives of K and F will exhibit for x > x, the same exponential
decrease:

exp[—e(x + »)1

When the potential obeys condition (70), the spectral matrix necessarily obeys (86a).
In the inverse problem the spectral matrix is given: if one decides to remain within
the class of short-range interactions (70), one must impose (86a) on the spectral
matrix. In other words the ingredients for the construction of a spectral matrix must
carry an exponential decrease into the construction.
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The rows or the columns of the matrix F(x, y) are elements of L,Yx,, o) (See
Appendix C for notation). We consider the linear operator ¥ in L,'(x, , o0) defined by

LemMma.  Fis a normed transformation of LMxy, o) into L, (x,, ).
Proof. The norm in L,}x,, o) is defined by
L€l = | ¥ 1 &0 dx.
LES §

The norm of 7 is therefore

o "

il = ¥ 1) ay

zy el
- 2n —ew
%"e—rl(xu)e .
From this we conclude that the norm of F is
2 -
1Pl < 22 Tylxg) 7.

The same method with the appropriate norms shows that ¥ is a normed transform-
ation of L,*(x,, o) as well as L,2(x,, ) into themselves.

TuroreM 5.3. F is a completely continuous operator in LM xy, ), LAx4, 00)
and L,*(x, , o0).

Since the method in the three cases is basically the same, we restrict ourselves to the
L, Mx,, o) case.

Proof.  Consider 5(y) = F(§) with £ e L,}(x,, o0) and || €] < 1.
The norm of 7 satisfies

Fall <UFINEN < F.

Thus for any 8 > 0, there exists a positive /# such that

f Lyt + by — 9(0)] dt < f:’ dt f: dx | £CON | F(x, t 4 By — F(x, 1)

f: | £0O) dx f“ dt | F(x, 4 k) — Fx, 1)
~ J: | €00)] dx f‘” dt| 5 e, 1) | <. 87)
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Also, for any & > 0, there exists another positive & such that

71t by — @l de <TENT R Ty 5 nexp (= 22)

< 8. (88)

Finally, for any 8 >> 0, there exists a number X such that tor any N > X
[ ruwide < [ de [ 1EG Fe, 1) d
N N €
<[ e [ 1FC 01
Je Jy

< 36’1 T(N) eV | £ < 8 (89)

in (89) use has been made of the property that I'(N) is a decreasing function of ¥, .

1t results from (87)—(89) that the set of vector functions n( y) is compact in L,*(x,, o0).
The operator ¥ is therefore completely continuous in L,X(x, , ). The transformation
generated by F is a completely continuous transformation of L', L? and L* into
themselves. Tt can therefore be approximated by a finite-rank transformation. Use
can be made of remark 3 of section 4 to construct the unique solution K(x, y) of the
fundamental equation:

COROLLARY. The equation
a(x) + Aé(x) + F[£] = 0,
where a(x) € L,Xx,, o), has a unigue solution £(x) if the homogeneous equation
. M@ iEE=0

has no other solution in L,Xx,, o) than the trivial solution.

6. CONCLUSION

When one deals with non-1iermitian interactions, one does not know if Ly. (90)
has no X == 1 nontrivial solution. Indeed this cannot occur when the set of elements are
“authentic’’ scattering elements according to (5.2). However if the candidate 1o be the

tion, then Eq. (47) has a unique solution K(x,y) which in turn is itself exponentially
bounded.
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We can now summarize our findings. Let us assume that we have a set of scattering
data such that F(x, y) is exponentially bounded and such that the related Eq. (90)
has no A = 1 nontrivial solution. Then one can construct K(x, y) and V(x) by

V(x) = —3K(x, x).

However we have no guarantee that the scattering data obtained by solving the
Schrodinger equation formed with V(x) are identical to the scattering data used to
construct F(x, y).

If we assume in addition that the scattering data

I'an S-matrix defined for real k
Sk S(—k) =
Sk = 1 + o(l/k) k-~
a set of normalizable state energies with a given multiplicity

a set of constant matrices

are such that they constitute the data for a unique factorization of the S-matrix, then
we have the guarantee we were looking for. As we have shown the fundamental
equation as an equation for F(x, y) has a unique solution. The unique factorization of
the S-matrix guarantees that the unique F has a unigue decomposition

F=Fc+FD.

The trail to follow in order to solve the inverse problem completely is well defined:
Given a set of “scattering data,” verify that they lead to a unique factorization of the
S-matrix. References [16a-16¢, 17] having already explored the subject, the complete
solution to the inverse problem should therefore follow their lead.

APPENDIX Al

We are concerned with the Riemann solutions R;;(%, &; 7, , &) and their derivatives
with respect to 9 and £. They are given by the integral equation

: e "o W+ L+ D
Ri(m, & mp, &) = 1 4 ¢ d, J; dny [ (n, — £ (n + f1)2]

X Ri(ny, &5 ﬁu » £o); (AD)
Chaundy’s variables x; and x, are used [14]: they are
_ (=€ — &) . _ (g — )& — &)

Xy = Xy =

7= Ome = &) (42)

1 See Ref. [4g] for details.

(M + O + &)
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In Marchenko’s domain one can prove that x; < 0 and that 0 < x, < }; therefore

_ (n — E(o + &)
=29 G B, — &)~ A3

To obtain an appropriate bound for R,;, its expression, as given by Chaundy {14], is
used

1
Ry = P (1 — 2x) — 2x, fo Pyl — 2xyt) Py (1 — 2x3%, + 2xy0) dit,

where P, is the Legendre polynomial of degree /; . Consequently

4 + O — €D,
| Ry | < Pl —2x) < | (w;—f)(no+£o)]

(A4)
R A i U s N/ U o)) 3 .
ot = L Lo e G ] R b
One notices that (y -+ £,)/(n — £&,) is an increasing function of £, and obtain
9 R A + Oy — &1, 1
o Bl < o =—pmre)] 26+ Vg—p- (43)

We will therefore use the following bounds:

il s),
e r] < (a2 5y 2ED,
| R| < (a2 5) G2,

where we have returned to the physical variables and set / = lpax, 4 = 4.
ArpENDIX B
The fundamental equation is solved as if it were an equation for the spectral matrix

F(x, y) with the translation kernel as a free term.
In the Hermitian case we set

Kex, ) = (2) R »),

F(x,y) = (%) F(x, ),

= Imax >
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in Eq. (47); consequently we get

HEG < 1RGN+ [ 1R G, 0118, )

Using the moments oy and o, of the interaction U(s) we have

1RO < 5 00 (242 exp oy

N

o(X) exp oy(x).

7
[ S I

Iterations of (B1) using (B2) yield
FEGe 1l < Joo(x) exp oy(v),
1505 2l < Joa(x) exp x(x) [ doy(r) exp oy(s) ai
with
2x) = foy(x) exp oy(x),
1560 2 < ) exp [ ) a,
From (B4) the bound

1FGs I < (2) w0 exp [ 0y ar

(Bl)

(B2)

(B3)

(B4)

follows, as well as the continuity of F(x, x) for all x including x = 0. If the non-

Hermitian case bound (72) is used,

1 ECx, plo < Glxg)exp[—e(x -+ P = | K(x, y)|

with
Glx) = fo) (),
1405 < @) [ expl—e(x + )] expl—e(r -+ y)] e

< G¥) expl—e(r + y)) FRL23]
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By mathematical induction one gets

| #0x, Y < exp[—e(x + )]exp[G(x,) exp — ex,]
< expl—e(x -+ y)] I'(xy) (B5)

with I'(x,) == exp[G(x,) exp — ex,]. It is worthwhile to note that if K is constructed
from Eq. (67), F can be obtained by solving Eq. (47). In other words, F is the unique
bounded solution of Eq. (47) when K is given.

ArpenNDIX C

Let us consider a linear space of vector functions of n components (# finite):
@) = (L), folt)seos Sull).

By L,*(e, ), we denote the set of n-dimensional vectors f(r) which satisfy

/]
< w0 (ChH

* ’ﬂ_‘ . 1/
£l = 3 f }1 0| d

for p finite or
[/l = sup L.U.B. | fi(x)] (C2)

1<i<n; eke<w

for p = oo (where L.U.B. stands for least upper bound). In this paper, we consider
only p = 1,2, co. The norms defined in Egs. (C1) and (C2) satisfy the usual properties
of a norm [1 8]

@ fII=0; (€3)
(| /1l = 0 if and only if f = 0 (p.p) (p.p. means almost everywhere)

®) lefil=1Tcllifl ' (C4
© f+glh<<isfi+ el (C5)
@ WA= Nf*0 = is1, (C6)
@ 1Sl <lgil(=1,n),then|fl| <|gl (€7

O Xifigfelitiffel,”andgelL,’

with [I1/p 4 1/g] = 1. We wrote L} since we were dealing with a one-dimensional
object. In addition we have the Holder inequality:

|2 [ st ax | < sl g, C8)
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(g) Schwarz’s inequality: if £, g € L,?; then we have ¥, figf € L,* and ; 13. L. D. Faboeey, J. Mathematical Phys. 4 (1963), 72-104,
14. T. W. Cuaunpy, Quart. J. Math. Oxford 9 (1938), 234-240.

@ 15. M. Coz, University of Kentucky, preprint.
Z f figi dx l <Hflz gl (€9 . 16. (a) F. D. Gaksov, “Boundary Value Problems,” Chap. 3, Addison~Wesley, Reading, Mass.,
i Ve : 1966.
" ] i (b) N. I. MuscreLiscHwiL, “Singular Integral Equations,” North-Holland, Amsterdam, 1953;
(h) iffeL,t N L,*, then Fe L2 “Singulire Integralgleichungen,” Akademie Verlag, Berlin, 1965. [The two editions are
Indeed, since fe L,=, we have | f;| < C (p.p.) and considerably different. ]

(c) Reference {2, a] in Appendix A.
. . . . 17. R. G. NEwTON AND R. Jost, Nuove Cimento 1 (1955), 590-622.
Z i 2 < C Z [ fil e Lh 18, H. G. GarNIR, “Fonctions de variables réelles IL,” pp. 309-338, Gauthier-Villars, Paris, 1965.
i i

We consider also the space L,(e, o) of all the functions which are expressible as the
sum of two funciicns. one belonging to L,Xe, o) and the other to both L,*e, )
and L,*(e, o).
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