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Abstract: The present chapter highlights the problems facing when modelling the marine environment, in 

particular for biochemical aspects. It is shown how the marine environment differs from other fluids and how 

this affects modelling. General modelling approaches are shown and the problem of the vaste range of scales 

encountered is adressed. In addition to mathematical modelling problems, practical questions of adequate 

boundary and initial conditions are then further analysed with respect to biochemical components carried by the 

flow. Finally questions of errors, validation and data assimilation encountered during the analysis of the model's 

quality are adressed. 

 

1. Introduction 

Before looking at the modelling aspects of the marine environment and in particular its biochemistry, we should 

show the particularities of the system compared to those of other systems (as laboratory experiments) being 

modelled currently. When working in marine systems, we face the following special problems which must be 

taken into account: 

•  From a dynamical point of view: 

-  The system is characterised by a very large spectrum of scales and processes. Scales range from millimetres 

(and fractions of seconds) to planetary scales (and centuries) not only for physical processes (from turbulence to 

global circulation, see Fig. 3), but also for biological or chemical processes. 

-  The aspect ratio for large-scale processes is extremely small, meaning that the vertical scales are much smaller 

than the horizontal scales. 

-  The system under study is generally stratified, with the combination of currents and stratification controlling 

the exchanges between the surface layers and deeper layers. 

-  For larger scales, hydrodynamics must take into account earth rotation. In combination with stratification, 

fronts can be maintained by the Coriolis force, which then controls cross-frontal exchanges. 

-  Water movements are guided by topography and land boundaries, and biochemical exchanges at the land-sea 

interface also influence the marine system. 

•  From an observational and "experimental" point of view: 

-  Data available to calibrate, validate, initialise and force models are generally incomplete due to logistic 

constraints. 

-  Experiments in the natural environment can rarely be repeated or controlled as nature evolves due to forcings, 

which we are generally not able to modify (e.g. wind stress, heat fluxes, most river discharges). 

-  Forcings at air-sea boundaries or land-sea boundaries are not controllable, and they are often not known very 

well either, which limits the precision of model simulations. The most imprecise conditions are generally those 

related to the artificial boundaries used to isolate the system under study from the rest of the marine system (e.g. 

during a study of the Gulf of Cadiz one does not intend to analyse and model the Atlantic Ocean, which of 

course influences the evolution of the Gulf of Cadiz). 

•  From a political and socioeconomic point of view: 

-  The system under study is influenced by adjacent systems and in reality is often interacting with and 

modifying the other system in turn. Remote influences can lead to problems which are out of control for local 

factors only able to manage the system within their sphere of influence. 

All these exchanges (schematised in Fig. 1) and particularities explain why it is generally not possible to simply 

use a "black box" model developed for laboratory experiments or industrial application simulations to model 

marine systems. Adaptations need to be made to be able to deal with the particularities mentioned above. In the 

following, we will show how such adaptations are carried out. 
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Fig. 1: Schematic exchanges between the sea and the surrounding environments (land, air, rivers, sediments, 

open ocean) 

 

 

2. Modelling Aspects 

When developing a model, the first characteristic one has to define is its objective. Among the objectives of a 

model, one can mention: 

• Models aimed at improving the understanding of the functioning of a system (e.g. process models). 

• Models aimed at quantifying processes understood theoretically but not with real precision (e.g. flux estimates). 

• Models aimed at predicting evolution of scenarios (e.g. estimation of impacts of changes in river pollution on a 

coastal ecosystem). 

• Models aimed at daily use for management purposes (e.g. managing allowed waste water discharges according 

to prescribed maximum levels of concentrations). 

Such types of objectives are frequently found, be it for hydrodynamics, bio-geochemical or socio-economic 

aspects. The choice of an appropriate model depends on the objective at hand and should be done with care. In 

particular, the model should contain the necessary and sufficient parameters to be calculated that allow one to 

characterise the system and answer the question that the model is used for. 

The mathematical model developed, the numerical methods used and the data required vary considerably from 

one case to another according to the objective (e.g. for operational purposes a robust method with regular data 

input is essential, whereas for theoretical studies more technologically advanced models with fewer data 

requirements can be used). Models, be it the mathematical version or its numerical implementation, thus differ 

largely depending on their objectives and, as we will see later, scales. 

There is, however, one thing all deterministic models have in common: the way the models are constructed. 

They always involve some way of: 

• Expressing budgets of 

-  Mass of seawater 

-  Momentum (Newton's law to derive the current fields) 

-  Energy (giving access to temperature evolution) 

-  Biogeochemical components (salinity, pollutants, tracers...) 

• To which one adds 

-  Constitutive equations (e.g. diffusion laws) 

-  State equations (e.g. ocean water state equation) 

-  Interaction laws between components (e.g. chemical reactions, phytoplankton uptake law) 

These ingredients are used to elaborate a mathematical model by making budgets on control volumes V (Fig. 2). 
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If the control volume is infinitely small (i.e. in practice much smaller than the scales of interest), one can derive 

the mathematical formulations of the time-space evolution of the system. 

An example of a budget for the concentration of constituent c
a
 over a control volume in a flow of velocity v (Fig. 

2) leads to the following time (f) evolution law: 

 

where is the local source of the constituent (through chemical reactions for example), m
a
 a 

migration/sedimentation velocity,  a diffusion coefficient (generally turbulent) 

and the classic derivation operator. 

Applying this approach to the salinity, temperature, momentum, mass and concentration of any biochemical 

tracer, one can develop the so-called primitive equation models (Table 1), which describe in principle the fully 

3D time-dependent structure of the ocean, including its biochemical components. 

From a mathematical point of view, adding appropriate initial and boundary conditions to these equations is 

sufficient to predict the evolution of the system. 

 

Fig. 2: The time evolution of the total mass of a given constituent c
a
 in a fixed volume V of surface S is equal to 

the sum of local production (destruction) ρQ
a
 of the constituent c

a
 within the volume V and the transport of the 

constituent across the surface S. This transport consists of a general transport by the fluid with velocity v and a 

movement of the constituent relative to the fluid. These relative movements are related to diffusive processes d
a
 

and organised movements such as migration/sedimentation m
a
 

 

Table 1: Primitive equation model for velocity v, temperature T, salinity S, biochemical component à and state 

equation for density ρ of reference value ρ0. g is gravity, Ω the earth rotation vector, Q
e
 the radiative heat source 

and p pressure 
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3. Scale Dependence and Intermittency 

In practice, modelling the system is not achievable without further analysing scales. Indeed, even if primitive 

equations were able to describe all scales of motion (Fig. 3), numerical constraints (grid and time step 

restrictions) only allow one to resolve scales down to a given resolution. Limitations in initial conditions and 

boundary conditions also lead to limitations in the timescale of prediction. 

Therefore, basically one can only resolve part of the processes of the system, while the others are not predictable 

by the model. This does not mean, however, that the scales not resolved do not influence the scales that are 

modelled. It is clear that small-scale turbulent motion certainly influences the diffusion of tracers, even if the 

latter are modelled at much larger scales than the scale of the turbulence itself. In fact, we are faced with a 

problem of parameterisation, i.e. include the effect of unresolved processes in the model by empirical or 

statistical functions. 

Unresolved processes can be of several types: 

• Intermittent processes (e.g. flush discharges). 

• Processes of spatial scales smaller than the grid size (e.g. mesoscale up-wellings at a typical 20-km scale, in 

Mediterranean models of 20-km resolution). 

• Processes for which adequate forcing is not taken into account (e.g. diurnal thermocline evolution in models 

with seasonal sunlight evolution only). 

The effect of the unresolved scales appears formally when averaging the equations so as to filter out the 

unresolved scales. When doing so, non-linearities in the equations will lead to terms which cannot be calculated 

without knowledge of the unresolved scales. This is a closure problem, and one has to find a way to assess the 

value of these terms in relation to the large-scale processes one is analysing. Basically, two approaches are used: 

• Parameterisation based on experiments and theoretical work (this is done for the turbulent motions whose 

effects are modelled/parameterised by a diffusion law with a turbulent diffusion coefficient, Table 2). 

• Explicit calculation by a specialised model of the smaller-scale processes. A typical application here is the use 

of nested models with higher resolution. 

The fact that not all processes are resolved by models thus introduces some need for adaptation of the 

mathematical formulations. 

 

Fig.3: Scales and processes in the ocean [1] 
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Table 2: Turbulent closure scheme to calculate turbulent viscosity  and turbulent diffusion coefficient  as a 

function of turbulent kinetic energy k, shear and stratification parameters, and a mixing length l0 

 

 

4. Numerical Model 

Once the mathematical model is established including these parameterisations, a numerical method designed to 

provide efficient and accurate approximations to the solutions of the equations must be used. In particular, grid 

size, time steps and resolutions of the forcings must be coherent with the scales the mathematical model is 

supposed to resolve. (If the model includes parameterisation of turbulence but is supposed to resolve explicitly 

mesoscale processes, a resolution of less then the deformation radius must be used.) Also, the numerical 

techniques chosen must be able to accurately represent the dominant processes at stake. Since for biochemical 

models, very often advection is among the dominant processes, the advection scheme needs particular attention 

(it should be front preserving and not create negative concentrations, for example). 

Typically, the ingredients for the GHER model [2] of the Mediterranean include: 

• Finite-volume approaches on an Arakawa C grid (to conserve easily mass and concentrations). 

• A mode splitting for the free surface (to follow free surface movements efficiently). 

• A TVD advection scheme (to preserve fronts). 

• A monotonic advection (to maintain concentrations positive). 

• A generalised vertical coordinate (to follow the thermocline and bottom topography). 

• Recursively bidirectional nesting (to allow for fine resolutions where needed). 

The physical model and its numerical implementation are now relatively well mastered, but particular challenges 

appear when coupling biogeochemical models to the hydrodynamics. 

 

5. Challenges in Coupling of Hydrodynamical Models with Ecosystem, Biochemical or Pollution Models 

5.1 Scale Effects 

In principle, one could simply adopt the same numerical and mathematical modelling approach as for the 

physical system. However, even if the physical solution at a given scale is the "real one", the biological system at 

this scale may be strongly influenced by unresolved processes, for example a sudden vertical mixing due to an 

unresolved wind event (Fig. 4) or a baroclinic instability and associated vertical velocities not resolved in a 

general circulation model. Parameterising these effects in strongly nonlinear biochemical models is quite 

delicate, and the parameterisations in such models are strongly dependent on the unresolved processes and 

therefore likely to be not very robust. (Even if a parameterisation was calibrated for a given system, if the 

intermittent process is delayed for some reason or differs from the statistical average, the biological system could 

react quite differently. For example, a delay in a storm event triggering a phytoplankton bloom is difficult to 

parameterise in a system were such storm events are only taken into account by statistical averages on the past.) 

Similarly, the intermittency of riverine inputs (Figs. 5 and 6) also affects the system reaction and must be either 

taken into account explicitly or parameterised properly. 
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Fig.4: Intermittent mixing and deepening of the thermocline [3] illustrated by shear of velocity M and Brunt-

Väisälä frequency N as a function of depth and time 

 

 

Fig. 5: Intermittent discharge of Cu from the Rhone River into the Gulf of Lions as a function of time and 

comparison with atmospheric deposition estimates 

 

 

Open Boundaries 

The open boundary problem is probably among the most crucial for regional models. Indeed, it is at this 

boundary that the information on the rest of the marine system is transferred between the regional model and the 

remaining system. Except in the case where nested models are used (in which case the larger scale models are 

presumed to model and predict the marine system beyond the regional model), assumptions on the system 

evolution at the arbitrary and artificial open-sea boundaries must be made. A particularly illustrative example [4] 

of the need for additional assumptions is the case of a model aimed at forecasting a river plume (of salinity lower 

than 17) by a box model (Fig. 7). Integrating the 3D equations over the domain of interest directly makes the 

fluxes across the boundaries of the domain appear, fluxes which depend on the internal structure of the plume 

(not known any more due to integration), the outside structure of the fields (not known by the limitation of the 

model domain), the velocity structures at the boundaries (not known unless predicted by another model) and the 

diffusion coefficients on the interface (which often depend on turbulence levels not resolved by a plume model). 
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Fig. 6:  Effect of changes in the wind pattern on Cu inflow on the shelf from the Liguro-Provencal current (left) 

and the deep waters (right) [5] 

 

Fig. 7:  Schematic representation of the box model. V is the volume of water considered between fixed latitudes 

and a moving interface defined by S = 17. This volume is supposed not to detach from the river mouth, otherwise 

some lateral mixing exchanges should replace the river input. S is the sea surface delimited by the two latitudes 

and the intersection with the surface of constant salinity Γ2. Γ1 is the vertical surface defined by a given 

northern latitude and its intersection with the isosurface S = 17. This is the northern, upper limit of the box 

model. Γ2 is the isosurface S = 17 delimited by the two latitudes and defines the eastern lateral limit of the box 

model. Γ3 is the vertical surface defined by a given southern latitude and its intersection with the isosurface S = 

17. This is the lower, southern limit of the box model. Cr, C1, C2, C3, C are the concentrations of a tracer in the 

river, the northern part, the open sea, the southern part and the plume, respectively. 

 

 

The actual integration over the moving and open 0D box can be obtained mathematically, but due to these 

unknown structures needs additional hypotheses to close the formulation in terms of integrated variables only. 

One assumes, for example, that the total integral of source terms can be retrieved by applying the local source 

law P
C
 to the average concentrations. This is only true when interaction laws are linear or if the laws have been 

adapted (through a specific calibration) to represent large-scale interactions rather than local, physiologically 

based interactions. Similarly, the sea-surface interactions generally depend on the evolution of the constituent in 

the water mass itself. We must assume that the integral of the sea-surface exchange can be expressed in terms of 

the average concentration of the tracer. The same hypotheses apply to the fluxes across the fixed boundaries Γ1 

and Γ3 (Fig. 7). Here one should bear in mind that these fluxes are dominated by advective fluxes whose 
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integration can be written as the product of the water mass flow and the concentrations of inflow or outflow. 

Based on such assumptions, to be able to force such a box model one must at least have either field data or 

diagnosed values from the 3D model for the following parameters: the river discharge Qr in m
3
/s into the sea, the 

water inflow Q1
in
 into the volume coming from the north, the outflow Q1

out
 to the north on the northern 

boundary, the inflow from the south Q3
in
, the outflow to the south Q3

out
, the sea-surface flux counted positively 

upwards F
C
, and the inflow concentrations in the north C1 and the south C3. 

Providing such parameters are known, based on our assumptions and omitting notations for averages, the 

evolution of the average concentration in the box is governed by: 

 

where an additional equivalent diffusion coefficient A was defined to take into account unresolved exchanges. 

The calculation of the latter is based on an equivalent diffusion flux formulation for salinity or temperature. Its 

actual value for the total diffusion flux can be diagnosed thanks to a high-resolution hydrodynamical model, 

which integrates the actual salinity fluxes. 

The box model thus obtained is easily implemented into an existing 0D code, as long as Q1
in
, Q3

in
, Qr, V, Cr, C1, 

C2 and C3 are provided by a 3D model or data. 

The high-resolution 3D model diagnostics in the case of the Black Sea Danube plume [4] for these quantities 

indicate, however, that the box model's precision is limited by several factors: 

• A is different when the calculation is based on salinity or heat fluxes, with differences larger than 100%. 

• Values of C2, C1 and C3 are highly subjective, especially when assuming, for example, that C3 is a mixing of C2 

and C. This would amount to a change in the water inflow of Q3. 

• Only volume-averaged temperatures are available, which may be too approximate for use in functions limiting 

growth rate that are used in biological models. These may react to high temperatures in the surface but not to 

lower temperatures below the thermocline. 

Unfortunately, the mixing coefficient A and the possible mixing of C2 and C for inflow values C1 and C3 may be 

different for different state variables. This situation may not be overcome, and ultimately implies sensitivity 

studies in the 0D model, in which these coefficients should be systematically changed and the responses 

compared. 

In any case, the fact that integration was performed over a spatial domain clearly involved the need for additional 

assumptions leading to errors in the box model which, in the case presented here, were quantified [4] using a 3D 

model. 

Generally this is not common (since once a 3D model is available, using a box model instead would disregard 

too much information) and one should be aware of the inherent limitations of integrated models. Since 3D 

models are also somehow integrated (at least over the spatial grid boxes and time steps), even such complex 

models still rely on assumptions related to the unresolved processes (the parameterisation problem). One way to 

get around this problem in 3D models is to increase resolution in places of interest (Fig. 8), reducing 

simultaneously the range of scales to be parameterised [6]. 

5.3 Sediment Processes 

Another boundary of particular importance for biochemical components is the bottom boundary, where the 

sediment layer is acting on the exchanges with the water column. Generally, specific sediment models can be 

developed and coupled to ocean models. The coupling generally involves flux calculations based on 

concentrations in the water column (calculated by the ocean model), concentrations in the sediments (given or 

calculated by a sediment model) and exchange coefficients depending on bottom stress, grain sizes, flocculation 

effects and other factors influencing re-suspension and deposition of sediments. Here again, intermittency can be 

highly unpredictable, though strongly modifying exchanges. Among the intermittent processes, sediment 

avalanches in canyons can significantly enhance shelf-sea exchanges compared to the normal situation in which 

currents flow along the shelf break. 
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Fig. 8:  Example of a nested model in the Ligurian Sea 

 

5.4 Atmospheric Inputs 

As for the bottom boundary, the sea surface is another interface with the surrounding systems. Here, 

intermittency is less of a problem in the sense that high-frequency data are available from atmospheric forecast 

models. On the other hand, spatial resolution of the surface forcings can be a concern as well as the error bars on 

imposed heat fluxes. Spatial resolution of atmospheric wind stress strongly controls simulations of upwelling 

events and subsequent biological model responses. (For example, the mistral and tramontane in the northwestern 

Mediterranean are controlled by topographic effects hardly represented in global atmospheric models.                   

The corresponding wind stress fields over the Gulf of Lions therefore suffer from decreased sharpness.) Also, 

errors in heat fluxes might lead to errors in temperature fields or mixed-layer depth and correspondingly changed 

reactions in biochemical models. 

5.5 Estuarine Transformations 

Probably the most demanding problem in terms of mathematical modelling is the transition between the river 

discharge and its arrival in the marine environment. Indeed, in estuaries and low-salinity plumes, biochemical 

processes are extremely diversified and components undergo a series of biochemical and physical 

transformations, including flocculation and sedimentation. Therefore, data from river concentrations can rarely 

be applied directly as an input to the marine model, but must be interfaced by a specialised estuary model. 

6. Data Availability 

As we have already seen, open boundaries demand the use of information originating from a series of sources, 

including other models or observations. Another use for observational data is the initialisation of the model, i.e. 

its spinning up from a given situation. Improper initialisation will generally lead to unreliable results, if not 

unstable or unphysical solutions, and special care is needed for systems with a long memory of initial conditions. 

Unfortunately, obtaining a synoptic high-resolution 3D view of the ocean state (including the tracers) is 

impossible due to the relative sparseness of in situ data and the cost of generating them. Therefore, data available 

for model initialisation include a mixture of: 

• In situ cruises 

• Historical data 

• Coastal data 

• Satellite data 

• Model forecasts of other systems 

To use these sources of data for initialisation, the sparse data must be gridded onto the numerical grid of the 
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model, a step which is called analysis. This is not simply a matter of standard interpolation, but also a matter of 

filtering out signals in the observations that are not modelled (i.e. in a general circulation model, signals of 

gravity waves should not be retained during the analysis). 

An efficient method to grid data and filter out unresolved scales (noise compared to the scales of interest) is one 

based on spline approximations, which aims at finding (analysing) a field φ so that it is close to observations but 

sufficiently regular. It is obtained by minimising a weighting of data-misfit  and variability of 

the analysed field 

 

where the norm measures the variability of the field on the domain D. 

 

αi and µ are parameters of the method and can be obtained to optimally filter out unresolved scales through a 

calibration of the data-weight µ: 

 

This is generally done by estimating the correlation length L of the data and their signal/noise ratio ε
2
/σ

2
, where 

noise includes all signals from all processes not to be dealt with. 

Examples of applications of this analysis method are given hereafter. Based on phosphate profiles of the 

MEDAR database (which also contains historical data on temperature, salinity, chlorophyll, nitrate, silicate, 

alkalinity etc. [7], http://modb.oce.ulg.ac.be/MEDAR), with unevenly distributed profiles (Fig. 9) over the whole 

Mediterranean, one can reconstruct [8] an average phosphate concentration (Fig. 10). 

Then such data [9] can be used to initialise a biochemical model coupled to a hydrodynamical model which 

simulates the evolution of the phosphate field (Fig. 11). The evolution during a bloom (Fig. 12) then allows 

assessment of the upwelled phosphate compared to the riverine input. In the case of the western Mediterranean 

[9], estimates of the ratio of upwelled phosphates compared to Rhone riverine input were around a factor of 10. 

The data analysis methods used to reconstruct fields from irregularly distributed data could also be used to 

analyse satellite images in which parts of the scenes are covered by clouds. Since data in satellite images are 

regularly distributed and time-series available, better-suited methods exist which are based on statistical 

estimates of covariance functions found in the data. Those covariance functions (called empirical since data-

based) are then used to analyse the fields under clouds [10]. An example (Fig. 13) of sea surface temperature 

(SST) filling and validation with MEDAR in situ data showed that errors obtained by the method are comparable 

to the errors on SST estimations in places without clouds. 

Fig. 9:  Data distribution in the MEDAR biogeochemical database for phosphate 

 



Published in: The Mediterranean Sea (2005), pp. 361-385 

Status: Postprint (Author’s version) 

Fig. 10:  Analysis of phosphate data 

 

 

Fig. 11: Modelled phosphate field before bloom 

 

 

Fig. 12:  Modelled phosphate field after bloom 
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Fig. 13: Cloud filling of SST data in the Adriatic Sea through empirical orthogonal function (EOF) analysis 

 

 

7. Data Assimilation 

Data are not only used to initialise and force the model at its boundary, they can also be used to correct model 

forecasts once new data are available. Basically, when the model provides a forecast of the state vector x
f
 and 

observations y° are available, one would like to combine both in order to get the best estimate of the state of the 

system x
a
. 

If we imagine a model with a single forecasted variable T
f
 and its observation T

o
, the best (in statistical terms) 

estimate of the real value is 

 

where σm is the standard deviation of the model error and σo is the standard deviation of the observational error. 

This shows simply that we combine two sources of information weighted by the error estimates of the 

information. The estimated error σa of the combination of the two sources of information is then smaller than 

either model or observational error: 

 

The generalisation of this combination of modelled fields and observed fields leads to the so-called Kalman 

filter, which allows the calculation of the best estimate of the model state x
a
: 

 

as a function of the forecasted field x
f
, a set of observations y

o
 not necessarily coinciding with the model state 

variables, the observation operator H linking the model state vector to observed variables, and the Kalman gain 

matrix K. The Kalman gain matrix can be calculated if the covariance of the model's error P
f
 is known and the 

error covariance matrix of observation R is known (the errors themselves are of course not known, otherwise we 

would know the exact field; only their statistical distribution is presumed to be known): 

 

If the error covariance matrices are assumed to be known and model errors are uncorrelated to observation 

errors, the Kalman filter leads to the best estimate of the state vector and the associated error covariance P
a
 of the 

optimal analysis is reduced compared to the error covariance of the model forecast alone 

 

The error covariance of the model evolves as a function of the model simulation itself (an error in a tracer field is 

of course advected with the field), and should be updated for each time step according to the dynamics. To do so, 
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the so-called Lyapounov equation should be solved, which is impossible for most ocean models without further 

simplifications due to computational limitations. Among the simplifications, using constant model error 

covariances with prescribed correlation length are the most common. Here [6], we show results of an 

assimilation of SST in a high-resolution model of the Ligurian Sea (Fig. 14), which allows correction of 

circulation patterns by assimilating SST (Fig. 15). 

Fig. 14: Effect of data assimilation in the nested Ligurian Sea model. Sea surface temperature (in degrees) (free: 

model without assimilation; forecast: model forecast one week after last assimilation; analysis: combination of 

model forecast and observations) 

 

Fig. 15:  Fine resolution model including velocity field showing the northern current and associated surface 

salinity field 

 

 

8. Error Estimations and Appropriate Modelling Approach 

The major problem when correcting the model evolution by data assimilation is to know: 

• How to quantify the statistical model errors and observational errors (since this information is needed in the 

analysis step). 

• Once specified, if systematic errors are detected during assimilation, how to find the origin of the errors (and 

subsequently improve the mathematical model). 

When characterising errors in the model, we have to observe that they can be of several types: 

• Errors in the mathematical model: this error is the difference between the real system evolution and the 

mathematical solution of the mathematical problem. Examples include errors in interaction laws, parameter 

values, initial conditions and boundary conditions, topographic or topological simplifications. 

• Discretisation errors: this error is the difference between the exact solution of the mathematical continuous 

problem and the exact numerical solution of the discretised equations. 

• Iteration errors: they are the difference between the exact solution of the discrete equations and the numerical 
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solution obtained by an iterative method (e.g. the convergence error of a Jacobi method solution to a linear 

algebra problem). 

• Rounding errors: errors due to a finite number of digits representing numbers in CPUs. 

A well-constructed model should ensure that  

rounding errors << iteration errors << discretisation errors 

                          << modelling errors. 

The required inequalities are easily understood. If discretisation errors were larger than modelling errors, there 

would be no point in telling the numerical model it is an approximation to the physical system we are pretending 

to describe. If the convergence error was larger than the discretisation error, there would be no point in claiming 

that the algorithm leads to numerical solutions that satisfy the discretised equations etc. 

For assimilation purposes, one can generally neglect convergence errors and rounding errors and include them in 

general discretisation errors. Therefore only discretisation and model errors should guide the data assimilation. 

Error estimates related to discretisations can be performed (for example on flux estimates which are calculated 

including error bars due to the discretisation [11]), but such an approach is seldom done, and error estimates are 

now rather based on sensitivity analysis or Monte Carlo approaches. Such a method is used in data assimilation 

in ensemble approaches, where a series of model simulations (slightly perturbed versions of a reference 

simulation) are used to derive statistics on model deviations and error covariances. These estimations of P
f
 are 

then used in the assimilation process. 

9. Validation and Diagnostic Tools 

One of the recurrent tasks in modelling is the validation of model results and the pertinent diagnosis of model 

outputs (in view of the huge amount of data produced by models, appropriate diagnostic tools are a very 

necessary ingredient of models). Standard statistical tools are of course applicable (rms, correlations, PCA, 

trends analysis etc.), but sometimes additional model equations can help understanding of the model behaviour. 

Among the latter possibilities (in addition to adding passive tracers to depict flow patterns), the age theory [12] 

provides a nice framework to analyse ages of tracers within the model domain, where the age is set to zero at a 

given location (the inflow for example). The theory needs the calculation of the evolution of a tracer: 

 

and the calculation of the so-called age concentration a: 

 

from which the age a of the tracer can be calculated: 

 

This quantity gives a direct interpretation of the time a tracer has spent in the domain, subjected to mixing with 

water parcels of different ages, and is particularly interesting to assess cycling timescales [13]. 

An illustration is given in the case of the Gulf of Cadiz, in which a nested model was implemented [14,15] to 

quantify fluxes that are difficult to measure. In particular, the upwelling in the Gulf of Cadiz and the dilution of 

Tinto-Odiel river discharges before entering the Mediterranean were a concern. For that study, three river 

discharges (Tinto-Odiel, Guadalquivir, Guadiana) with unit concentrations of tracers were applied. (As a first 

approximation, nutrients during winter can be described as a non-reacting component described by linear 

equations. Then concentrations can be scaled by the river input concentration.) The river water discharges used 

were: 

• C1: Guadiana 157m
3
/s 

• C2. Guadalquivir 200 m
3
/s 
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• C3: Tinto-Odiel 15 m
3
/s 

The nested model was incorporated in a model covering the Gulf of Cadiz and Alboran Sea (Fig. 16). The 

circulation revealed the advection and dispersion of the river discharges towards the Gibraltar Strait (Fig. 17) and 

a sediments tracer (Fig. 18) showed the upwelling along the shelf. 

River dilution is easily observed (Fig. 19), but more interestingly, the age calculations (Fig. 20) exhibit the very 

different timescales of the plume displacements. In particular, the age within the plume can be used as an aid to 

interpreting biochemical observations within the plume, as it allows quantification of the time already passed 

since the river water was injected into the marine system. Also, recirculations across the open boundary 

(resolved by the bidirectional nesting) show the different plume structures and water ages associated with each 

river. 

10. Summary 

The modelling of a marine environment is based on a series of assumptions and data requirements that limit the 

applicability of model results. Care should be taken in designing models appropriate to the question at hand and 

in ensuring that appropriate data for calibration and validation are available. If parameterisations are used, they 

should be systematically tested in terms of sensitivity of the modelled solution to changes in values of those 

parameters. Should the solution change significantly it simply means the parameterised process should not be 

parameterised but explicitly modelled, for example with nested models. 

To perform such sensitivity analyses, estimates on ranges of parameter values as well as ranges of model results 

are needed, asking for a modeller's insight into the problem. With confidence in the model after validation and 

sensitivity analysis, the modeller then has at his disposal a very powerful tool that can be exploited 

systematically in various ways, including statistical analysis of complex model results, standard forecasts, 

scenario testing and flux quantifications. 

 

Fig. 16: Circulation modelled in the Gulf of Cadiz at 10 m depth 
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Fig. 17: Circulation modelled in the Gulf of Cadiz with the nested model at 20 m depth 

 

 

Fig. 18: Sediment tracer showing upwelled waters at the surface through concentration of a tracer released only 

on the bottom (arbitrary units) 
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Fig. 19: Relative concentrations (compared to the input values in %o) of non-reactive tracers originating from 

the three rivers Guadiana, Guadalquivir and Tinto-Odiel (from left to right) 
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Fig. 20:  River discharge ages. Scales range from 5 (blue) to 110, 180 and 140 days, respectively (red) 
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