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ABSTRACT - Marguerre's shallow shell theory is interpreted
by the means of the introduction of a "fictitious initial
displacement'". A logical interpretation of Marguerre's equi-
librium equations follows directly from this point of view,
The introduction of fictitious displacements is easy to gene-
ralize, and the case of quasi-conical shells is analyzed in

details




1. INTRODUCTION

Classical shell theories leads to somewhat deficient finite
element wodels due to the fact that rigid body motions are not
polynomials in terms of curvilinear coordinates. The only way
to overcome this difficulty 1s to make use of cartesian coordi-

nates, as done by DUPUIS and GOEL [1] .

The use of NOVOZHILOV's‘shallow shell theory, as demonstra-
ted by IDELSOHN [2] , leads to the further difficulty, that shal-
low shell solutions do not converge to deep shell solution when
the finite element mesh is refined, since Novozhilov's approxi-
mation consists of neglecting some terms involving the radii of

curvature which do not tend to zero for fine meshes,

Another shallow shell theory has been developed by MARGUERRE
Eﬂ in 1938. In this theory, use is made of cartesian coordinates,
and the neglected terms do not involve the radii of curvature, but
only the slopes of the surface, so that finite element approxima-

tion based on this approach do converge to the deep shell solution.

_ The classical way to introduce Marguerre's theory is to regard
it as an approximation of the exact one [2,4] « In the present
paper, another interpretation of Marguerre's equation is given,
which is to some extent closer to Marguerre's point of view. The
main interest of this presentation lies in the fact that it can be
generalized to a large class of physical problems,including quasi-
conical shells,twisted beams, ... The case of quasi-conical shells
is analyzed in detail, and leads to a theory which, with the proper

assumptions,degenerates in GECKELER's classical approximation.




2, MARGUERRE'S SHALLOW SHELL THEORY

2,1,

In Marguerre's shell theory, a given point of the shell is
represented by its projection on a reference plane and its height

h (fig.l). Marguerre's strain expressions are then
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where u,v,w,a,8 are the displacements and the rotations defined in
the cartesian system of the reference plane, These expressions can

be deduced from the exact deformations by a proper simplification

rule consisting of neglecting the slopes of the shell in comparison

to unity [2] « This point of view seems to be the curtomary one

[4] . But Marguerre's presentation was somevhat different. Concerned

with stability problems, he considered the height h as some imper-
fection affecting a plate, and he deduced the preceeding equations

in the following way [3] :
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. The last term 1is of course neglected in the linear theory. The main
originality of this approach is, to our opinion, the fact that the

height h is considered as some initial displacement,
2.2,

This idea can be generalized in the following way. Let A be a
reference structure of simple geometric characteristics, and let
B be another structure which does not strongly differ from A. One
may imagine that the structure B is obtained from an appropriate
relatively short deformation from the structure A, the corresponding
fictitious displacement being denoted ﬁi o« If the body B is submitted
to a subsequent deformation Uy the total displacement will be

t

u (2)
The total deformation, from the reference body A to the actual body

C may be measured by the 'total Green's strain tensor"
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and the initial fictitions deformation, by
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Because B is the true physical body, the effective deformation has
to be the deformation between B and C, measured by the following

expression
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whose linearized version is
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€13 37 %Y *n

2.3,

Returning to the problem of a shallow shell, one may consider

that it is obtained from the reference plate by a purely vertical

~displacement h, without rotations. As illustrated in fig. 2, an

orthogonal section AB becomes a section A'B' which is no longer

orthogonal, The initial displacement is then
&, =0, 8, =0, ﬁ3 = h(x,y) , (5)

and the introduction of the classical plate hypothesis

U =u + az, u, =V + Bz, Uy =W, (6)

leads to equations (1).
2.4,

A correct interpretation of the stress resultants requires some
care,Conjugated to Green strains increments, the stresses have to be
understood in TREFFTZ's sense {5] « Their interpretation is thus as
follows. During the fictitious initial deformation, the material

-> -> -> -»>
basis vectors ey and ey are transformed in 81 and 8y It is clear
+ —). + '3 2 2 3 (] (3
that 83 = €3 » but e, is stretched and its orientation is modified.

1
A simple inspection of fig. 3 shows that, if ¢1 is the angle Zl and El,
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A forceF dy dz acting on an infinitesimal section has to be decomposed

in the basis of the shell , i.e.

>

dydz F = dydz F, g, + dydz F, 33 , (8)



and one then poses
Nipg=F Q = Fy . (9
The effective value of the force in the direction El is thus
Fl N1
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This remark is of primary importance for the understanding of
equilibrium equations. Let us consider a shallow shell subject
to a vertical load of density p. Equatiﬁg the virtual work to

zero,
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leads to the following equilibrium equations
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The interpretation of equations (15) and (16) do not raise any
problem. For equations (12)‘and (13), it will be noted that the
horizontal projection of Nxx/cos 9y is precisely Nxx (fig. 4), and
this leads to the same equations as in flat shells. Finally, equation
(14) 1is easy to interpret when it is realized that the vertical
resultant of Q. Nxx/cos ¢, and ny/cos ¢, is given by (fig. 5)
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Thus, in disagreement with BISPLINGHOFF [ﬂ , it is seen that

Marguerre's equilibrium equations, correctly interpreted, are

exact.,

2.5,

However, the shallow shell hypothesis is used at twé levels:
(1) The shell obtained from a deviation of a plate is thiner than
the latter, Its thickness is t cos ¢ , (fig. 6) where ¢ iIs the angle
between the reference planezand the shell., The order of magnitude of

this error is (1 - cos¢)= if .

(ii) The constitutive equations are set identical to those of the
plate. This approximation is of order ¢[§] . It is thus the largest

error . But it should be noted that this error depends only on ¢ ,

not on the radii of curvature, As a consequence, if one considers a

sequence of finite element meshes, the corresponding solutions will

converge to the exact one, since ¢ = 0 .
2.6°

Finally, let us analyse what are the conditions for preserving
the rigid body motions in a finite element model, The only modes
for which this is not automatic are the rotational ones, They are of

the form
u, = eijk wj (xk + uk) ’ (18)

where eijk is the alternator symbol. Therefore, the condition is
that the initial fictitious displacement should be contained in the
finite element model. As an example, is h 1s a third degree polyno-

mial, the equation (18) has the following explicit form

s
|
I

= wz'(h + x3) - uy X,

X

[+
1

=W (h + x3) (19)

2 Y3 %

[+
W
n
€
Pt
x
[\~
1
NE
»
[
-



and the rigid body mode will be represented if u and v are at least
of degree 3, w at least of degree 1, o« and B at least constant,
These conditions are in agreement with those obtained by DUPUIS
and GOEL [q for their general model of Kirchhoff-Love's shells in

cartesian coordinates.,

3. QUASI-CONICAL SHELLS

Axisymmetrical shells may be analysed by a Fourier decomposition
scheme, avoiding thereby all the difficulties related to the circum-
ferential curvature I/ﬁe . But the meridional curvature 1/Rs is the
origin of problems similar as in the general case., Therefore, a
temptating approach consists in the use of a Marguerre's type theory
where the shell will be described by reference to conical frustium,
and a "height'" defined as the distance between the shell and the
cone, measured orthogonally to this one (fig. 7). Following the
approach described in (2.2), the height, which depends only on the
cone coordinate s, will be considered as an initial displacement of

the form

-]
u =0 , 8§ =0, &, = h(s) (20)

The following expression will then hold for the strains :
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one obtains after some classical calculations [5,7]
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the expressions (1 + %—)_k will be correctly approximated by limited

Taylor's expansions :
(1 + Ey* s -kE+om),
R R
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This leads to the following approximated strains @
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A further simplification is possiblelby making both assumptions
] «< 1, [ <« 1. (27)
] 6

But here, a special care is required, because it is not guaranteed
that the suppression of some terms will not destroy the representa-
tion of rigid body motions, In fact, for such a motion, all strains
are equal to zero. By virtue of the independence of the functioms
constant,g , ;2,..., anyvterm of Taylor's expansion of the -strains
will vanish. But our present goal is to omit a part of Taylor's
linear terws of the strains, which do not vanish a priori. This
point has been developed in detail in Bﬂ . Consider first the ex-

pression of ¢_ .. The constant term € . necessarily vanishes for a

60 60
rigid body motion. Consequently, iee will also be zero, and it is

permissible to neglect the small term

.~ h . 2nh
Xpe R. €00 2 ° (28)
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By similar arguments, the whole linear part of Yec may be negleeted.

9.




But iE-Yse » no simplification may be done .

Finally, the strains may be set in the following form :
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4, EQUILIBRIUM EQUATIONS OF A QUASI-CONICAL SHELL

The equilibrium equations will be obtained by writing the
virtual work theorem for anvinterval Jsl,,sz['i]el,ezf . The first

variation of the strain energy is given by
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Note that the cone surface element 1 +'§—) dd ds is used, in the

same - way as Marguerre has written his equeations in the reference plane.

The (symmetric) generalized forces are thus (a,8 = 1,2)
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These definitions allow us to write (31) in the following form
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Assuming a pressure load, the virtual work is
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and one obtains the following equilibrium equations
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Msé) dh 3 _(hcos g
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All boundary conditions will be supposed homogeneous. They may be

written in the following condensed form :
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It will be noted that the apparition of groups as Nse --iig is due to

the use of symmetrical resultants, the same phenomenon appearing in deep
shells theories. Equations (43) are easy to explain by a direct generali-
zation of the interpretation of the forces in Marguerre's theory.

E%EEQ Mse , in (41). As we shall see, it
.restores the correct difference between the classical resultants

(s)
Nse
equilibrium equation of a little portion of the shell round its normal

The only puzzling term is
and Nig) (fig. 7). In fact, a glance to this figure shows that the
is given by

(s) (8 )
Nse (Re+h) ds d6 NSe (Re+h) ds dé NSe ds de =0

and this leads to
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By (41) and (42),
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so that
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which is precisely the correct value.

5. CONSTITUTIVE EQUATION

In contrast with theories such as KALNINS' one [ 7 ] , the fact
that all strains are zero for a rigid body motion allows us to
simplify the constitutive equations without risk concerning the
representation of these particular modes. The simplest choice is

thus a decoupled law of the form (o, B, v, § = 1, 2)

- (1) -
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Moreover, the approximate representation of stiffened shells by the

” 11] : (1) (2)
smear ing" procedure remains possible (In this case, CGBYG # CGBYﬁ)'

6. FINITE ELEMENT IMPLEMENTATION

The present formulation seems to be very attractive for finite
element applications. Considering‘a given shell (fig. 9), in each
element, use will be made of the cone defined by the extreme nodes,
so that conformity will be guaranteed., The rigid body criterium
is verified if the degree of displacements is at least equal to
the degree of h. When the mesh is refined, the finite element solution
converges to the exact deep shell solution, as it is the case with

conical elements, but faster than in the latter case,

Finally, note that the correct symmetry conditions on the axis
can be derived from the fact that all strains have to be square

integrable in the neighborhood of the axis.

7. RELATION WITH GECKELER'S APPROXIMATION [ 8 ]

As it is well known, the classical methods to solve axisymmetrical
shell problems often consist in a membrane analysis of the shell first,
to which a bending correction is applied afterwards at the neighborhood
of the points where the first analysis leads to displacement disconti-
nuities, that is, in general, the fixed points and the points of slope
or curvature discontinuities of the shell, The correction acts on a
short region of the shell whose length is of the order of magnitude
of /ETﬁ; « Such approximate methods are not totally obsolate after
the finite element revolution because their intuitive meaning can be
used at the conception level and also for the reason that they offer

a simple way of checking numerical results.

A Geckeler's method is applicable whenever a shell has an end parallel
to the axis and a sufficiently large radius of curvature Rs'

In such a case, the angle between the axis and the shell is small in
the region where flexural effects are significant. For quasi-conical
shells, aynatural procedure consists of using a cylinder as a refe-

rence. In the axisymmetrical case, the strains reduce to



ot :.d_li-f-ﬂg_‘i
ess ds ds ds
T v
06 r
- dw

= + o
YS; @ ds
5 = 4o
Xs .ds

and the equilibrium equations become, in the unloaded
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Making use of the Kirchhoff-Love hypotheses, one sets
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case,

(51)

(52)

(53)

(54)

The vertical equilibrium will be unchanged by the flexural

effects, so that one may assume

r being the (constant) radius of the reference cylind
is then easy to obtain by the use of the variables V

In fact, equation (52) becomes

d

av
-a-g(r'a—s-) + Eta=0

d
r-a—é-(rQs)—Etw >
and, from equation (53) and the constitutive relation

M

da
ss D ds °*

it is easy to obtain
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er. The solution

T Qs and a .

(57)

- (58)
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d da \

s F& g0 (59)
Equations (57) and (59) are precisely Geckeler's ones. Their
derivat ion turn out to be very natural in the context of guasi-

conical shells,
8. CONCLUSION

The introduction of a fictitions initial displacement enligh-
tens Marguerre's theory of shells in such a way that its equili-
brium equations become perfectly logical, The point of view deve-
loped here 1is generalizable to a large class of problems including
the theory of quasi-conical shells which has been treated here and

several other physical situations such as weakly pretwisted beams,

weakly non prismatic beams, shallow arches etc... The finite

element implementation of these theories seems to be very
attractive because of the convergence to the exact solution and
also for the correct representation of rigid body motions that
they allow. The nonlinear case can also be treated following the

same approach.
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