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ABSTRACT extend Cytomine, a rich internet application for remoteivis

W i | methodol bini b-based alization and manual annotation [3], to enable computeedi
€ present a novel methodology combining web-based SOl 5 otion of biologically relevant measurements frongéar

ware development practices, mach|_n_e Ie_arnmg, a_nd Spa_t'gﬁale tissue imaging data. Our design choices are presented
databases for computer-aided quantification of regions-of i in Section 2. Results on a practical biological applicatiuat

tergst (ROIs) in Igrge-sca_le imaging data_. We describe OlVequires detection and surface measurements of tumoral re-
main methodological choices, and then illustrate the bene-

) S .. gions in hundreds of largex( Gigabyte) tissue slice images
fits of the approach (workload reduction, improved precisio . in Section 3. Th tential i t of th h
scalability, and traceability) on hundreds of whole-slide are given in section 3. 1he potentialimpact ot the approac

. ; ; : . is then discussed in Section 4.
ages of biological tissue slices in cancer research.

Index Terms— imaging informatics, machine learning, 2. METHODS

rich internet application, hybrid human-computer We propose a hybrid human-computer approach for the

quantification of large sets of high-resolution bioimaggs b
1. INTRODUCTION combining recent web development methodologies, spatial
database concepts, machine learning techniques, ant@olla
With recent advances in acquisition technologies, s@&nti rative proofreading. In this work, the extraction of conmaf
generate growing amounts of biological imaging data (&g., regions of interest (ROIs) is formulated as a pixel clasaific
anatomical pathology, neuroscience, drug discovery, % to tion problem followed by contour processing. First, manual
icology). Projects leading to terabytes of imaging data ar@nnotations of ROIs (e.g. tumoral regions) and non-ROI
becoming usual in various contexts, e.g. when experimentgbther subtypes of tissues) are used to train a pixel classi-
studies rely on whole-slide virtual microscopy, high-@tt  fication model. This model is then applied in a distributed
screening, molecular imaging by mass spectrometry, oF autgashion on new images and its predictions are processed and
mated volume electron microscopy. As a result, better imagencoded in a centralized repository. Finally multiple sser
ing informatics tools are needed [1] to ease the visualizacan proofread these predictions to derive reliable image-
tion and high-throughput analysis of such high-dimensionapased measurements (e.g. surface measurements of tumoral
datasets in today’s collaborative, geographically disteéd, regions). To implement this workflow, we rely on the Cy-
scientific context. As human interpretration of such datase tomine framework [3] which facilitates large-scale imagin
is impractical at such scale and operator-dependent, ihare data curation through a web interface. While its visuaiirat
strong need for computational methods to facilitate thes&xt  and manual annotation modules have been described previ-
tion of quantitative information from these images. Despit ously, in this section we first briefly recap its main design
increasing progress in machine learning, for some tasks alg principles then describe our extensions.
rithms have not yet reached reliable precision and inteeact
methods are still needed to proofread algorithm results.
Tissue image analysis is a very active field of research [2
including many works for tissue classification. Many of themThe rich internet application [3] uses recent web technielog
are algorithm-oriented papers where limited imaging data iand integrates various tools, standards and algorithngh-Hi
used to evaluate recognition performances of new standalomesolution, two-dimensional images (with hundreds of thou
algorithms. By contrast, our work proposes a practical andands of pixels wide and tall) can be visualized at multiple
scalable methodology with humans in the loop to ease the disesolutions in traditional web clients through caching mec
covery of new biomedical insights. To achieve this goal, weanisms and distributed image tile servers supporting uario

f.l. General design principles



PIXEL CLASSIFICATION

by [6]). In our case we used hit-or-miss transforms to elimi-
nate invalid geometric shapes. Point coordinates of valid g
ometries are then communicated through the web API to the
central server that translates internally the HTTP reqgiumst
spatial insert queries. Finally, once all tiles are proedss
these contours are eventually merged by spatial unionegieri
Fig. 1. An overview of the proposed architecture with the web@Ver tiles to take into account the fact that a single ROl may
client user interface and the tissue pixel classificatiqpliep- ~ actually overlap several tiles.

tion connecting through a RESTful web API.
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2.4. Proofreading algorithm predictions

A polygon simplification algorithm [7] is then applied in
image formats. Its underlying relational data model alltwvs order to slightly reduce the number of vertices of polygons
create and manage projects which contain users, images, v@ence easing manual edition of contours. To allow interac-
cabularies with domain-specific terms, and layers of manudive and collaborative proofreading, we extended the image
annotation geometries (e.g. polygons) drawn on top of origiand annotation visualization web interface of [3] in order t
nal images to highlight regions of interest. All projectalate  display simplified job annotations as layers of geometrical
stored in a spatial, relational, database and can be vigaali shapes overlaid on top of the original images (see Figure 1,
and edited through a web interface or third-party softwares left). Then, for each image under review, a user is able to
accept or reject individually (or all at once) predicted geo
metrical shapes, or edit them through drawing tools which
allow to edit vertices, scale, substract or merge polygons,

The annotation is the central entity in the data model for ROf!ll intérnal holes. These user manual operations are auto-
description. An annotation is a geometrical shape, Iocate@af['ca"y translat_ed internally into spatial queries talafe
within an image, and for which a term from a user-deﬁned,rev'e\’vecj annotations.

project-related, vocabulary can be associated. To enable

model training (see next section) and proofreading of their 3. EXPERIMENTAL DATA AND RESULTS

results, here we propose three subtypes of annotations: use

annotations (representing manual user annotations used 3¢. Biological application

training sets for learning pixel classification modelsh an-
notations (annotations generated by software instanaad),
reviewed annotations (for algorithm predictions proofrbs

2.2. Spatial data model and RESTful API

The proposed methodology has been used to identify the im-
pact of a pulmonary tissue composition change on lung tumor
onset and progression [8]. To assess these questionsediffe

ufsers%;NIn ad(?jltlon,_l\;vedpgoplfse a JIOb ent_lty t? store m::Ianc |rnouse models were developed where mice were treated with
of softwares described by key-value pairs ot parameter Vaéomponents inducing a specific type of neutrophilic inflam-

ues. As we follow a REST architecture style (see Figure 1)mation in lung tissues. The effects of pulmonary inflamma-

each resource (e.g. an annotation) is referenced by a mnifor,; . : : : . .
S tion has to be investigated in lung hematoxylin-eosinrstd
resource locator (URL). The RESTful application program—I investg n ung XY ! !

o o digital slides (8 tissue slices per animal) and the tumoa are
ming mterface.(API) allows communication between S€VeMas to be determined and reported to the total area of lungs
and (web or third-party) clients through HTTP requests. for different experimental conditions. A typical wholaes

scanned image h&5000 x 30000 pixels (with40.X objective
2.3. Generic machine learning and contour processing  and pixel resolution 06.23.m).

For ROI detection, a supervised pixel classification mosiel i3
first built using a generic algorithm based on subwindows
and multiple output extremely randomized trees [4, 5]. ItFrom a machine learning perspective, the task could be seen
is trained from user manual annotations (retrieved usieg thas a binary pixel classification problem with tumors as pos-
web API) corresponding to ROIs and non-interesting regiondtive class, and all other subtypes of tissues (including in
For the prediction phase, pixel classification can be perént  flammatory cells, blood vessels, cartilage, bronchus, as)

by multiple software clients that work on small, indepertgden negative class (see Figure 2, bottom right). After a develop
specific image areas (tiles), enabling massively distethut ment phase where scientists manually annotated regions cor
processing of large images. Connected components labelimgsponding to different subtypes of tissues, several piast

then allows to extract contours from each tile pixel classifi sification models were trained and qualitatively evaluated
mask. These contours need then to be translated into valalfew slides (final chosen parameter valuesiare 10 trees,
geometric shapes for spatial databases (as also pointed ouf;, = 2, and+ 100000 subwindows of fixed-size4 x 24

2. Evaluation of performances
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Fig. 2. Average timings and operation counts using the local “Bkl’ approach and our web-based “Cytomine” approach.

Bottom right: one of the five whole-slide hematoxylin-eestained tissue image used for performance evaluatiogigai
image size: 3686425344 pixels), and examples of patches extracted in pegitiimor) and negative regions.

Cytomine LocalFloodFill Cytomine LocalFloodFill

pixels encoded in HSV). The approach was then used to quaslides, shows that our approach with improved user interfac
tify automatically about 250 whole-slide images corregpon and keyboard shortcuts reduces the required time to contour
ing to 5 experimental studies, which yielded the validationROIs from 15 minutes (with a fully manual approach) downto
of a total of more than 17000 tumoral ROIs. To assess th8.5 minutes on average. In that specific study, for the base-
impact of the proposed workflow on scientist daily workload,line approach it was needed to manually and systematically
we compared the time required to proofread algorithm predicdelineate all contour lines because usual flood fill algargh
tions (through a regular Wi-Fi internet connection) with re are inoperative on regions with similar color intensitieg b
spect to another semi-automatic approach (on the local conglifferent textured patterns.

puter). The latter approach, which was the standard peactic

in the laboratory before the introduction of our methodglog

combines the use of ImageJ and Adobe Photoshop on down- 4. DISCUSSION

sampled images. It requires the user to click on tumor islets o )
using a “magic wand” tool (with a flood fill algorithm) fol- 4.1. Impact on workload, precision, and current practices

lowed by manual corrections (e.g. to reject inflammatoriscel In practice, we expect savings of time and manual operations

which have similar color intensities). Timings and manualprovided by our approach would depend on the sizes and den-

operation counts for 5 randomly choosen whole-slide imagegties of the ROIs (e.g. if only a few small ROIs have to

(totaling 900 tumor islets) have been recorded and average e detected in each image, then our approach is less benefi-

Figure 2 summarizes these results which clearly show th%’ial). Performances also depend on appearance heterggenei

the numper of mouse clicks and total operation time is Iowe{)f ROIls and other image regions that can affect recognition
when using our approach. However, we observed cursor tra erformances of the pixel classification models. Also, the r

elled distances are roughly equal due to the positioning %orted results do not take into account the model develop-

proofreading buttons and the lack of keyboard shortcuts i ent phase which can involve several time-consuming steps

our yvet_; interface at .the. time of the expenment: Add't'onalto improve recognition of difficult regions. Overall, alingh
qualitative and quantitative results are given in Figure 3. it was shown previously that the used algorithm works well on
3.3. Other case study . . N . . .
diverse types of imagery [4], it still requires time to tun® i
Another preliminary experiment, related to cancer studiesew parameters and to annotate a realistic training setehen
with tens of hematoxylin-DAB-stained immunohistochenhica the approach will be mostly useful when one has to analyze
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Fig. 3. Qualitative and quantitative results for the five digitidles used for performance evaluation. For each line: low
magnification of the original H&E tissue image (left), tuntissue classification automatically generated by algoritmiddle,
in red), final tumor tissue classification after proofregdiy expert (right, in green). Confusion matrices show atgor
recognition rates within tissues computegosteriori(i.e. the ground-truth is the final tissue classification aftegfreading).



large numbers of samples. This advantage is especially true
given that the image processing can be massively distdbute
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4.2. Extensibility
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visualized on-the-fly in the web user interface.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach that combines ideas
from machine learning, spatial databases, and web softwar
developmentto ease the quantification of regions of intémes
large bioimages. We are currently extending the methogolog
with other user interfaces and algorithms to produce variou

types of quantifications for different imaging modalitiesq.

combining detection of regions of interest and positive cel
counting within immunohistochemical images, cell sorfimg
cytology, or phenotype recognition in microscopy images).
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