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Abstract

Based on the HIV infection dynamics model proposed by
Adams et al. in [1], we propose an extended model repre-
sented by a set of nonlinear Ordinary Differential Equa-
tions (ODEs) that aims at incorporating the influence of
activation-induced apoptosis of CD4+ and CD8+ T-cells
on the immune system response of HIV infected patients.
Through this model we study the influence of this phe-
nomenon on the time evolution of specific cell popula-
tions such as plasma concentrations of HIV copies, or
blood concentrations of CD4+ and CD8+ T-cells. In par-
ticular, this study shows that depending on its intensity,
the apoptosis phenomenon can either favor or mitigate
the long-term evolution of the HIV infection.

Introduction

Human Immunodeficiency Virus (HIV) is a retrovirus that
may lead to the lethal Acquired Immune Deficiency Syndrome
(AIDS). Progression from HIV infection to AIDS is primarily
due to an extensive depletion of CD4+ T-cells.
T-cell loss may be due to direct destruction by the virus (direct
virus-induced cytolysis) or to defective T-cell generation.
In 1991, apoptosis, also called programmed cell death,

has been suggested as another mechanism responsi-

ble for T-cell depletion during the evolution of HIV-1

infection and an extensive body of recent literature is sup-
porting this hypothesis. To the best of our knowledge, no
mathematical model has yet tried to explain the influence of
the activation-induced apoptosis phenomenon on the HIV in-
fection dynamics.
We propose here a modification of the model proposed by
Adams et al. in [1]. This modification aims at modelling

the activation-induced apoptosis phenomenon and at

analyzing its influence on the HIV infection dynamics.

The Model of Adams et al.

Ṫ1 = λ1 − d1T1 − k1V T1 (1)

Ṫ2 = λ2 − d2T2 − k2V T2 (2)

Ṫ ∗1 = k1V T1 − δT
∗
1 −m1ET

∗
1 (3)

Ṫ ∗2 = k2V T2 − δT
∗
2 −m2ET

∗
2 (4)

V̇ = NTδ (T ∗1 + T ∗2 )− cV (5)

− (ρ1k1T1 + ρ2k2T2)V

Ė = λE +
bE (T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kb
E (6)

−
dE (T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kd
E − δEE

T1 (T ∗1 ) : number of non-infected (infected) CD4+ T-
lymphocytes (in cells/ml)
T2 (T ∗2 ) : number of non-infected (infected) macrophages (in
cells/ml)
V : number of free HIVs (in virions/ml)
E : number of HIV-specific cytotoxic CD8+ T-cells (in
cells/ml)
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Fig. 1: Time evolution of the state variables of the model (1)-(6) starting from

the primo-infection initial condition (T1, T2, T
∗
1 , T

∗
2 , V, E) = (106, 3198, 0, 0, 1, 10).

Apoptosis-compliant model for the HIV in-

fection dynamics

Ṫ1 = λ1 − d1T1− k1V T1−aT1
T ∗1 T1 (7)

Ṫ2 = λ2 − d2T2− k2V T2 (8)

Ṫ ∗1 = k1V T1 − δT
∗
1 −m1ET

∗
1 (9)

Ṫ ∗2 = k2V T2 − δT
∗
2 −m2ET

∗
2 (10)

V̇ = NTδ (T ∗1 + T ∗2 )− cV (11)

− (ρ1k1T1 + ρ2k2T2)V

Ė = λE +
bE (T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kb
E (12)

−
dE (T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kd
E − δEE−aET

∗
1E

aT1
and aE are expressed in ml

cells×day.

Analysis of the apoptosis-compliant model
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Fig. 2: Time-evolution of the state variables of the model (7)-(12) for aT1
= 10−5

, aT1
= 10−4, and aT1

= 10−2 starting from the primo-infection initial condition

with aE=0. The apoptosis phenomenon can either favor or mitigate the

long-term evolution of the HIV infection.
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Fig. 3: Evolution of the settling-time (minimum time required for the state vari-

ables to be within an infinite-norm distance of 1 percent of their asymptotic value)

as a function of the apoptosis parameter aT1
with aE=0.
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Fig. 4: Bifurcation diagram of the equilibrium concentrations of non-infected

CD4+ T-cells (T1eq) when the bifurcation parameter aT1
varies from 0 to 10−4. A

saddle-node bifurcation point (LP1) exists at aT1
= 3.874×10−5. Only the infected

equilibrium points (equilibrium points 2, 3 and 4) are represented and aE is chosen

equal to 0.
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Fig. 5: Two-parameter continuation of the saddle-node bifurcation point LP1 cor-

responding to (aT1
, aE) = (3.87418× 10−5, 0). A CUSP bifurcation point appears

at (aT1
, aE) =

(

4.838× 10−4, 1.956× 10−4
)
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Fig. 6: Concentrations of non-infected CD4+ T-cells (T1) corresponding to the

equilibrium point to which the patient’s state converges when starting from the

primo-infection initial condition.

Discussion

Using a combination of numerical simulations and bifurcation
analysis, we found that for some ranges of values of theapopto-
sis parameters, these activation-induced apoptosis phe-

nomena had non-linear effects that could be beneficial

to the immune system during the HIV infection. On
the other hand, when the magnitude of the apoptosis param-
eters becomes too large, this potential beneficial effect disap-
pears and activation-induced apoptosis mechanisms were then
found to aggravate the HIV infection. Furthermore, since the
HIV infection worsens when these activation-induced apoptosis
rates become too large, one could also relate the progression of
the HIV infection to AIDS to a change of magnitude in these
rates. These findings need to be taken with caution since they
are dependent on several modelling assumptions that would
certainly require careful experimental validation.
These results could potentially help in designing new

anti-HIV therapies based on a drug-mediated regulation of
the activation-induced apoptosis factors (such as gp120) in
HIV infected patients. These therapies could be based on the
injection of some specific interleukins to HIV positive patients,
such as for example IL-2, IL-7 and IL-15 [2, 3, 5], although the
role of interleukins on the immune system of HIV-infected pa-
tients/macaques is still a controversial issue since other studies
(see e.g. [4]) have shown that they could have a detrimental
effect.
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