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ABSTRACT

The treatment of chronic-like illnesses such has HIV infection,
cancer or chronic depression implies long-lasting treatments
that can be associated with low quality outcome, painful side
effects and expensive costs. To enhance these treatments, clin-
icians often adopt what we call Dynamic Treatment Regimes
(DTRs). DTRs are sets of sequential decision rules defining
what actions should be taken at a specific instant to treat
a patient based on information observed up to that instant.
Since a few years, a growing research community is working
on the development of formal methods (mainly issued from
mathematics, statistics and control theory) that allow to in-
fer from clinical data high-quality DTRs. We propose in this
framework a consistent algorithm of quadratic complexity [3]
that infer from clinical data a sequence of treatment actions by
maximizing a recently proposed lower bound on the return de-
pending on the initial state [2]. The algorithm (called CGRL
for Cautious Generalization for Reinforcement Learning) has
cautious generalization properties, i.e. it avoids taking treat-
ment actions for which the sample of clinical data is too sparse
to make safe generalization.

1 PROBLEM STATEMENT

e Discrete-time system dynamics over I’ stages
mt—l—lzf('rtaut) t:O,L...,T—l,

where for all ¢, the state x; is an element of the normed vec-
tor state space X and u; is an element of the finite (discrete)
action space U,

e An instantaneous reward
re = p(xy, uy) € R

is associated with the action u; taken while being in state
T+,

e [he system dynamics f and the reward function p are un-
known,

e The system dynamics f and the reward function p are
Lipschitz continuous, i.e. that there exist finite constants
L¢, L, € R such that: Vz,2' € X Vu € U,

|f(@,u) = fla',w)|| < Lyllz — ||,
p(@,u) — pla’, u)] < Lyl|z — '] ,

e Two constants L, and L, satisfying the above-written in-
equalities are known,

e Data : a set of one-step transitions
A A NV
F = {(aj,u,r 7y)}l:1
where each one-step transition is such that y' = f(a!, u')

and r' = p(a!, ul),

e Each action a € U/ appears at least once in F:
Yaeld, Az,u,r,y) €F ‘u=a,
e For every initial state z, the return over T’ stages of a se-

quence of actions (ug, ..., ur—_;) € U' is defined as

Juo,...,uT_1($) — fg@l p(:lj‘t, Ut) .

3 LOWER BOUND ON THE RETURN OF
A GIVEN SEQUENCE ACTIONS

Lemma 3.1 Let wy,...,ur_; be a sequence of actions.
Let 7 = [(z", ul,r "))t € FL where F,

Uup,..., uT—1 seee s UT 1

is the set of all sequences of one-step system transitions
lo 2ilo olo o)l Ir—1 o dr_1 plr1 ol SURN A
(zho uo o y) L (2T T Ty )| for which u't =

ug, vVt € [0,T — 1]. Then,

JUQ,...,’LLT_l(x) > B(T, x) ’

with
U l l
. t t—1 t
Blr.a) =S " — Lo, Iy — "]
Yyl =uw
T—t—1 i
Xy=x X =F (X1
L L X1
o =e X t) X, X1 Xy
Ix—x"[ | —
I, I, -
p(XIO,UI) \\”.y X || N || l _XIT” —
\ “‘r— o, (Xl ul rl yl )
Lo, v Lo ’ S

[

VtE{O,...,T—l], u‘=u,

T—1
J;O""’““(X)ZZ:‘) [rlf—LQT_t yior—x"|] with y' = x
t=

F1G. 1: A graphical interpretation of the different terms composing the bound on

JU0-UT=1(2) computed from a sequence of one-step transitions.

Definition 3.2 (Highest lower bound for v, ..., u;_1)

Bt () = max  B(7,x) .

T
TG‘FUO ..... ur_1

Definition 3.3 (Sample sparsity of F) For X bounded,
let F, = {(z',u',r',y") € Flu'=a}. 3a e RT:

. [ /
_ < .
Vo €U, sl B e W M o)

The smallest o which satisfies equation (1) is named the sam-

ple sparsity and is denoted by o

Theorem 3.4 (Tightness of highest lower bound)
3C>0: Y(ug,...,ur—1) €U,

JUO,H.7UT_1(£E) L BUO,...,UT_1<ZC) < C&*

l;,...,l;_ﬁalrgn;zax o (0,1p)+c (Iy L) +.ctcp (L 5,1 4)
. S ) e O (X), e, 0 (x)=u", U
with Ct<i,]>=—LQT[Hyl—XJH-I—I”J LY =X

F1G. 2: A graphical interpretation of the CGRL algorithm (notice that n = | F|)

4 THE CGRL ALGORITHM

e The CGRL algorithm computes for each initial state x a se-
quence of actions 4(x), ..., _,(x) that belongs to B*(x)
where

B*(x) = {(ug, ..., ur—1) €U’
Ug, ..., U1 _ Ul)y- ey W7
PO = o BB O

e Finding an element of B*(x) can be reformulated as a short-
est path problem (see Figure 2).

6 PRELIMINARY VALIDATION

The puddle word benchmark The CGRL algorithm is com-
pared with the Fitted Q lteration(FQI) algorithm [1] on two
samples F; (“normal” sample) and F; (no information about

the puddle).

I't'Itt/r|

Fi1c. 3: CGRL with F.
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Fi1c. 5: CGRL with F.

Fi1c. 4: FQI with F;.

Fi1c. 6: FQI with F.

HIV infection Database generation: A patient does not take
his antiretroviral therapy in average once every eight days.
CGRL is run on the trajectory generated by this patient.
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Fig. 7: Treatment evolution for F1G. 8: Treatment evolution com-

generating the database puted by the CGRL algorithm

2 OBIJECTIVE

e An optimal sequence of actions uf(x),...,uwr_((x) is such
that
Juﬁ(x),...,u*T_l(x)(x) _ J*(ZIZ‘) . mMax Juo’“"uT—l(x) .

(Uo,. ..,’LLT_l)GZ/{T

e [he goal is to compute, for any initial state x € X, a
sequence of actions (@f(x),..., 7% _(x)) € U'such that
JU(@)r1(7) is a5 close as possible to J*(x).

5 CONSISTENCY
Theorem 5.1 (Consistency of CGRL algorithm) Let
3*(1’) — {(’LL(), R ,UT_l) < Z/{T|JUO7W’UT_1(m) — J*(Qf)} )

and let us suppose that 3*(x) # U' (if 3*(x) = U', the search
for an optimal sequence of actions is indeed trivial). We define

€(x) = uo,...,uTHllgz}{T\s*(x){J () — JUour-1( )1,
Then
Ca” < e(x) = (ty(x),. .., dp_ () € 3" (2)

7 FUTURE WORK

e Extension of the CGRL algorithm to a stochastic framework / on-line
learning framework,

e Derivation of the CGRL algorithm to address the exploitation / explo-
ration tradeoff,

e Selecting concise sets of transitions.
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