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ABSTRACT: This paper presents a constitutive law based on Taylor’s model implemented in our non linear
finite element code LAGAMINE. The yield locus is only locally described and a particular interpolation
method has been developed. This local yield locus model uses a discrete representation of the material’s tex-
ture. The interpolation method is presented and a deep-drawing application is simulated in order to show up
the influence of the texture evolution during forming processes.

1 STATE OF THE PROBLEM

The objective of our research is to integrate the in-
fluence of the material’s texture into a finite element
code. The constitutive law describing the mechanical
behaviour of the studied sample is based on a micro-
scopic approach. The law computation takes place
on the crystallographic level. A large number of
crystals must be used to represent correctly the
global behaviour. The micro-macro transition links
the global behaviour to the crystallographic results.
The full constraint Taylor’s model is used for the
computation of the microscopic behaviour of each
crystal and for the micro-macro transition. Unfortu-
nately, this model does not lead to a general law with
2 mathematical formulation of the yield locus. Only
one point of the yield locus corresponding to a par-
ticular strain rate direction can be computed.

The “direct Taylor’s model” assumes that one
macroscopic stress results from the average of the
microscopic stresses related to each crystal belong-
ing to a set of representative crystals. The computa-
tion of the mechanical behaviour involves a large
number of crystals and must be repeated for each
integration point of the finite element model, for
each iteration of each time step. So, such a micro-
macro approach consumes large computation time
and seems practically not usable.

However, using different simplified approaches,
various constitutive laws based on texture analysis
have been implemented in the non linear finite ele-
ment code LAGAMINE. Our first step in the inte-
gration of the texture effects has been the use of a 6™
order series yield locus defined by a least square fit-
ting on a large number of points (typically 70300) in
the deviatoric stress space (see Munhoven et al.

1996). Those points were calculated by Taylor’s
model based on an assumed constant texture of the
material. This fitting is performed once, outside the
FEM code. It provides 210 coefficients to describe
the whole yield locus. This method, i.e. a global de-
scription of the yield locus, is actually used in the
FEM code.

Unfortunately, taking into account the texture
evolution effects with this yield locus would imply
the computation of the 210 coefficients of the 6™ or-
der series for each integration point, each time a
texture updating is necessary. This would require an
impressive amount of computation and memory
storage (210 coefficients for each integration point)
which is only partially useful as generally the stress
state remains in a local zone of the yield locus. So,
two new approaches, where the whole yield locus is
unknown, have been investigated.

In the first case, some points in the interesting
part of the yield locus are computed with Taylor’s
model. This local zone of the yield locus is then rep-
resented by a set of hyperplanes which are planes de-
fined in the five-dimensional deviatoric stress space.
These planes being fitted on Taylor’s points.

As it has been shown in (Duchéne et al. 1999),
the yield locus discontinuities bred by this very sim-
ple interpolation method give rise to convergence
problems in the finite element code. That is the rea-
son why a second method has been developed.

For that second approach, no yield locus is de-
fined and a direct stress-strain interpolation between
Taylor’s points is achieved. In this case, the yield
stress continuity conditions are fulfilled but, as there
is no yield locus formulation, a particular stress inte-
gration scheme has to be used.

Both interpolation methods allow us an important
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computation time reduction with respect to the

“direct Taylor’s model” application. Taylor’s model

is only used to compute some points in order to

achieve the interpolation.

These points must be computed in two cases:

- When the current part of the yield locus does not
content anymore the new stress state and that a
new local zone of the yield locus is required.

- When the plastic strains significantly deform the
material and induce changes in the crystallo-
graphic orientations, i.e. when the texture
evolves. Indeed, the corresponding mechanical
behaviour of the material would no more be cor-
rectly represented by the old points. A texture up-
dating must take place.

The part yield locus approach presented in this
paper can be placed between the microscopic ap-
proach (accurate but very slow) and the global yield
locus approach (fast but inaccurate and especially
not adapted for texture updating).

This paper describes the stress-strain interpolation
mnethod; interested readers can refer to (Winters
1996 & Duchéne et al. 1999) for the 6" order and the
hyperplanes method. The influence of the texture
updating during a forming process has been high-
lighted by a deep-drawing simulation.

2 STRESS-STRAIN INTERPOLATION
2.1 Local description of a scaled yield locus.

The yield locus shape is our present goal. The size of
the yield locus is defined by a simple scalar power-
type hardening law as already proposed by (Winters
1996). The hereafter proposed method is more an
interpolation approach than a local representation of
a scaled yield locus. A “function” locally describing
the plastic surface is not developed. Nevertheless,
.his interpolation method assumes the existence of a
yield locus

Let s be one unit stress vector, direction of the
central point of the local part of the yield locus that
requires an approximation. 3 "D are five (N) unit
stress vectors surrounding s ° and determining the
interpolation domain. They will be called the
“domain limit vectors”. In practice, the approach has
been developed for a N dimensional space but is di-
rectly applied to the 5 dimensions case as the goal is
to define a local yield locus zone in the deviatoric
stress or strain rate space. Hereafter, the notation
choice is adapted to the stress space but all the ap-
proach can be translated to the stram rate ,Space.
When the 6 or (N+1) vectors (5 s®and 15" % have
following properties:
- they are unit vectors:

s W ®=1 mosumoni)and s0.570=1 (1)

- there is a common angle between all s )
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- tl}(ere is a common angle between each s and
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- they determine a regular domain. These choices
induce that the central direction s can be com-
puted as a scaled average of the 5 (N) limit vec-
tors s
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The angle 6 and the parameter §, both determine
the size of the interpolation domain. They are linked
by the relation:
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As the N s’ vectors are linearly independent,
they constitute a vector basis of the N-dimensional
space. However, as they are not orthogonal, it is in-
teresting to introduce N new vectors with following
orthogonal property:

ss ") =0 (6)
These vectors are called “contravariant vectors”.
Equation 6 implies that these vectors are not unit

ones and one can check that they depend linearly
from vectors s'® and s™
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The N n-coordinates representing any vector V in
the s'® vector basis:
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These N m-coordinates are independent to each
other, they determine both length and direction of
the vector V. It is important to note that for a unit

vector V equal to a domain limit vector s the n-
coordinates are:
n; =0,  with j=1.5 (10

The domain limit vectors represent the domain
vertices. The N limit boundaries (or edges) of the
interpolation domain correspond to one function
such that:



7, =0 (11)

In fact, the properties associated to isoparametric
finite elements are retrieved but extrapolated to N-
dimensions. The above choices imply that any point
belonging to the interpolation domain is associated
to positive n-coordinates.

One convement way to determine the 5 domain
limit Vectors s’ @ is to focus on one particular central
direction s ° chosen in such a way that its N compo-
nents are identical. To provide associated domain
limit vectors s (‘), one computes a linear relation
between the central direction and consecutively each
vector of the Cartesian basis e®:
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Using the unitary conditions of s @ and s ° and

Equation 4, one reaches:
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Then the rotation linking the real required central
point s and the particular one s ° is computed by:

[0 +50)0 0]
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(14)

where I is the second order unit tensor.
0T his rotation applies s on the real central vector

s*

R.s0=5" (15)
It also provides the domain limit vectors:

Rs ®=g"® (16)

If s and s are opposite vectors, Equatlon 14 is
not valid; the domain limit vectors s “® can be com-
puted as the opposite of the s~ ©.

This interpolation domain is called a regular one
because the angles between the domain limit vectors
are identical (see Equation 2) and the domain limit
vectors are unit vectors. However, it is possible to
define an interpolated domain based on limit vectors
which are non-uniformly located and non-unit vec-
tors as long as they are linearly independent and not
parallel to each other. With such non-regular do-
main, the intrinsic coordinates are still available and
require the definition of ss vectors (see Equations 6,

8, 9).

The above considerations are sufficient to under-
stand the interpolation approach that has finally been
implemented in LAGAMINE code. However, it is
interesting to note that further details and properties
of such parameterisation of a N dimensional space
were further investigated by (Godinas 1998 &
Duchéne 2000). They study different interpolation
methods on the interpolation domain: linear inter-
polation in Cartesian coordinates or hyperplane
model, linear interpolation in spherical coordinates,
approach enriched by bubble mode...

Now, let us consider both 5 dimensional stress
and strain rate space. A regular domain is built in the
strain rate space, it is defined by its 5 vertices u O
(unit vectors). Thanks to 5 calls to Taylor’s module,
the associated stress vectors s” can be defined. At
this level, no hardening is assumed, that is why we
speak here of a scaled yield locus. These 5 stress
vectors define a non-regular domain in the stress
space. In each space, the concept of contravariant
vectors from Equation 6 is applied:

w® ') = 5, a7

SS() (J) = 61] (18)

The contravariant vectors ss and ss® respec-
tively computed by Equations 18 and 8 differ only
because in Equation 8 unit stress directions s O ar,
used. Here the length of the stress vectors s9 is an
important characteristic as it defines the yleld locus
amsotropy These contravariant vectors ss and
uu® give in each space, the - coordmates associated
to any stress § Or unit strain rate u’

n; = wu® o (19)

n; =ss Vs (20)

So any stress vector s or strain rate direction u’
can be represented according to the vector basis of
their space and the n-coordinates:

5 .
u'=Yrpu® @1

5 .
§= 277,- s (22)

Physically, one material state corresponds to one
stress point and one strain rate direction. In a yield
locus formulation, one point on the locus and its
normal define both stress and associated strain rate.
Here, we work with two interpolation domains and
assume that they are physically linked because Tay-
lor’s model computes their domain limit vectors.



Due to this close link between the two spaces, it is
assumed that the m-coordinates computed by Equa-
tions 19 and 20 are equal when | physically the stress
s and the strain rate direction u" are associated. This
property is exactly fulfilled on the domain limit
vectors. The stress s corresponds to the strain rate
direction u'® and their 1-coordinates are 1; = 1 and
Mj = 0 (1 # j) in both space. Inside the domain, this
property is extended by convenience. It is an as-
sumption. The so-called interpolation approach di-
rectly derives from this hypothesis of equality and
from Equations 22 and 19. They provide the inter-
polation relation:

5 .
§= 2( ua'?
i=1

For each domain, the C matrix is computed once
from the stress domain limit vectors s’ and the con-
travariant Vectors uu? associated to the 5 strain rate
vertices u . Inside one domain, Equation 23 pro-
vides the stress state if the strain rate direction is
given. The m-coordinates computed by Equation 19
check the domain validity. If values do not belong
the interval [0,1], then the interpolation approach of
Equation 23 becomes an extrapolation and a new
domain is required.

.u*)s(i) =uu ®s? ;v =C:u” (23)

2.2 Updating of the scaled yield locus description.

When the available local description of the scaled
yield locus does not cover any more the interesting
zone, one has to find another local description en-
closing the interesting part of the yield locus. Of
course the procedure described by Equations 12 to
16 could be repeated using one new strain rate di-
rection u” as central point. However, this would pro-
vide a new local description forgetting previous in-
formation and the discontinuities observed with the
hyperplane approach would again appear. Looking at
the m-coordinate that does not any more belong to
[0,1], one can identify the boundary not respected by
the new explored direction. This boundary is identi-
fied by N - 1 (= 4) domain limit vectors and can be-
long to two regular domains. The two neighbour
domains defined by their common frontier require
only one additional domain limit vector to be com-
pletely defined. So only one new vertex must be
computed by Taylor’s model to identify the neigh-
bour domain that probably contains the new ex-
plored strain rate direction. In Lagamine implemen-
tation of the interpolation method, the neighbour
domain is checked before the computation of a com-
pletely new local domain begins.

Initial stress state: O
Prescribed total strain rate: €

v

Compute a first approximation of the plastic
strain rate direction: Wapprox

v

Compute the final stress state: Op according to
U,pprox and the input data

v

Use the stress-strain interpolation method to
find ug associated to op

ug is the new ap-

Test: .
proximation

Wapprox = UB

| End

Figure 1. Stress integration scheme.

2.3 Stress integration scheme

As already mentioned, the stress-strain interpolation
relation (Equation 23) does not use the concept of
yield locus in a classical way. So, a specific integra-
tion scheme has been developed. The stress integra-
tion scheme implemented with our interpolation
method is completely different from the classical ra-
dial return with elastic predictor; the main ideas are
summarised in the diagram of Figure 1 where obvi-
ously, no yield locus formulation is used.

As it has been observed during several finite ele-
ment simulations, this stress integration scheme is
well adapted for a local yield locus description and
induces a reasonable number of interpolation domain
updating.

At this level, the real stress and not the scaled one
is aimed, so the size and the shape of the yield locus
cannot any more be dissociated. As Equation 23
translates the shape and is assumed to model a refer-
ence level of hardening, an additional factor 7 is in-
troduced to represent the work hardening:

s=rC.u" (24)

It plays the role of the hardening and is simply
linked to the total polycrystal slip I" by a Swift law:

t=K(I,+T) (25)

As in (Winters 1996), this micro-macro hardening
law is identified by a macroscopic uniaxial tensile
test.
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2.4 Implementation of the texture updating

In this model, not only is the texture used to predict
the plastic behaviour of the material, but the strain
history of each integration point is taken into ac-
count in order to update the texture.

The main ideas of the implementation are sum-
marised in Figure 2. It should be noticed that the
constitutive law in the FEM code is based on the in-
terpolation method described earlier and on Taylor’s
model applied on the actual set of crystallographic
orientations through the yield locus. These crystallo-
yraphic orientations are represented with the help of
the Euler angles ranging from 0° to 360° for ¢; and
from 0° to 90° for ¢ and @, so as to take crystal cubic
symmetry into account but not the sample symmetry.
As shown on Figure 2, the texture updating is
achieved outside the main part of the FEM code, for
each interpolation point.

During a large finite element simulation, it is not
reasonable to achieve a texture updating for each fi-
nite element and at the end of each time step. That is
the reason why an updating criterion must be used to
reduce computation time. This is still under investi-
gation. At this stage, an updating occurs after a pre-
defined number of time steps. A criterion based on a
maximum cumulated plastic strain will also be ex-
amined.

The lattice rotation of each crystal, inducing the
texture updating, is computed with Taylor’s model
by subtracting the slip induced spin from the rigid
body rotation included in the strain history.

3 DEEP-DRAWING SIMULATIONS

In order to show up the influence of the texture
evolution during a forming process, a deep-drawing
simulation has been examined. Three steels are
compared according to their behaviour during the
process. The first one is a mild steel, the second one
is a dual phase steel and the third one is a complex
phase steel. During the calibration of the mechanical
properties of these steels which was achieved
through tensile tests, extremely different behaviours
have been noticed. Their hardening exponents are
respectively 0.2186, 0.2238 and 0.1397. Moreover
their tensile yield stresses are 136, 293 and 741
N/mm? (a factor larger than 5 between them). As we
focus on the texture of these steels, their Orientation
Distribution Function (ODF) has been measured by
X-ray diffraction. The maximum value of this func-
tion, i.e. the density of the most represented crystal-
lographic orientation (see Table 1) is an indication of
the anisotropy of the studied material.

For this application, the behaviour of the material
and particularly its texture have been integrated in
the code through a constitutive law based on the 6™
order series (see Munhoven et al. 1996 & Winters
1996).

Now, the geometry of the deep-drawing process
should be presented. A hemispherical punch with a
diameter of 100 mm, a die with a curvature radius of
5 mm and a blankholder are the drawing tools. The
drawing ratio is 1.7; the blankholder force is 70 kN;
the simulation is achieved up to a drawing depth of
50 mm. This geometry has already been used as the
benchmark for the NUMISHEET 99 conference. A
Coulomb law is used to model the friction with a co-
efficient adapted to each steel.

On the finite element mesh, a particular element
chosen such that it undergoes completely the draw-
ing process on the curvature of the die is examined.
The texture evolution of that element is compared
for the three steels. The values of the maximum of
the ODF for each steel before and after the process
are summarised in Table 1.

Table 1. Maximum value of the ODF during deep-drawing.

Steel Before deep-drawing  After
Mild steel 6 14.34
Dual phase steel 4.12 6.73
Complex phase steel 6.94 8.52

From Table 1, it can be noticed that the initial
anisotropy of the three steels is more or less the
same. On the other hand, the behaviour of these
steels is quite different during deep-drawing if we
focus on the maximum of the ODF (a factor larger
than 2 is found at the end of the forming process).

These differences in the steel behaviour can also
be pointed out with the use of “r” : the Lankford
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Figure 3. Evolution of the Lankford coefficient for the mild
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Figure 4. Evolution of r coefficient for the dual phase steel.

r 2.50
2.00
1.50 /y‘
"
0.50 before
s—— after
0.00 : : .
0.00 30.00 60.00 90.00

a ()
Figure 5. Evolution of r coefficient for the complex phase steel.

coefficients. It is indeed interesting to look at the
evolution of the Lankford coefficients during deep-
drawing as this parameter is a good indicator for the
ability of a steel for deep-drawing (a high value of r
allows larger deep-drawing ratios).

Figures 3, 4, 5 show the evolution of the Lankford
coefficients during the deep-drawing process. Here
again, large differences between the three steels can
be noticed. The mild steel is characterised by a high
initial r coefficient (inducing a good formability) and
a considerable evolution during the simulation. The
two other steels have a lower value (around 1.0) and
their evolution is also lower. These behaviours are in
agreement with the conclusion drawn from the evo-
lution of the maximum of the ODF (see Table 1).

4 CONCLUSIONS

On the deep-drawing application presented here,
large texture evolutions have been noticed. Depend-
ing on the steel, these evolutions result in modifica-
tion of the Lankford coefficients. Finally, the be-
haviour of the steel sheet during a forming process
can be quite different from the initial steel charac-
teristics.

As its texture evolution is the most important, the
mild steel simulations are used to validate our ap-
proach. Different constitutive laws neglecting or not
the texture updating are applied and the results will
be compared to experimental measurements. This
validation step is currently going on.
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