<u>3D MODELLING OF THE BLACK SEA</u> NORTH WESTERN SHELF ECOSYSTEM :

<u>Capet Arthur</u>, Grégoire M, Beckers, JM., Joassin P., Naithani J., Borges A.V., Soetaert K., Meysman F.

Monthly RIVERS fluxes and nutrients flows (from L. Wolfgang & A. Cociasu)

6h-atmospheric forcings from ECMWF (1.125°). (from ERA40)

36 States variables

Physics (5) Currents, T°, Salinity, Surface elevation, Turbulence

Oxygen and Dissolved Inorganic Carbon (2)

Inorganic nutrients (5) SiO,NO3,NH4,PO4,"Reducers"

3 Phytoplankton (6) (free C/N) Diatoms, Flagellates, Small Flagellates

Zooplankton (2)

Micro-, Meso-.

Gelatinous zooplankton(2) Omnivorous , Carnivorous

Detrital matter (8)

Particulate, Semi-labile and Labile forms Silicious Detritus, Aggregates

Bacteria(1)

Model's Specificity

- <u>No data assimilation</u>: Necessity to construct specific Bosphorus representation to ensure conservation of volume and total salt content.
- <u>Anoxic waters</u> : The biological model explicitely includes anoxic chemistry trough the use of a variable 'Oxygen demanding Units', as a proxy for reducers acting in the anoxic zone.
- <u>Sediments compartiment</u>

Sediments Dynamics

Earth-Science reviews

• Detailed remineralisation parameterization is essential in terms of budgets (50% of deposited PON).

• If resuspension is not taken into account, up to 80-90% of riverine N is denitrified on the Shelf

• As benthic fluxes are function of stocked sediments and not of bottom fluxes, the slow remineralisation time of refractory component introduce **strong hysteresis** in the system

<u>Analysis</u>

Coupled run from 1985 to 1999.

- 1. <u>North Western Shelf (NWS)</u>. Seasonnal hypoxia, Oxygen budget, interannual variability.
- 2. <u>Export from NWS to open basin.</u> Spatial and seasonnal variability.
- 3. <u>Open Basin</u>

Oxicline depth, budget, regionalisation, Bosphorus plume.

Climatological seasonnality of Bottom Oxygen conditions on the NWS

Climatological seasonnality of Bottom Oxygen conditions on the NWS

Marine biological diversity in the Black Sea : A study of changes and decline UN publication, 1997

Bottom Oxygen Concentration - [µM]

Oxygen Budget on the NWS

•Net autotrophic ecosytem -> export toward the open basin.

•Sediment consumption as high as Zooplankton respiration, and almost twice of pelagic remineralisation.

1500

[Gmol/yr]

<u>Automatic regionalisation procedure</u> (Self Organizing Map [Allen 2007]

- NW corner bottom oxygen concentration, associated to benthic fluxes.
- Crimea zone is affected by POC accumulation,

47⁰N

46⁰N

45[°]N

44⁰N

43⁰N

 $42^{\circ}N$

Interannual variations

Bottom oxygen concentration - [µM]

0

Interannual variations

Bottom oxygen concentration - [µM]

0

Looking for drivers

Jul87

Jul92

Jan90

Jan95

Jul97

Jan00

Jan85

Jul87

Jan90

Jul92

Jul97

Jan00

Jan85

Jan95

Bottom Oxygen

Looking for drivers

Looking for drivers

- Bottom Oxygen fluxes.
- Bottom ODU fluxes.
- Bottom Temperature.
- Integrated Chlorophyll content.
- Integrated Bacteria content.
- Integrated POC content.
- Sea surface temperature.
- Potential energy anomaly.
- Riverine water discharge.
- Riverine Nitrogen discharge.
- Riverine Phosphate discharge.

NWS : Conclusions

- Seasonnal hypoxia events occurs on the NWS with a peak in september.
- 2 zones are concerned (NW corner and Southwest Crimea) but for different causes.
- NW corner intensity of hypoxia depends on sediment process, linked to eutrophication but modulated by bottom temperature, and buffered by sediments hysteresis.
- Southwest crimea is affected by POM accumulation and pelagic oxygen consumption.

Integrated along the shelf break

Detailled between PON DON and DIN.

Climatological seasonnality of Oxicline depth in the open basin

Open basin : Conclusions

- Seasonnal hypoxia events occurs on the NWS with a peak in september.
- 2 zones are concerned (NW corner and Southwest Crimea) but for different causes.
- NW corner intensity of hypoxia depends on sediment process, linked to eutrophication but modulated by bottom temperature, and buffered by sediments hysteresis.
- Southwest crimea is affected by POM accumulation and pelagic oxygen consumption.

integrated in- and outputs

Thanks for your attention ...

The Black Sea, P. Alechinsky

Nitrogen consumption in the suboxic layers

[Konovalov, 2006, Deep-Sea Reseach II] ~ 40 Gmol/yr for oxydation by Sulfide and manganese

~ 30 Gmol/yr for ANAMOX

[McCarthy,2007, Estuarine, Coastal and Shelf science] ~ 52 Gmol/yr for ANAMOX

Mainly resulting from Shelf's export entrained by the Bosporus plume

