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Abstract

We consider the problem of decision making in the context of unknown Markov
decision processes with finite state and action spaces. In a Bayesian reinforcement
learning framework, we propose an optimistic posterior sampling strategy based
on the maximization of state-action value functions of MDPs sampled from the
posterior. First experiments are promising.

Introduction. The design of algorithms for planning in the context of unknown Markov Decision
Processes (MDPs) remains challenging. In particular, one of the main difficulties is to address the
so-called Exploration versus Exploitation (E/E) dilemma: at every time-step, the algorithm must
both (i) take a decision which is of good quality regarding information that has been collected so
far (the exploitation part) and (ii) open the door to collecting new information about the (unknown)
underlying environment in order to take better decisions in the future (the exploration part). At the
end of the eighties, the popularization of Reinforcement Learning (RL) [20] gave a new impulse to
the research community working on this old problem, and the E/E dilemma was re-discovered in
the light of the RL paradigm. Among the approaches that have been proposed to address the E/E
dilemma in the RL field, one can mention approaches based on optimism in the face of uncertainty
[12, 3, 4, 13, 6, 15] and Bayesian approaches [7, 19, 17, 9, 8]. In the last few years, posterior
sampling approaches have received a lot of attention, in particular for solving multi-armed bandits
problems [5, 11, 10]. Very recently, posterior sampling has also been proved theoretically and
empirically to be efficient for solving MDPs in [16].

Our contribution lies at the crossroads between posterior sampling approaches and optimistic ap-
proaches. We propose a strategy based on two main assumptions: (i) a posterior distribution can be
maintained over the set of all possible transition models, and (ii) one can easily sample and solve
MDPs drawn according to this posterior. These two conditions are easily satisfied in the context of
finite state and action space MDPs. Inspired from the principle of the Bayes-UCB algorithm pro-
posed in the context of multi-armed bandit problems [10], our strategy works as follows: at each
time-step, a pool of MDPs is drawn from the posterior distribution, and each MDP is solved. We
finally take an action whose value is maximized over the set of state-action value functions of sam-
pled MDPs. After observing a new transition, the posterior distribution is updated according to the
Bayes rule. We illustrate empirically the performances of our approach on a standard benchmark.

Model-based Bayesian Reinforcement Learning. Let M = (S,A, T,R) be a Markov Decision
Process (MDP), where the set S =

{
s(1), . . . , s(nS)

}
denotes the finite state space and the set

A =
{
a(1), . . . , a(nA)

}
the finite action space of the MDP. When the MDP is in state st ∈ S at

time t ∈ N, an action at ∈ A is selected and the MDP moves toward a new state st+1 ∈ S , drawn
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according to a probability
T (st, at, st+1) = P (st+1|st, at) .

It also produces an instantaneous deterministic scalar reward rt ∈ [0, 1]: rt = R(st, at, st+1) . In
this paper, we assume that the transition model T is unknown. For simplicity, we assume that the
value R(s, a, s′) ∈ [0, 1] is known for any possible transitions (s, a, s′) ∈ S ×A× S.

Let π : S → A be a deterministic policy, i.e. a mapping from states to actions. A standard criterion
for evaluating the performance of π is to consider its expected discounted return Jπ defined as
follows:

∀s ∈ S, Jπ(s) = E

[ ∞∑
t=0

γtR(st, π(st), st+1)
∣∣s0 = s

]
where γ ∈ [0, 1) is the so-called discount factor. An optimal policy is a policy π∗ such that, for any
policy π, Jπ

∗
(s) ≥ Jπ(s) ,∀s ∈ S.

Since the actual transition model T is initially unknown, one needs to address the explo-
ration/exploitation (E/E) trade-off for efficiently acquiring knowledge about the it. Model-based
Bayesian RL proposes to address such a trade-off by representing the knowledge about the unknown
transition model using a probability distribution over all possible transition models µ. An initial
prior distribution b0 is given and iteratively updated according to the Bayes rule as new samples
of the actual transition model are generated. At any time-step t, the so-called posterior distribution
bt depends on the prior distribution b0 and the history ht = (s0, a0, . . . , st−1, at−1, st) observed
so-far. The Markovian property implies that the posterior bt+1: bt+1 = P (µ|ht+1, b0) can be up-
dated sequentially: bt+1 = P (µ|(st, at, st+1), bt) . The goal is to efficiently exploit the posterior
distribution bt for guiding exploration in order to generate a sequence of policies which maximizes
a given E/E criterion. Such a criterion can be, for instance, the expected (either finite or discounted)
sum of rewards collected, or the performance of the policy found after a given phase.

Optimistic Posterior Sampling. For a given MDP µ drawn according to the posterior distribution
µ ∼ bt, we denote by Qµ its optimal state-action value function:

∀s ∈ S,∀a ∈ A, Qµ(s, a) =
∑
s′∈S

Tµ (s, a, s′)

(
R(s, a, s′) + γmax

a′∈A
Qµ(s′, a′)

)
.

where Tµ(s, a, s′) denotes the probability to move from state s to state s′ when taking action a
in MDP µ. Our optimistic posterior sampling (OPS) strategy works according to the following
procedure: At time t ∈ N, for a given state st ∈ S and a posterior bt:

1. draw a pool of nt ∈ N MDPs {µi}nt
i=1 according to bt:

∀i ∈ {1, . . . , nt}, µi ∼ bt

2. obtain the values {Qµi(st, a)}i=1...nt,a∈A using value iteration
3. apply a decision at ∈ A such that:

at ∈ argmax
a∈A

{
max

i∈{1,...,nt}
Qµi(st, a)

}
(ties are broken arbitrarily)

4. observe a new state st+1, and update the posterior bt+1 = P (µ|(st, at, st+1), bt).

Note that the second step of OPS can be parallelized. The OPS strategy is illustrated in Figure 1.

Illustration. We compare our approach with other model-based Bayesian RL algorithms on the
vanilla 5-state chain problem [19] which is one of the most usual benchmarks for evaluating BRL
algorithms. In this benchmark, with probability 0.8, action a(1) sends state s(i) to state s(min{i+1,5}),
receiving a reward of 1 when starting from state s(5), and 0 otherwise; with probability 0.8, action
a(2) sends state s(i) to s(1), receiving a reward of 0.2; with probability 0.2 the behaviours of the
actions are reversed. The optimal strategy is to take action 1 whatever the state. In our experiments,
we use Dirichlet distributions, and consider a full prior which means that we do not incorporate any
specific prior knowledge (all transitions are possible).
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Figure 1: Illustration of the OPS strategy.

Algorithm Performance
BEETLE [17] 175.4
BOLT (η = 150, η = 7) [1] 278.7, 289.6
BOSS [2] 300.3
f EXPLOIT [17] 307.8
BOP (n = 500) [8] 308.8
OPS (n = 1, 2, 3, 5, 10, 20,30, 50, 100) 259.7, 288.5, 301.1, 310.2, 321.1, 325.5, 326.2, 323.8, 322.2
BEB (β = 150, β = 1) [14] 165.2, 343.0
BVR [18] 346.5
Optimal strategy 367.7

Table 1: Performance of OPS compared with other model-based BRL approaches on the full-prior
5-state chain MDP problem. Radiuses of 95% confidence intervals are between 2.6 (for n = 100)
and 6.1 (for n = 1).
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Figure 2: Empirical probability of taking the optimal decision (action a(1)) over time (note that
action a(1) is optimal for all states in this benchmark).

We ran our algorithm 500 times starting from state s0 = s(1), each time for 1000 time-steps. We
used the parameters nt = t when t ≤ n and nt = n otherwise, for different values of the threshold
parameter n ∈ {1, 2, 3, 5, 10, 20, 30, 50, 100}. The empirical average performance (in terms of
cumulative undiscounted received rewards) are given in Table 1. We also display in Table 1 the
performances obtained by other BRL algorithms in the very same benchmark (obtained from the
literature).

We first observe that OPS performs worst when n = 1, which corresponds to a simple posterior
sampling approach, referred to as “Thompson sampling” in the multi-armed bandit literature, and
for which a theoretical analysis of the Bayesian regret is already known [16]. We then observe that
the performance of OPS increases with n until n ∼ 30. Thus, the optimistic strategy offered by the
maximization over several sampled MDPs shows an improved empirical performance compared to
the Thompson Sampling benchmark. This should be theoretically investigated in future works.

OPS also performs well compare to other standard algorithms, except those using exploration
bonuses such as BEB (with a tuned value of its parameter β) and BVR, which outperform OPS
on this benchmark. Furthermore, OPS performs better that BOSS, another posterior sampling al-
gorithm wich samples MDPs and combines them into a merged MDP from which a decision is
greedily selected. Finally, OPS outperforms BOP [8], which is another algorithm using the opti-
mism principle in a Bayesian RL setting. We also display in Figure 2 the evolution over time of the
empirical probability (computed over the 500 runs) that the OPS algorithm takes optimal decision
for n ∈ {1, 2, 3, 5, 10, 20, 30, 50, 100}.
Conclusions. This paper proposes a new, promising Bayesian RL approach based on an optimistic
posterior sampling strategy. We plan to investigate some theoretical aspects of this approach in
future research, in particular, analyzing the benefits of optimism in a posterior sampling framework.
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