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Abstract

Leptoquark-Higgs interactions induce mixing between leptoquark
states with different chiralities once the electro-weak symmetry is bro-
ken. In such LQ models Majorana neutrino masses are generated at
1-loop order. Here we calculate the neutrino mass matrix and explore
the constraints on the parameter space enforced by the assumption
that LQ-loops explain current neutrino oscillation data. LQs will be
produced at the LHC, if their masses are at or below the TeV scale.
Since the fermionic decays of LQs are governed by the same Yukawa
couplings, which are responsible for the non-trivial neutrino mass ma-
trix, several decay branching ratios of LQ states can be predicted
from measured neutrino data. Especially interesting is that large lep-
ton flavour violating rates in muon and tau final states are expected.
In addition, the model predicts that, if kinematically possible, heavier
LQs decay into lighter ones plus either a standard model Higgs boson
or a Z0/W± gauge boson. Thus, experiments at the LHC might be
able to exclude the LQ mechanism as explanation of neutrino data.
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1 Introduction

Leptoquarks (LQs) appear in many extensions of the standard model. First
discussed in the classic papers by Pati & Salam [1] and Georgi & Glashow [2],
LQs are a common ingredient to grand unified theories [3]. 1 They can also
appear in composite [5] as well as in technicolour models [6, 7]. Also in super-
symmetric models with R-parity violation scalar quarks have leptoquark-like
interactions [8]. From a low-energy point of view, however, LQs are best
described in a “model-independent” way, using a LQ Lagrangian based only
on the minimal assumptions of (a) renormalizability and (b) standard model
(SM) gauge invariance [9]. An exhaustive list of limits on such LQs from
low-energy experiments can be found, for example, in [10].

Direct searches so far have not turned up any evidence for LQs [11]. The
best limits on pair produced LQs currently come from the D0 [12] and CDF
[13] experiments at the Tevatron. These typically give limits on LQ masses
in the ballpark of mLQ >∼ (200 − 250) GeV, depending mainly on the final
state decay branching ratios and on the lepton-quark generation, to which
the LQ state couples. Considerably more stringent limits are expected from
the LHC experiments. Depending on the accumulated luminosity, the LHC
should be able to find LQs up to masses of order of mLQ ∼ (1.2− 1.5) TeV
[14].

Solar [15], atmospheric [16] and reactor [17] neutrino oscillation experi-
ments have firmly established that neutrinos have mass and non-trivial mix-
ing between different generations. In the SM neutrinos are massless. How-
ever, non-zero neutrino masses can easily be generated and the literature is
abound in neutrino mass models [18]. Certainly the most popular way to
generate neutrino masses is the seesaw mechanism [19, 20, 21, 22], countless
variants exist. However, it is also conceivable that the scale of lepton number
violation is near - or at - the electro-weak scale. To mention a few examples,
there are supersymmetric models with violation of R-parity [8, 23], models
with Higgs triplets [22] or a combination of both [24]. Also purely radiative
models have been discussed in the literature, both with neutrino masses at
1-loop [25, 26] or at 2-loop [27, 28, 29, 30] order. Radiative mechanisms
might be considered especially appealing, since they generate small neutrino
masses automatically, essentially due to loop suppression factors.

In this paper, we study the generation of neutrino masses due to loops

1For a recent example of a GUT model with light leptoquarks, see [4].
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involving light leptoquarks, in a model with non-zero leptoquark-Higgs inter-
actions [31]. LQ-Higgs interactions lead to mixing between LQs of different
chiralities (and lepton number) once electro-weak symmetry is broken and
thus can contribute non-trivially to the Majorana neutrino mass matrix at
1-loop level. 2 As discussed below, the peculiar structure of leptonic mixing,
observed in neutrino oscillation experiments, enforces a number of constraints
on the LQ parameter space. The main result of our current work is, that
these constraints can be used to make definite predictions for different decay
branching ratios of several LQ states. Therefore, the hypothesis that LQ
loops are responsible for the generation of neutrino mass is testable at the
LHC, if LQs have masses of the order of O(1) TeV.

Before proceeding, a few more comments on LQs might be in order. First,
for the LQ model to be able to explain neutrino data, non-zero LQ-Higgs
interactions are essential. Limits on these couplings, on the other hand,
can be derived from low-energy data such as, for example, pion decay [31].
Especially stringent are limits from neutrinoless double beta decay [32] and
from the decay K0 → e±µ∓ [33]. However, as we will discuss below, the small
neutrino masses themselves are up to now the most sensitive low-energy probe
of LQ-Higgs mixing terms.

Second, it should be mentioned that LQ loops as a source of neutrino
mass have been discussed previously in [34]. We will improve upon this work
in several aspects: (i) We will present neutrino mass formulas containing all
possible LQ loops, while in [34] only down-type quark loops were considered.
(ii) [34] concentrated on upper limits on LQ parameters, which can poten-
tially be derived from observed neutrino masses. We, on the other hand,
identify the regions of LQ parameters were the neutrino mass matrix is dom-
inated by LQ loops, thus providing a potential explanation of oscillation
data. And, lastly but most importantly, (iii) we discuss possible accelerator
tests of the LQ hypothesis of neutrino masses, to the best of our knowledge
for the first time in the literature.

Finally, it should also be mentioned that LQs can be either scalar or
vector particles. We consider only scalars in details. However, we note that
most of our results straightforwardly apply also for vector LQs.

The rest of this paper is organized as follows. In section (2) we define the

2This is not an entirely new subject. Majorana neutrino masses due to loops involving
coloured scalars (and vectors) have been discussed first in [27]. However, because in [27]
it was assumed that these particles have masses M ≥ 108 GeV, their contribution toMν

was deemed negligible.
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leptoquark interactions, both with quark-lepton pairs and with the SM Higgs
boson and discuss the LQ mass matrices. In section (3) we calculate the 1-
loop neutrino mass matrix in the LQ model. Some particularly simple and
interesting limits are defined and discussed analytically. The typical ranges
of LQ parameters, required to explain current neutrino data, are explored.
We then turn to the phenomenology of LQs at future accelerators in section
(4). It is found that some fermionic LQ decays trace the measured neutrino
angles and thus can serve, in principle, as a test of the LQ model. Next we
discuss LQ decays to the SM Higgs and to gauge bosons. Higgs (and Z0)
decays should occur, if kinematically possible, due to the non-zero LQ mixing
required to explain neutrino masses and thus form a particularly interesting
signal of the LQ model. We then close the paper with a short summary.

2 Leptoquark basics

2.1 Scalar leptoquark Lagrangian

The SM symmetries allow five scalar LQs. Table 1 shows their SU(3)c ×
SU(2)L × U(1)Y quantum numbers, as well as their standard baryon and
lepton number assignments. LQs which couple non-chirally are strongly con-
strained by low-energy data [10]. Thus, the states SL

0 and SR
0 (as well as SL

1/2

and SR
1/2), which have the same SM quantum numbers, but couple to (quark)

doublets and singlets, respectively, are usually assumed to be independent
particles. Under these assumptions, the most general Yukawa interactions
(LQ-lepton-quark) induced by the new scalar fields are given by [9]

LLQ−l−q = λ
(R)
S0

ucPRe SR†
0 + λ

(R)

S̃0
dcPRe S̃R†

0 + λ
(R)
S1/2

uPLl SR†
1/2

+λ
(R)

S̃1/2

dPLl S̃†
1/2 + λ

(L)
S0

qcPLiτ2l SL†
0 + λ

(L)
S1/2

qPRiτ2e SL†
1/2

+λ
(L)
S1

qcPLiτ2 Ŝ†
1 l + h.c. (1)

Here we used the conventions of [10]. Note that eq. (1) is written in one-
generation notation. In general, all λ’s are 3×3 matrices in generation space.
q and l (u, d and e) are the quark and lepton SM doublets (singlets), Sj

i are
the scalar LQs with the weak isospin i = 0, 1/2, 1 coupled to left-handed
(j = L) or right-handed (j = R) quarks respectively. Thus, in total eq. (1)

contains seven LQ fields. We have also defined Ŝ1 = τ · S1.
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LQ SU(3)c SU(2)L Y Qem L B

S0 3 1 -2/3 -1/3 1 1/3

S̃0 3 1 -8/3 -4/3 1 1/3

S1/2 3∗ 2 -7/3 (-2/3,-5/3) 1 -1/3

S̃1/2 3∗ 2 -1/3 (1/3,-2/3) 1 -1/3

S1 3 3 -2/3 (2/3,-1/3,-4/3) 1 1/3

Table 1: Standard model quantum numbers of the scalar leptoquarks. The
indices 0, 1/2, 1 indicate the weak isospin. The weak hypercharge is normal-
ized according to Y = 2(Qem − T3).

The most general renormalizable and gauge invariant scalar LQ interac-
tions with the SM Higgs doublet (H) are described by the scalar potential
[31]

V = h
(i)
S0

Hiτ2 S̃1/2 Si
0 + hS1

Hiτ2 Ŝ1 S̃1/2 + Y
(i)
S1/2

(
Hiτ2S

i
1/2

) (
S̃†

1/2H
)

+YS1

(
Hiτ2Ŝ

†
1H
)

S̃0 + κ
(i)
S

(
H†Ŝ1H

)
Si†

0

−(M2
Φ − g

(i1i2)
Φ H†H)Φi1†Φi2 + h.c. (2)

Here Φi is a cumulative notation for all scalar LQ fields with i = L, R (the
same for i1,2). The diagonal mass terms M2

ΦΦ†Φ can be generated by spon-
taneous breaking of the fundamental underlying symmetry down to the elec-
troweak gauge group at some high-energy scale. The subsequent electroweak
symmetry breaking produces non-diagonal LQ mass terms which, in addition
to the diagonal terms given in eq. (2), define the LQ squared-mass matrices.
These will be discussed next.

It is important to note, that the first two terms of the scalar potential
in eq. (2) violate total lepton number by two units ∆L = 2 and, therefore,
generate Majorana neutrino masses after electro-weak symmetry breaking. 3

In the limit where h
(R)
S0

and hS1
vanish, neutrino masses vanish as well.

3Note that an extension of the scalar potential in eq. (2) to include the LQ trilinear
self-interaction terms has been discused in [35]. Such terms, however, introduce violation
of baryon number and, hence, proton decay, for details see [35]. Therefore we will not
consider LQ self-interaction terms here.
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2.2 Scalar leptoquark mass spectrum

There are four squared-mass matrices which determine the masses of LQs
with the same electric charge (Q = −1/3,−2/3,−4/3,−5/3). In the in-

teraction eigenstate basis, defined by S−1/3 = (SL
0 , SR

0 , S̃†
1/2, S1), S−2/3 =

(S̃1/2, S
L
1/2, S

R
1/2, S

†
1), S−4/3 = (S̃0, S1) and S−5/3 = (SL

1/2, S
R
1/2), the squared-

mass matrices read

M2
−1/3 =




M
2

SL
0

g
(LR)
S0

v2 hL
S0

v κ
(L)
S v2

· M
2

SR
0

hR
S0

v κ
(R)
S v2

· · M
2

S̃1/2
hS1

v

· · · M
2

S1




, (3)

M2
−2/3 =




M
2

S̃1/2
Y L

S1/2
v2 Y R

S1/2
v2
√

2hS1
v

· M
2

SL
1/2

g
(LR)
S1/2

v2 0

· · M
2

SR
1/2

0

· · · M
2

S1




, (4)

M2
−4/3 =

(
M

2

S̃0

√
2YS1

v2

· M
2

S1

)
, (5)

and

M2
−5/3 =



M
2

SL
1/2
−g

(LR)
S1/2

v2

· M
2

SR
1/2



 . (6)

Here M
2

Φ = M2
Φ − gΦv2 and only the elements above the diagonal have

been written since the matrices are symmetric. v is the SM Higgs vacuum
expectation value, v2 = (2

√
2GF )−1. The mass eigenstate basis is defined as

(ŜQ)i = RQ
ij (SQ)j , (7)

where RQ is a rotation matrix. The diagonal squared-mass matrices are
found in the usual way:

(
M2

Q

)
diag

= RQM2
Q(RQ)T . (8)

Phenomenological implications of the LQ interactions given in eqs. (1) and
(2) have to be derived in terms of the mass eigenstates. For the LQs with
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charge Q = −4/3 and Q = −5/3, simple analytical expressions for the
eigenvalues and rotation angle can be found. These are given by

M2
1,2 =

1

2

(
M2

11 + M2
22 −

√
4M4

12 + (M2
11 −M2

22)
2
)
, (9)

and

tan 2θ12 =
2M2

12

M2
11 −M2

22

. (10)

Here, M2
11, M2

22 and M2
12 stand symbolically for the corresponding entries in

the mass matrices eqs (5) and (6). For LQs of charge Q = −1/3,−2/3 we
will diagonalize the mass matrices numerically below. However, the following
approximate expressions are useful for an analytical estimate of parameters.
The rotation matrices which relate the interaction and mass eigenstates can
be parametrized by six rotation angles, namely,

RQ = RQ(θ34)R
Q(θ24)R

Q(θ14)R
Q(θ23)R

Q(θ13)R
Q(θ12). (11)

In the limit where the off-diagonal entries in the mass matrices eqs (3) and
(4) are smaller than the difference between the corresponding diagonal ones,
it is possible to find approximate expressions for the rotation angles also
in this more complicated case. As discussed in the next section, for the
neutrino masses the most relevant angles are θ

Q=2/3
34 , θ

Q=1/3
34 and θ

Q=1/3
13 . For

the angles in the Q = 1/3 case on can use eq. (10) as an estimate, with

obvious replacements of indices. For the angle θ
Q=2/3
34 , however, since the

relevant M2
34 = 0 in the mass basis, a more complicated expression results:

θ
Q=2/3
34 ≃ −

√
2Y R

S1/2
hS1

v3

(M
2

SR
1/2
−M

2

S̃1/2
)(M

2

S1
−M

2

SR
1/2

)
. (12)

Eq. (12) is exact in the limit Y L
S1/2

= g
(LR)
S1/2

= 0. It remains a reasonable

(factor-of-two) estimate as long as Y L
S1/2

, g
(LR)
S1/2
≤ Y R

S1/2
hS1

/v, and all Q = 2/3

LQ mixing angles are small numbers.

6



⊗

νi

(Ŝ−2/3)
†
j (Ŝ−2/3)j

νi′ukūk

×

(a)

⊗

νi

(Ŝ−1/3)j (Ŝ−1/3)
†
j

νi′dkd̄k

×

(b)

Figure 1: Feynman diagrams for Majorana neutrino masses. Diagram (a)
[(b)] give contributions to the neutrino mass matrix from u-type [d-type]
quarks loops.

3 Neutrino masses from Leptoquark loops

3.1 Analytical formulas

LQ-qν Yukawa interactions can be derived directly from the Lagrangian (1).
In the interaction eigenstate basis, they have the following form

LLQ−uν = λR
S1/2

ūPLν(SR
1/2)

†
−2/3 + λL

S1
ūcPLν(S1)

†
−2/3 + h.c. (13)

and

LLQ−dν = λR
S̃1/2

d̄PLν(S̃R
1/2)

†
−1/3 − λL

S0
d̄cPLν(SL

0 )†1/3 + λL
S1

d̄cPLν(S1)
†
1/3 + h.c.

(14)
Rotating to the mass eigenstate basis, the non-trivial mixing among LQs

from different SU(2)L multiplets lead to neutrino Majorana masses at one-
loop order as shown in figure 1. A straightforward calculation of the Majo-
rana neutrino mass matrix from these diagrams gives

Mν =Mup
ν +Mdown

ν (15)

where the matrixMup
ν from diagram (a) reads

(Mup
ν )ii′ =

3

16π2

∑

j=1···4
k=u,c,t

mkB0(0, m
2
k, M

2
j )R

2/3
j3 R

2/3
j4

×
[
(λR

S1/2
)ik(λ

L
S1

)i′k + (λR
S1/2

)i′k(λ
L
S1

)ik

]
. (16)
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Here R2/3 is the rotation matrix that diagonalizes the mass matrix of Q =
−2/3 LQs, eq. (4), and B0(0, m

2
k, M

2
j ) is a Passarino-Veltman function [36].

The matrixMdown
ν from diagram (b) can be written as

(
Mdown

ν

)
ii′

=
3

16π2

∑

j=1···4
k=d,s,b

mkB0(0, m
2
k, M

2
j )R

1/3
j3

×
{

R
1/3
j4

[
(λR

S̃1/2
)ik(λ

L
S1

)i′k + (λR
S̃1/2

)i′k(λ
L
S1

)ik

]

+ R
1/3
j1

[
(λR

S̃1/2
)ik(λ

L
S0

)i′k + (λR
S̃1/2

)i′k(λ
L
S0

)ik

]}
. (17)

Here R1/3 is the rotation matrix that diagonalizes the mass matrix of the
Q = −1/3 LQs given in eq. (3). Note, that in the limit of unmixed LQs, i.e.
Rij = δij , the neutrino mass matrix vanishes.

The Passarino-Veltman function B0 [36] contains a finite and an infinite
part. However, since the LQ model does not have a neutrino mass at tree-level
there are no counter terms, which allow to absorb infinities. The infinite parts
of the B0 functions therefore must cancel among the different contributions
in eq. (16) and eq. (17). Using the parameterization of the LQ rotation
matrices given in eq. (11), we have checked that this is indeed the case. The
resulting formula can be expressed as a sum of differences of B0 functions
only, thus cancelling all infinities. Since the coefficients in these formulas are
rather lengthy (and of little use), we will not give them explicitly.
Diagonalizing eq. (15) gives the neutrino masses and mixing angles,

UTMνU =Mdiag
ν . (18)

In standard parameterization U is written as

U =




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13






c12 s12 0
−s12 c12 0

0 0 1


 , (19)

where cij = cos θij and sij = sin θij and δ is a CP-violating phase. Since
we will consider only real parameters, δ = 0, π and we have not written any
Majorana phases in eq. (19).

In general, the neutrino mass matrix receives contributions from diagrams
involving up-type (u-loops) and down-type (d-loops) quarks. In order to find
the eigensystem of eq. (15) one has to solve a cubic equation. However, much
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simpler analytical formulas can be derived, if one particular loop dominates
over all others. For example, in the limit where only the top loop contributes
toMν one finds Det [Mν ] = 0, i.e. one of the three eigenvalues of the mass
matrix goes to zero. Note, that in this limit the model can produce only a
(normal) hierarchical neutrino spectrum.

Analytical expressions for the two non-zero neutrino masses can be found
easily in the limit Det [Mν ] = 0. It is useful to define two vectors in param-
eter space

R =
[
(λR

I )1, (λ
R
I )2, (λ

R
I )3

]
,

L =
[
(λL

I′)1, (λ
L
I′)2, (λ

L
I′)3

]
. (20)

Here, (λR,L
I,I′ )j = (λR,L

I,I′ )jk, with j being the leptonic index, whereas we have
suppressed for brevity the hadronic index k. The indices I and I ′ stand
symbolically for I = S1/2 and I ′ = S1 if the top loop dominates, or I = S̃1/2

and I ′ = S1 or I ′ = S0, if one of the bottom loops dominates. In terms of
these vectors the two non-zero neutrino masses are given by

mν2,3 = F(|R · L| ∓ |R||L|), (21)

where F is given by

F =
3

16π2

∑

j=1···4
mkB0(0, m

2
k, M

2
j )RQ

j3R
Q
js, (22)

Q = 1/3, 2/3 and s = 1, 4, depending on which contribution to Mν is most
important. The ratio between the solar and the atmospheric scale is thus
simply given by

R ≡ ∆m2
12

∆m2
23

≃
( |R · L| − |R||L|
|R · L| + |R||L|

)2

. (23)

Note that R is independent of F , i.e. independent of LQ masses and mixings.
Relations among neutrino mixing angles and the Yukawa couplings can be
found by using the eigenvalue equation for the massless neutrino [29, 30],

Mν v0 = 0 (24)

where the eigenvector v0 is given by

vT
0 =

(1,−ǫ, ǫ′)√
ǫ2 + ǫ′2 + 1

. (25)

9



Solving eq. (24) yields the result

ǫ =
m12m33 −m13m23

m22m33 −m2
23

, ǫ′ =
m12m23 −m13m22

m22m33 −m2
23

, (26)

where mij are the entries of the neutrino mass matrix Mν . Interestingly,
eq. (26) can be expressed in terms of neutrino angles only. For a normal
hierarchical spectrum, i.e. mν1,2,3 ≃ (0, m, M), where M (m) stands for the
atmospheric (solar) mass scale one obtains

ǫ = tan θ12
cos θ23

cos θ13
+ tan θ13 sin θ23, (27)

ǫ′ = tan θ12
sin θ23

cos θ13

− tan θ13 cos θ23. (28)

On the other hand, the expressions for ǫ and ǫ′ eq. (26) depend on the
entries in the neutrino mass matrix which are determined by the LQ Yukawa
couplings,

ǫ =
(λR

I )3(λL
I′

)1−(λR
I )1(λL

I′
)3

(λR
I )3(λL

I′
)2−(λR

I )2(λL
I′

)3
(29)

ǫ′ =
(λR

I )2(λL
I′

)1−(λR
I )1(λL

I′
)2

(λR
I )3(λL

I′
)2−(λR

I )2(λL
I′

)3
. (30)

The above equations allow to relate the Yukawa couplings directly to the
measured neutrino angles. Note also, that current neutrino data require
both, ǫ and ǫ′, to be non-zero.

3.2 Neutrino data and parameter estimates

Before discussing the constraints on LQ parameter space imposed by neutrino
physics, let us briefly recall that from neutrino oscillation experiments two
neutrino mass squared differences and two neutrino angles are by now known
quite precisely [37]. These are the atmospheric neutrino mass, ∆m2

Atm =
(2.0 − 3.2) [10−3 eV2], and angle, sin2 θAtm = (0.34 − 0.68), as well as the
solar neutrino mass ∆m2

⊙ = (7.1 − 8.9) [10−5 eV2], and angle, sin2 θ⊙ =
(0.24− 0.40), all numbers at 3 σ c.l. For the remaining neutrino angle, the
so-called Chooz [38] or reactor neutrino angle θR, a global fit to all neutrino
data [37] currently gives a limit of sin2 θR ≤ 0.04 @ 3 σ c.l.

Neutrino oscillation experiments have no sensitivity on the absolute scale
of neutrino masses, but the atmospheric data requires that at least one neu-
trino has a mass larger than M ≡ mAtm

ν
>∼ 50 meV. The minimal size of LQ

10



Yukawa couplings and LQ-mixing, required to explain such a neutrino mass,
can be estimated from eq. (21). Parameterizing the rotation matrices as in
eq.(11) we can estimate F as

F ≃ 3

16π2
mk sin(2θ3s)∆B3s. (31)

Here, sin(2θ3s) stands symbolically for the largest LQ mixing angle, and
∆Bij = B0(0, m

2
k, m

2
i )− B0(0, m

2
k, m

2
j). The finite part Bf

0 of B0 is given by

Bf
0 (0, m2

k, m
2
j) =

m2
k log(m2

k)−m2
j log(m2

j )

m2
k −m2

j

. (32)

The maximum allowed value of |∆Bij| for mLQ ≤ 1.5 TeV is |∆Bij | ≃ 3 (3.5)
for mk = mt (mk = 0). With the current central values for the quark masses
[39] we then find the maximal value(s) of F as

Fmax ≃ [4.9 : 0.14 : 4.1 · 10−2 : 3 · 10−3 : 1.7 · 10−4 : 8 · 10−5] GeV,

for t : b : c : s : d : u (33)

for maximal LQ mixing, i.e. sin(2θ3s) = 1/2. For this value of F the min-
imum values for the Yukawa couplings required to explain the atmospheric
mass scale are then very roughly given by

(λR
S1/2

)it(λ
L
S1

)i′t >∼ 5.1× 10−12 , (λR
S̃1/2

)ib(λ
L
S0,1

)i′b >∼ 1.8× 10−10 (34)

(λR
S1/2

)ic(λ
L
S1

)i′c >∼ 6.0× 10−10 , (λR
S̃1/2

)is(λ
L
S0,1

)i′s >∼ 8.0× 10−9

(λR
S̃1/2

)id(λ
L
S0,1

)i′d >∼ 1.5× 10−7 , (λR
S1/2

)iu(λ
L
S1

)i′u >∼ 3.0× 10−7

Obviously, unless the λik follow a hierarchy inversely proportional to the SM
quark masses, third generation quark loops give the by far largest contribu-
tion to the neutrino mass matrix.

We should compare the minimal values of eq. (34) with the constraints
coming from low-energy phenomenology. The most stringent upper bounds
for the first generation Yukawa couplings ((λR

S1/2
)i1 and (λL

S1
)i1) are currently

found from the upper limit on the lepton flavour violating process µ Ti→ e Ti
[10, 40]

(λR
S1/2

)11(λ
R
S1/2

)21 < 2.6× 10−7

(
Mj

100GeV

)2

,

(λL
S1

)11(λ
L
S1

)21 < 1.7× 10−7

(
Mj

100GeV

)2

. (35)
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Here j labels the corresponding mass of the LQ eigenstate. Upper bounds
for the second (and third) quark generation couplings come from the charged
lepton flavour violating decay µ→ eγ and are given by

(λR
S1/2

)12(13)(λ
R
S1/2

)22(23) < 1.8× 10−5

(
Mj

100GeV

)2

,

(λL
S1

)12(13)(λ
L
S1

)22(23) < 1.8× 10−5

(
Mj

100GeV

)2

. (36)

Here, we have updated [10] with the current experimental upper limit on
Br(µ→ eγ) [39].

Although eq.(35) constrains a different combination of left- and right-
LQ couplings than eq.(34) we conclude that, barring cases where some fine-
tuned cancellation between different LQ contributions occur, we expect that
first generation quark loops can not explain current neutrino data. Second
and third generation LQ loops, on the other hand, could both produce the
observed neutrino masses, consistent with all phenomenological constraints.
However, considering the hierarchy in mc/mt ∼ 8 · 10−3 and ms/mb ∼ 0.02,
from now on we will concentrate on third (quark) generation LQs. Note that,
comparing eq.(34) with eq.(36) one finds that the atmospheric mass scale
can be generated consistent with low-energy constraints for LQ mixing as
small as 10−6 (10−5) in case of top-loops (bottom-loops). These numbers are
significantly smaller than constraints derived from other low-energy processes
[32, 33].

The observed large mixing angles in the neutrino sector require certain
ratios of Yukawa couplings to be non-zero. This can be most easily under-
stood as follows. One can use eqs (18) and (19) to invert the problem and
calculate the neutrino mass matrix in the “flavour basis” (in the basis where
the charged lepton mass matrix is diagonal). The resultingMν in the general
case is a complicated function of the eigenvalues and mixing angles. However,
as first observed in [41], the so-called tri-bimaximal mixing pattern

UHPS =




√
2
3

√
1
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2


 . (37)

is a good first-order approximation to the observed neutrino angles. In case
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of hierarchical neutrinos Mdiag
ν = (0, m, M) it leads to

MHPS
ν =

1

2




0 0 0
0 M −M
0 −M M


+

1

3




m m m
m m m
m m m


 . (38)

Comparing eq. (38) with the index structure of eq. (16) and (17), one expects
that

(λL
I )1(λ

R
I )3 + (λL

I )3(λ
R
I )1 ≪ (λL

I )2(λ
R
I )3 + (λL

I )3(λ
R
I )2 (39)

(λL
I )2(λ

R
I )3 + (λL

I )3(λ
R
I )2 >∼ (λL

I )2(λ
R
I )2 − (λL

I )3(λ
R
I )3 (40)

for the couplings which give the largest contribution to Mν . Eq. (39) is
essentially due to smallness of the reactor angle, while eq. (40) follows from
the observed near-maximality of the atmospheric angle. Note that, if more
than one loop contributes to Mν of eq. (15), mν1

6= 0, but the “large” off-

diagonal entry in the (2,3) element ofMν always requires (λ
L/R
I )2 ∼ (λ

L/R
I )3,

for at least one LQ state. Finally, it should also be mentioned that the
smallness of solar versus atmospheric splitting requires that the vectors R

and L, defined in eq. (20), are nearly aligned for all vectors contributing to
Mν , compare eq. (23).

There are three different contributions to the neutrino mass matrix, see
eqs (16) and (17). The top loop is proportional to θ

Q=2/3
34 ∼ Y R

S1/2
· hS1

, while

the bottom loop is either proportional to θ
Q=1/3
34 ∼ hS1

or to θ
Q=1/3
13 ∼ hL

S0
.

Lacking a theoretical ansatz for these parameters, it is not possible to predict
which of these give the dominant contribution to the neutrino mass matrix.
However, since mb/mt ∼ 2%, the top-loop will be most important, if all LQ
mixing angles (and Yukawa couplings) are of similar size. We will refer to

this case, Mν =Mt
ν, as scenario I. θ

Q=2/3
34 , on the other hand, can be much

smaller than the corresponding angles in the down-type loops in those parts
of parameter space where all relevant off-diagonal entries in the LQ mass
matrices are small. In this caseMν ≃Mb

ν and we will refer to this situation
as scenario II (II.a: if hL

S0
≪ hS1

/v and II.b: if hS1
/v ≪ hL

S0
).

4 Leptoquark collider phenomenology

LQs, once produced, will decay almost instantanously. There are two differ-
ent sets of possible final states. In the current model, apart from the usual

13



decays into a quark and a lepton there are also vector (W± and Z0) and
scalar (h0) final states, if kinematically allowed. We will discuss first the
fermionic decays.

4.1 Fermionic LQ decays

Fermionic decays of the LQ mass eigenstates are dictated by the Yukawa
interactions given in the Lagrangian (1). Possible final states can be either
ℓ̄iuk, ℓ̄idk, ν̄iuk or ν̄idk. Most interesting, from the phenomenological point of
view, are final states with charged leptons, since these allow to tag the flavour.
Partial widths for two-body final states can be calculated in a straightforward
manner. For charged lepton final states these are given by,

Γ[(Ŝ−1/3)j → ℓit̄c] = nj
−1/3

{
[(λL

S1
)i3R

1/3
j4 ]2 + [(λL

S0
)i3R

1/3
j1 ]2 + [(λR

S0
)i3R

1/3
j2 ]2

}
;

(41)

Γ[(Ŝ−2/3)j → ℓib̄] = nj
−2/3

{
[(λR

S̃1/2
)i3R

2/3
j1 ]2 + [(λL

S1/2
)i3R

2/3
j2 ]2

}
; (42)

Γ[(Ŝ−4/3)j → ℓib̄c] = nj
−4/3

{
[(λR

S̃0
)i3R

4/3
j1 ]2 + [(λL

S1
)i3R

4/3
j2 ]2

}
; (43)

Γ[(Ŝ−5/3)j → ℓit̄] = nj
−5/3

{
[(λL

S1/2
)i3R

5/3
j1 ]2 + [(λR

S1/2
)i3R

5/3
j2 ]2

}
. (44)

Here, nj
Q is an overall constant given by

nj
Q =

3

16πmSj

[
1−

m2
q + m2

l

m2
Sj

]
λ1/2(m2

Sj
, m2

q , m
2
l ) (45)

with λ1/2(a, b, c) the usual phase space factor, λ(a, b, c) = (a+b−c)2−4ab, and
mSj

, mq and ml the corresponding LQ, quark and lepton masses. Absolute
values for the LQ widths can not be predicted. However, minimal [maximal]
values can be estimated from the atmospheric neutrino mass scale [low-energy
bounds]. Putting all parameters to their extreme values fermionic widths
could be as small [large] as O(eV) [O(MeV)].

In the above equation, we have written only the partial widths to top
and bottom quarks. Formulas for the lighter generations can be found with
straightforward replacements of indices. However, since the widths, eqs (41)
- (44), are not suppressed by quark masses, our assumption that 3rd genera-
tion quark loops give the dominant contribution toMν , can in principle be
checked experimentally. For example if Br(Ŝ−5/3 → t +

∑
i li)/Br(Ŝ−5/3 →

14



j +
∑

i li) and Br(Ŝ−4/3 → b +
∑

i li)/Br(Ŝ−4/3 → j +
∑

i li), where j stands
for any non-b jet, are larger than mc/mt, charm (and up) loops are guaran-
teed to be sub-dominant. Similar tests can be devised for the case of bottom
loops.

Note that if the mixing between different LQs is small, as is generally
expected, the decays of some of the LQ states ŜQ are controlled by the same
Yukawa couplings that determine the non-trivial structure of the neutrino
mass matrix. This observation forms the basis of the different decay pattern
predictions discussed below. However, one complication arises from the fact
that we can not predict if the decays of the lightest or one of the heavier of the
LQ states is dictated by the Yukawas fixed by neutrino physics. Again, in the
limit of small LQ mixing, this question can be decided experimentally, in prin-
ciple. Consider, for example, scenario I, Mν ≃ Mt

ν . The decays controlled
by neutrino physics are those governed by λR

S1/2
and λL

S1
. These states couple

mainly to lepton doublets. Their components have the same diagonal entries
in the LQ mass matrices, we expect them to have similar masses. These
states should have very roughly Γ[(Ŝ−5/3) →

∑
ℓit̄] ∼ Γ[(Ŝ−2/3) →

∑
νit̄]

and Γ[(Ŝ−4/3) →
∑

ℓib] ∼ Γ[(Ŝ−1/3) →
∑

νib]. The other Q = 4/3, 5/3
mass eigenstates mainly couple to singlet leptons, i.e. these state do not
decay to neutrinos. In what follows below, we will always assume that the
small mixing limit is realized and the LQ states relevant for the experimental
cross-checks can be identified.

Combining eqs (23) and (40) with the decay rates eqs (41) - (44), one can
derive some qualitative expectations for some ratios of branching ratios of
fermionic LQ decays. In general, the constraint from the large atmospheric
angle, plus the smallness of R = ∆m2

⊙/∆m2
Atm can only be full-filled if there

are (at least) two LQ states which have similar branching ratios to muonic
and tau final states. At the same time, these LQ states should have less final
states with electrons, essentially due to eq. (39) and the upper limit on the
reactor angle.

Much more detailed predictions for fermionic decays of LQs can be made
in the explicit scenarios defined in the last section. We will first discuss in
some detail the results for scenario I, Mν = Mt

ν . For all figures presented
in the following we have scanned the Yukawa parameter space randomly,
in such a way that all low-energy bounds are obeyed. We then numerically
diagonalized the resulting neutrino mass matrices and checked for consistency
with current neutrino oscillation data. Different correlations among ratios of
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Figure 2: Ratio of decay branching ratios
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5/3Brbµ

4/3/
√
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5/3Brbτ

4/3 versus

tan2 θ23. Vertical lines indicate current 3σ range for tan2 θ23 while horizontal
lines determine the predicted range for this observable.

branching ratios with the different pieces of neutrino data are then found.

Figure 2 demonstrates that
√

Brtµ
5/3Brbµ

4/3/
√

Brtτ
5/3Brbτ

4/3 is correlated with

the atmospheric mixing angle. For the best fit point value tan2 θ23 = 1 one

expects
√

Brtµ
5/3Brbµ

4/3 ≃
√

Brtτ
5/3Brbτ

4/3. Using the current 3σ range for the

atmospheric mixing angle this observable can be predicted to lie within the
interval [0.4,4.7].

We have found that there exists an upper bound on the ratio of branching
ratios √

Brte
5/3Brbe

4/3
√

Brtµ
5/3Brbµ

4/3 +
√

Brtτ
5/3Brbτ

4/3

. 9× 10−2 (46)

which can be derived from the ratio R = ∆m2
⊙/∆m2

Atm as shown in figure 3.
This bound shows that the product of branching ratios Brte

5/3Brbe
4/3 is expected

to be nearly two orders of magnitude smaller than the sum of Brtµ
5/3Brbµ

4/3 and

Brtτ
5/3Brbτ

4/3.
Individual values for electron final state decay branching ratios are shown

in figure 4. It can be seen that the smallness of Brte
5/3Brbe

4/3 can be due to

the smallness of either Brbe
4/3 or Brte

5/3. This implies that for one of the two
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LQ eigenstates (Q = 4/3 and Q = 5/3) electron final states could be as
large as ∼ 20%, but only if the other LQ state shows a very much supressed
branching ratio to electrons.

Numerically we have found that there is certain combination of ratios
of branching ratios that is correlated with sin θR = sin θ13 as shown in fig-
ure 5. With the current upper limit on sin θR, this ratio is not very much
constrained. However, a future measurement of sin θR, would confine this
ratio to lie in a very small, albeit double-valued, interval and thus such a
measurement could become a powerful experimental cross-check of the sce-
nario discussed here. Note also that this ratio approaches 1 for small values
of sin θR, thus also an improved upper limit on this angle will lead to an
interesting constraint.

Finally, from equation (23) one expects that

R =
Br′−
Br′+

≡

√∑
i=e,µτ Brti

5/3Brbi
4/3 −

√∑
i,j=e,µτ Brti

5/3Brbj
4/3

√∑
i=e,µτ Brti

5/3Brbi
4/3 +

√∑
i,j=e,µτ Brti

5/3Brbj
4/3

(47)

≃

√∑
i=µτ Brti

5/3Brbi
4/3 −

√∑
i,j=µτ Brti

5/3Brbj
4/3

√∑
i=µτ Brti

5/3Brbi
4/3 +

√∑
i,j=µτ Brti

5/3Brbj
4/3

.

The neglection of electron final states in the 2nd equation above is motivated
by eq. (46). Numerical results are shown in figure 6. The spread of the points
in the plot gives the precision with which the ratio Br−/Br+ can be predicted,
neglecting electron final states and scanning over the allowed ranges of other
neutrino physics observables. As demonstrated by figure 6 the observable
Br−/Br+ is currently expected to lie within the range [7.5×10−3, 2.9×10−2].

All results shown in the figures (2)- (6) are based on the assumption that
the top-loop gives the most important contribution to the neutrino mass
matrix. However, very similar results can be obtained if the bottom loop
dominates in either scenario II.a or scenario II.b. We will not repeat the
discussion in detail here. The results for scenario II.a can be obtained by the
replacement of Ŝ5/3 → Ŝ2/3 and scenario II.b by the replacements Ŝ5/3 → Ŝ2/3

and Ŝ4/3 → Ŝ1/3 in all equations and figures above.
In summary, qualitative expectations for some ratios of branching ratios

of fermionic LQ decays can be derived from the requirement that LQ loops
explain neutrino oscillation data. In general, lepton flavour violating decays
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with similar branching ratios to muonic and tau final states are expected for
some specific LQ decays. Sharp predictions for various decay modes can be
made, under the reasonable asumption that one LQ loop dominates over all
others.

4.2 Leptoquark decays to Higgs and gauge boson final

states

Since the current lower limit on the mass of a standard model like Higgs boson
is mh0 ≥ 114.4 GeV [39], one expects that LQs can decay also to standard
model gauge bosons, W± and Z0, if the Higgs final state is kinematically
possible. We will therefore discuss partial decay widths to Higgs, W± and
Z0 final states jointly in this subsection.

In the model discussed here, heavier LQs can decay to lighter LQs plus a
standard model Higgs boson, i.e. (ŜQ)j → h0 +(ŜQ)i, due to the interactions
given in eq. (2). Partial decay widths can be written as

Γ[(ŜQ)j → h0 + (ŜQ)i] =
1

16π
g̃2

Q mSj
λ1/2(1, rij, rh). (48)

Here, the arguments of λ1/2(a, b, c) have been defined dimensionless, rij ≡
m2

Si
/m2

Sj
and rh ≡ m2

h0/m2
Sj

. The effective couplings g̃Q for the different
values of Q = −1/3,−2/3,−4/3,−5/3 are defined as

g̃−1/3 =
g

(LR)
S0

2

v

mSj

R
1/3
j1 R

1/3
i2 +

h
(L)
S0√

2 mSj

R
1/3
j1 R

1/3
i3 +

κ
(L)
S

2

v

mSj

R
1/3
j1 R

1/3
i4

+
h

(R)
S0√

2 mSj

R
1/3
j2 R

1/3
i3 +

κ
(R)
S

2

v

mSj

R
1/3
j2 R

1/3
i4 +

hS1√
2mSj

R
1/3
j3 R

1/3
i4 (49)

g̃−2/3 =
Y L

S1/2

2

v

mSj

R
2/3
j1 R

2/3
i2 +

Y R
S1/2

2

v

mSj

R
2/3
j1 R

2/3
i3 +

hS1

mSj

R
2/3
j1 R

2/3
i4

+
g

(LR)
S1/2

2

v

mSj

R
2/3
j2 R

2/3
i3 , (50)

g̃−4/3 =
YS1√

2

v

mSj

R
4/3
j1 R

4/3
i2 , (51)
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g̃−5/3 =
g

(LR)
S1/2

2

v

mSj

R
5/3
j1 R

5/3
i2 . (52)

RQ
ij are the rotation matrices, which diagonalize the LQ mass matrices. Note,

that the above couplings contain the same parameters which induce neutrino
masses due to LQ mixing.

For any given set of LQs of charge Q the couplings with the Z0 can be
written as

ig

cos θW
Zµ
∑

l

(
T l

3 −Q sin2 θW

)
Sl

Q

←→
∂ µ(Sl

Q)†. (53)

Non-diagonal couplings of the Z0 gauge boson to different LQ states of the
same Q, but different T3 appear, after rotation to the mass eigenstate basis.
The partial decay width can be written as

Γ[(ŜQ)j → Z0 + (ŜQ)i] =
1

16π

g2

cos θ2
W

θ2
Q

M3
Sj

M2
Z

λ3/2(1, rij, rZ), (54)

where rZ = (mZ0/mj)
2 and

θ−1/3 = −1

2
R

1/3
j3 R

1/3
i3 (55)

θ−2/3 = −(R
2/3
j1 R

2/3
i1 +

3

2
R

2/3
j4 R

2/3
i4 )

θ−4/3 = −R
4/3
j2 R

4/3
i2 .

Note that Q = −5/3 LQs do not have any decays to Z0 bosons, since their
couplings to Z0 are completely diagonal. Closer inspection of eq. (55) re-
veals that the decays to Z0 states can occur only if LQ mixing (by the same
parameters which govern the Higgs final states) is non-zero. Thus, also ob-
servation of Z0 final states gives valuable information about the parameters
in eq. (2).

Heavier LQs can decay to a lighter one and a W± gauge boson, SQ →
W + SQ′, where SQ and SQ′ are members of the same doublet (triplet).
Possible decays therefore are:

(Ŝ−5/3)j ↔ W− + (Ŝ−2/3)i, (56)

(Ŝ−2/3)j ↔ W− + (Ŝ−1/3)
†
i , (57)

(Ŝ−4/3)j ↔ W− + (Ŝ−1/3)i, (58)
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where the processes in (56), (57) and (58) come from the decays of the mem-

bers of the doublet S1/2, S̃1/2 and the triplet S1, respectively, after rotation
to the mass eigenstate basis. Note that the process in eq. (57) can also come
from the decay of the T3 = 1 to the T3 = 0 components of the triplet. The
decay widths for the processes in (56), (57) and (58) can be written as

Γ[(ŜQ)j →W± + (ŜQ′)i] =
g2θ2

Q

32π

m3
Sj

M2
W

λ3/2(1, rij, rW ). (59)

Here rW ≡M2
W /m2

Sj
and the mixing factors are given by

θ−5/3 = (R2/3)i2(R
5/3)j1 + (R2/3)i3(R

5/3)j2, (60)

θ−2/3 = (R1/3)i3(R
2/3)j1 +

√
2(R1/3)i4(R

2/3)j4 (61)

θ−4/3 =
√

2(R1/3)i4(R
4/3)j2. (62)

Our formula eq. (59) agrees with the one calculated earlier in [42], once LQ
mixing is properly taken into account.

We now turn to a discussion of typical ranges for the branching ratios
of bosonic final states. We will first discuss the example of decays of LQs
with Q = 4/3, assuming the decay to Q = 1/3 LQs plus W± is kinematically
closed.

Fig. (7) shows a set of numerical examples of branching ratios of the
heavier of the Q = 4/3 LQ mass eigenstate to fermionic, h0 and Z0 final
states, for some typical choices of parameters, see figure caption. For Yukawa
couplings of the order λ̄ ∼ 10−3 values of YS1

as small as YS1
≃ 10−2 can lead

to observable branching ratios into bosonic final states.
While we can not predict whether fermionic or bosonic final states will

dominate, it is interesting to note that the current LQ model makes a definite
prediction for the ratio of branching ratios of h0 and Z0 final states, if m

Q=4/3
2

is sufficiently larger than m
Q=4/3
1 +mh0. This can be understood as follows. If

m
Q=4/3
2 is much larger than m

Q=4/3
1 , mh0 and mZ0, one can neglect the phase

space correction factors, λ(1, x, y), and approximate the Q = 4/3 mixing

angle by θQ=4/3 ≃
√

2YS1
v2/(m

Q=4/3
2 )2. The ratio of the partial widths to

Higgs and Z0 states is then simply given by

Γ[(Ŝ4/3)2 → Z0 + (Ŝ4/3)1]

Γ[(Ŝ4/3)2 → h0 + (Ŝ4/3)1]
≃ 4

g2

c2
W

v2

m2
Z0

∼ 8, (63)

22



10-4 10-3 10-2
10-4

10-3

10-2

10-1

100

10-4 10-3 10-2
10-4

10-3

10-2

10-1

100

10-4 10-3 10-2
10-4

10-3

10-2

10-1

100

10-4 10-3 10-2
10-4

10-3

10-2

10-1

100

Figure 7: Typical values for decay branching ratios for the heavier Q = 4/3
LQ, in case W± final states are kinematically closed. Branching ratios are
plotted versus the “average” Yukawa coupling λ̄ ≡

√∑
i λ

2
i3, for different

values of YS1
and m

Q=4/3
2 . Full line (red): fermionic final states, dashed line

(blue) Higgs final state, dot-dashed (magenta) Z0 final state. In all figures

m
Q=4/3
1 has been set to m

Q=4/3
1 = 250 GeV and we have chosen mh0 = 115

GeV, motivated by the LEP limit. Top left: (YS1
= 0.01, m

Q=4/3
2 = 400

GeV); top right: (YS1
= 0.1, m

Q=4/3
2 = 400 GeV); bottom left: (YS1

=

0.01, m
Q=4/3
2 = 800 GeV); bottom right: (YS1

= 0.1, m
Q=4/3
2 = 800 GeV).

independent of all non-SM parameters. This explains the ratio observed in
the numerical examples of fig. (7) and constitutes a nice consistency test for
the LQ model of neutrino masses.

We now turn to W± final states. In general, in electro-weak symmetry
breaking new mass terms for LQs, which are members of the same multiplet,
could be generated by some non-SM scalars, potentially introducing large
splitting within a given multiplet. In this case, LQ decays to W± states
could occur independent of LQ mixing between different multiplets. Then,
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since LQ-W± decays are of order g2 they would easily become dominant
once kinematically allowed. In the current model, however, mass splitting of
LQs within the same multiplet comes only from LQ mixing, see eqs (3)-(6).
Thus LQ-W± final states should have widths similar to the Z0 final states
discussed above. Consider, for example the decays of a Q = 5/3 LQ. The
mass matrix of the Q = 5/3 LQs, see eq. (5), contains the same parameters
as a (2-by-2) submatrix of the Q = 2/3 mass matrix, compare to eq. (3). If
the other Q = 2/3 states are heavier than these states, we can give a similar
estimate of the ratio of Higgs and W± final states, as has been derived above
for Z0 final states, see eq. (63). Assuming again m

Q=5/3
2 being much heavier

than final state particles, we find

Γ[(Ŝ5/3)2 → h0 + (Ŝ5/3)1]

Γ[(Ŝ5/3)2 → W± + (Ŝ2/3)1]
≃ 1

8g2

m2
W

v2
≃ 0.063. (64)

In the general situation, however, when all Q = 2/3 states are relatively
light, the branching ratio to h0 final states can not be predicted accurately.
Thus, W± final states can not provide an as valuable test for the model as
is the case for Z0 decays.

In summary, heavier LQs will decay to bosonic final states, if kinemat-
ically allowed. Since in the current model all these decays are induced by
the presence of the LQ-Higgs interaction parameters, observing such decays
are an essential test of the LQ model of neutrino mass. Branching ratios for
bosonic final states typically fall into the range O(10−4 − 1), for LQ-Higgs
couplings order O(10−2 − 1). Although we have discussed only the cases
Q = 4/3 and Q = 5/3, bosonic widths of LQs with other electric charges are
expected to show a very similar parameter dependence (and therefore similar
branching ratios).

5 Summary

LQ fields with baryon number conserving Yukawa interactions can have
masses at or near the electro-weak scale. If these LQ fields couple to the
SM Higgs, the resulting model generates neutrino masses at the one-loop
level. In this work we have explored the phenomenological consequences
of LQs as the origin of the observed neutrino masses for future accelerator
experiments, such as the LHC.
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Fermionic decays of (some of the) LQ states trace the neutrino angles,
i.e. certain ratios of decay branching ratios can be predicted from current
neutrino data. In general one expects that those LQs, which give the dom-
inant contribution to the neutrino mass matrix, if (pair) produced at the
LHC decay with sizeable flavour violation. For these states there should be
a similar number of events with τ±µ∓ final states, as there are final states
with muon and tau pairs. One also expects a smaller number of events of the
type e±µ∓ (and e±τ∓), although the details in this case are more involved,
as discussed above.

In this context we would like to stress that one of the basic assumptions
applied in practically all accelerator searches for LQs is that LQs couple
only to one generation of leptons and quarks at a time. As discussed at
length above, such completely generation diagonal couplings would exclude
LQ-loops as an explanation of neutrino oscillation data. Extending the LQ
search to lepton flavour violating decays thus should be considered seriously
by experimentalists.

We have also discussed how, in some specific scenarios, much more de-
tailed predictions can be made. Given the observed hierarchy of standard
model quark masses, it seems reasonable to assume that contributuins from
3rd generation quark loops dominate the neutrino mass matrix. For the case
of top quark dominance, our results are summarized in the figures (2)- (6).
Similar results hold in case of pure bottom-loop dominance.

Finally, an important test of the hypothesis that LQs can generate Ma-
jorana neutrino masses, is the search for decays of heavier LQs into lighter
ones plus a standard model Higgs or gauge boson. Any observation of a
non-zero branching ratio for the decay Si → Sj +h0/Z0 constitutes proof for
LQ mixing, which is the basic ingredient for the LQ explanation of neutrino
masses. If LQs are found at the LHC, the search for such decays should be
made a priority.
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