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INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua, Italy
e) AHEP Group, Institut de F́ısica Corpuscular – C.S.I.C./Universitat de València
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Abstract

In models with flavour symmetries added to the gauge group of the Standard
Model the CP-violating asymmetry necessary for leptogenesis may be related with
low-energy parameters. A particular case of interest is when the flavour symmetry
produces exact Tri-Bimaximal lepton mixing leading to a vanishing CP-violating
asymmetry. In this paper we present a model-independent discussion that confirms
this always occurs for unflavoured leptogenesis in type I see-saw scenarios, noting
however that Tri-Bimaximal mixing does not imply a vanishing asymmetry in general
scenarios where there is interplay between type I and other see-saws. We also consider
a specific model where the exact Tri-Bimaximal mixing is lifted by corrections that
can be parametrised by a small number of degrees of freedom and analyse in detail the
existing link between low and high-energy parameters - focusing on how the deviations
from Tri-Bimaximal are connected to the parameters governing leptogenesis.
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1 Introduction

Results from neutrino oscillation experiments [1] have firmly established that neutrinos
have tiny but non-zero masses. From a theoretical perspective the smallness of neutrino
masses can be well understood within the see-saw mechanism [2], in which the Standard
Model (SM) is extended by adding new heavy states. Light neutrino masses are generated
through effective operators which are typically suppressed by the masses of the states giving
rise to the see-saw. In type I see-saw the extra states are right-handed (RH) neutrinos with
large Majorana masses. Apart from providing an explanation for the origin of neutrino
masses, the mechanism contains all the necessary ingredients for a dynamical generation
of a cosmic lepton asymmetry through the decays of the heavy singlet neutrinos (lepto-
genesis): (a) Lepton number violation arising from the Majorana mass terms of the new
fermionic states; (b) CP-violating sources from complex Yukawa couplings; (c) departure
from thermal equilibrium in the hot primeval plasma at the time the singlet neutrinos start
decaying. This lepton asymmetry is then reprocessed into a baryon asymmetry through
B + L violating anomalous electroweak processes [3] thus yielding an explanation to the
origin of the baryon asymmetry of the Universe [4] i.e. baryogenesis through leptogenesis
(for a recent review see [5]).

The structure of mixing in the leptonic sector suggested by experimental data is in
sharp contrast with the small mixing that characterises the quark sector. Observations
indicate that solar neutrino oscillation is described by a large but non-maximal mixing
angle, atmospheric neutrino oscillation is described by maximal or nearly-maximal angle,
and reactor data puts a small upper bound on the third angle [6–8]. This mixing pattern
is well described by the so-called Tri-Bimaximal (TB) scheme [9] which corresponds to a
unitary matrix of the form

UTB =


√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 +1/
√

2

 , (1)

and to the following mixing angles:

sin2 θTB13 = 0 sin2 θTB23 = 1/2 sin2 θTB12 = 1/3 . (2)

This particular mixing structure can be interpreted as a signal of an underlying sym-
metry1 and has motivated a great deal of studies aiming to determine the possible flavour
symmetry responsible for such a pattern. A large amount of discrete and continuous sym-
metries have been considered [11–43] and among them discrete non-Abelian ones have been
found to be particularly interesting as they can more naturally lead to the required pat-
tern. In the realization of explicit models, a general feature is the breaking of the flavour
symmetry: this is a well known result of a no-go theorem [16, 44] that applies in the vast
majority of relevant cases; it could be evaded, for example using light Higgs fields charged
under the flavour symmetry, but inconsistencies related to flavour-changing neutral current
or lepton-flavour violating processes could appear. On the contrary, allowing only heavy

1for a different approach see [10].
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Higgs fields charged under the flavour symmetry, it is possible to avoid these dangerous
effects [45].

Global fits [7] to the data provides a subtle hint of a deviation from the TB scheme
and therefore it is desirable if the flavour symmetry predicts TB at leading order (LO)
and allows perturbations at higher orders. It is possible to constrain the amount of these
corrections by comparing the TB value of the mixing angles to their experimental measure-
ments: the solar angle is known with the lowest relative error and as a result it fixes the
upper bound of the deviations at about 0.05. Avoiding any parameter tuning or particular
relations among the deviations, we expect that the other LO mixing angles are perturbed
by quantities of the same order of magnitude: in particular the corrected θ13 is expected
to be non-vanishing, but very small. 2

In order to explain the baryon asymmetry of the Universe by leptogenesis, CP viola-
tion in the leptonic sector is needed. In principle it can be argued that leptogenesis is
supported by any observation of CP violation in the leptonic sector, e.g. in neutrino oscil-
lation experiments. However, since generically the baryon asymmetry is insensitive to the
low energy CP-violating phases [46,47] a definitive conclusion can not be established from
such an observation. In contrast, in models based on flavour symmetries that predict the
TB mixing pattern, the parameter space is further constrained and as a result one could
expect, quite generically, some link between low-energy observables and leptogenesis. As
pointed out in [33], in the context of an A4 flavour symmetry model with type I see-saw the
CP-violating asymmetry (εNα) vanishes in the limit of exact TB mixing, with leptogenesis
becoming viable only when deviations from this pattern are taken into account. The ex-
plicit structure of the corrections responsible for these deviations are model-dependent and
therefore whether a connection between εNα and low-energy parameters can be established
will depend on the particular realization.

In this paper we extend upon the work in [33]. In particular, we study the viability
of leptogenesis in the context of models based on an arbitrary flavour symmetry leading
to the TB lepton mixing pattern through the see-saw mechanism. When there is only
type I see-saw and independently of the nature of the underlying symmetry, we conclude
that εNα = 0 in the limit of exact TB mixing or any other exact mixing schemes where
the mixing matrix consists purely of numbers - such as Bi-maximal mixing [48], golden-
ratio mixing [49] and some (but not all) cases of Tri-maximal mixing [50,51]. Under these
conditions, only deviations from the flavour symmetry imposed pattern yield εNα 6= 0. It
is important to note that this result is not in general valid in the presence of other types
of see-saw (e.g. with the interplay of type I and type II).

Following from the model-independent proof we consider particular cases. We check
our result by considering several models discussed in the literature. Finally, we also take
a specific simple A4 flavour model [39], where low-energy observables arising from TB
deviations can be linked to the CP-violating asymmetry in a straightforward manner and
analyse it in more detail.

Our discussion will be entirely devoted to “unflavoured” leptogenesis scenarios: in the
framework of flavour symmetry models predicting TB mixing the heavy singlet neutrinos
typically have masses above 1013 GeV and for T & 1012 GeV lepton flavours are indistin-

2for an alternative proposal see [43].
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guishable [52,53].
This paper is organised as follows: in section 2 we fix our notation and briefly comment

upon some generic aspects of leptogenesis. For completeness of our results, in section 3
we present a brief analysis of randomly generated TB mixing and its implications for the
CP-violating asymmetry. We turn to the main subject of this paper in section 4, showing
that an exact mixing scheme enforced by a flavour symmetry in scenarios with just type
I see-saw leads to a vanishing CP-violating asymmetry. Leptogenesis becomes potentially
viable only when higher-order flavour symmetry corrections lift the pattern - or otherwise
if other types of see-saw (e.g. type II) are also present. In section 5 we confirm our model-
independent results in particular realizations, and in section 6 we analyse in detail a specific
model in which low-energy parameters and the CP-violating asymmetry are directly related
in a simple way. Finally in section 7 we conclude by summarizing our results.

2 The basic framework

In this section we will establish both the notation and a choice of a convenient basis. Let
us consider the leptonic part of the SM Lagrangian extended with three fermionic heavy
singlets Nα

3

− L = (Y )ijLiH`
c
j + (λ)iαLiH̃Nα +

1

2
(MR)αβ(N c

α)TNβ + h.c. . (3)

Here Li are the lepton SU(2) doublets, `ci are the complex conjugate charged lepton SU(2)

singlets and H (H̃ = iσ2H
∗) is the Higgs SU(2) doublet. Latin indices i, j . . . label lepton

flavour, whereas Greek indices α, β . . . denote RH species. Y , λ and MR are 3×3 matrices
in flavour space.

At energy scales well below the RH neutrino masses, light neutrino masses are generated
via effective operators. The effective Majorana neutrino mass matrix is

mν = −mDM
−1
R mT

D , (4)

where mD = λ v/
√

2 (v ' 246 GeV). We then consider the unitary matrices U`, U`c and
Uν , which diagonalise the charged lepton and neutrino mass matrices:

m̂` = U †` Y U`c
v√
2

m̂ν = UT
ν mνUν , (5)

where the “ˆ” refers to a diagonal matrix. The lepton mixing matrix is defined by U` and
Uν :

U = (U`)
†Uν . (6)

From now on we will assume that in the basis in which the charged lepton mass matrix is
diagonal, mν is exactly diagonalised by the TB mixing matrix UTB and therefore

m̂ν = DUT
TBmν UTBD , (7)

3The subsequent analysis is done for three RH neutrinos, but it can be generalised to an arbitrary
number with the conclusions being independent of it.
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where D accounts for the low-energy Majorana phases

D = diag(eiϕ1 , eiϕ2 , 1) . (8)

In general mD as well as MR (MR = MT
R ) are complex matrices which can be diagonalised

as follows
m̂D = U †LmD UR ,

M̂R = V T
R MR VR ,

(9)

with UL, UR, VR 3 × 3 unitary matrices, characterised in general by 3 rotation angles and
6 phases.

According to eq. (9) the effective neutrino mass matrix in (4) can be written as

mν = −UL m̂D (U †R VR) M̂−1
R (V T

R U
∗
R) m̂D U

T
L . (10)

The requirement of having exact TB diagonalisation can be written either in terms of
constraints over the light neutrino mass matrix entries, namely

mν12 = mν13 ,
mν22 = mν33 ,
mν11 = mν22 +mν23 −mν12 ,

(11)

or, according to eqs. (7) and (10), requiring that

m̂ν = −D (UT
TBUL) m̂D (U †R VR) M̂−1

R (V T
R U

∗
R) m̂D (UT

LUTB)D (12)

is diagonal and real. It is useful to introduce the notation of the Dirac neutrino mass
matrix in the basis in which the RH neutrino mass matrix M̂R is real and diagonal:

mR
D ≡ mDVR . (13)

2.1 General remarks on leptogenesis

As mentioned in the introduction, singlet neutrinos in flavour symmetry models typically
have masses above 1013 GeV. Thus, within these frameworks leptogenesis proceeds at
temperatures at which lepton flavour effects can be completely neglected. In the standard
thermal leptogenesis scenario singlet neutrinos Nα are produced by scattering processes
after inflation. Subsequent out-of-equilibrium decays of these heavy states generate a CP-
violating asymmetry given by [5,54]

εNα =
1

4v2π(mR †
D mR

D)αα

∑
β 6=α

Im

[(
(mR †

D mR
D)βα

)2
]
f(zβ) , (14)

where zβ = M2
β/M

2
α and the loop function can be expressed as

f(zβ) =
√
zβ

[
2− zβ
1− zβ

− (1 + zβ) log

(
1 + zβ
zβ

)]
. (15)
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Depending on the singlet neutrino mass spectrum the loop function can be further simpli-
fied. In the hierarchical limit (Mα �Mβ) this function becomes

f(zβ)→ − 3

2
√
zβ
, (16)

whereas in the case of an almost degenerate heavy neutrino spectrum (zβ = 1+δβ, δβ � 1)
it can be rewritten as

f(1 + δβ) ' − 1

δβ
. (17)

In any case, as can be seen from eq. (14), whether the CP-violating asymmetry vanishes
will be determined by the Yukawa coupling combination mR †

D mR
D.

3 CP asymmetry and exact TB mixing without any

underlying flavour symmetry

While the TB mixing pattern can be well understood as a consequence of an underlying
flavour symmetry, in principle it might be that it arises from a random set of parameters
(though quite unlikely). For completeness, in this section we consider this possibility and
study the consequences on the CP-violating asymmetry. Neutrino mixing angles are fixed
to satisfy the TB mixing pattern and in addition to the measured mass squared differences
we have a set of eight constraints on the parameter space: the TB mixing condition enforces
the relations in eq. (11), yielding six constraints (from the real and imaginary parts of the
mass matrix entries); the atmospheric and solar mass scales provide the remaining two.

To determine the effect of such constraints on εNα it is practical to use a parametrisation
of mD that ensures that the TB mixing and the correct neutrino masses are obtained. In the
basis in which the RH neutrino mass matrix is diagonal and real it is convenient to introduce
the orthogonal complex matrix R defined by the so-called Casas-Ibarra parametrisation
[55], namely

R∗ = (m̂ν)
−1/2 UT mR

D (M̂R)−1/2 . (18)

All low-energy observables are contained in the leptonic mixing matrix U and in the diag-
onal and real light neutrino mass matrix m̂ν . The matrix R turns out to be very useful
in expressing the CP-violating asymmetry parameter. Considering for simplicity the case
of hierarchical RH neutrinos (M1 � M2 � M3 - thus validating the approximation in
eq. (16)), eq. (14) can be rewritten as

εNα = −3Mα

8πv2

Im
[∑

jm
2
jR

2
jα

]
∑

jmj|Rjα|2
, (19)

where mj ≡ (m̂ν)jj. Once the RH neutrino mass spectrum and low-energy observables are
fixed, random values of mR

D correspond to random values of R. It is shown by eq. (19)
that leptogenesis is completely insensitive to low-energy lepton mixing and CP-violating
phases [46] 4 and therefore the viability of leptogenesis is not at all related with any

4This statement is in general also true in flavoured leptogenesis [47].
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Figure 1: CP-violating asymmetry as a function of the angle ω for different values of σ.
M1 is fixed to 1013 GeV and ∆m2

atm to 2.39×10−3 eV2 [8] (see the text for further details).

accidental mixing pattern considered. The CP-violating asymmetry is determined by the
values of the entries of R which are arbitrary in the absence of any flavour symmetry, and
consequently εNa 6= 0 in general and its absolute value depends upon the heavy fermionic
singlet masses, the light neutrino masses and R.

To illustrate this point we consider the case in which only N1 decays are relevant for
the generation of a lepton asymmetry. We assume normal hierarchy for the light neutrino
spectrum and a simple R = R13(ρ13) with ρ13 = ω + iσ (i.e. R is a ρ13 rotation matrix).
Under these assumptions the CP-violating asymmetry in eq. (19) becomes

εN1 = −3M1

√
∆m2

atm

2πv2

cosω sinhσ√
cosh 2σ − cos 2ω

. (20)

From figure 1 it can be seen that barring the cases ω = π/2 and/or σ = 0 the CP-violating
asymmetry does not vanish and its values are well within the range required for successful
leptogenesis, regardless of the mixing pattern.

4 Implications of flavour symmetries on the CP asym-

metry

We consider now the case in which an underlying flavour symmetry enforces an exact
mixing pattern. It will be evident throughout the proof that it holds for any mixing pattern
where the mixing matrix consists purely of numbers, but we will assume TB mixing for
definiteness.

Within the case considered the transformation properties of Li and Nα under the flavour
symmetry group (Gf ) determine the structure of mD and MR (which are no longer arbi-
trary). Indeed, these matrices can be regarded as form-diagonalisable matrices [44], i.e.
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the parameters which determine their eigenvalues are completely independent from the
parameters that define their diagonalising matrices. Accordingly, vanishing off-diagonal
elements of m̂ν in eq. (12) can arise only if

UT
TBUL = PLODi and U †R VR = O†Di PRORm , (21)

where PL,R = diag(eiα
R,L
1 , eiα

R,L
2 , eiα

R,L
3 ) whereas ODi and ORm are respectively unitary and

orthogonal matrices that arbitrarily rotate the i and m degenerate eigenvalues of mD and
MR such that if mD (MR) has no degenerate eigenvalues ODi = 1 (ORm = 1). Note that
the requirement of having canonical kinetic terms in addition to preserving the m-fold
degeneracy of the RH neutrino mass matrix enforce ORm to be real. Although ODi and
ORm do not have any effect in eq. (12) they do affect the structure of UL,R and VR and

correspondingly of mD (see eq. (9)). VR can be defined in such a way that M̂R is real, and
the phases contained in m̂D are now denoted by γi and must obey: ϕi+αRi +αLi +γi = 2kπ
and αR3 +αL3 +γ3 = 2nπ. It is easy to understand the conditions given in eq. (21) by the use
of a reductio ad absurdum. Let us consider for simplicity the case without any degeneracy
in the eigenvalues of m̂D and M̂R: ODi = 1 and ORm = 1. If the products UT

TBUL and U †RVR
are not diagonal, but simply unitary matrices with non-vanishing off-diagonal entries, then
the right-hand side of eq. (12) is in general a matrix whose entries are linear combinations
of the mass eigenvalues of m̂D and of M̂R. In order to have m̂ν diagonal, the off-diagonal
entries must vanish and this is possible only if the respective linear combinations cancel
out. However, there are no apriori reasons to have such cancellations, since it corresponds
to have well-defined relationships between the eigenvalues of m̂D and of M̂R, which is,
in other words, a fine-tuning. Avoiding this possibility, the only solution is to consider
eq. (21).

It is useful to classify the number of degenerate eigenvalues of mD and MR. There are
nine cases in total: 3 for mD (i=1, 2 or 3-fold degeneracy) and 3 for MR (m= 1, 2 or 3-fold
degeneracy). In the following we will identify each case by (i,m). The cases (3, 3), (2, 3)
and (3, 2) are not consistent with experimental data on neutrino mass splittings, so we are
left with six viable cases:

a) (1, 1): mD and MR have no degenerate eigenvalues;

b) (2, 1): mD with 2 degenerate eigenvalues;

c) (1, 2): MR with 2 degenerate eigenvalues;

d) (2, 2): mD and MR with 2 degenerate eigenvalues;

e) (3, 1): mD with 3 degenerate eigenvalues;

f) (1, 3): MR with 3 degenerate eigenvalues.

We proceed to show that all the viable cases obey a common expression. In the ba-
sis in which the RH neutrinos are diagonal we use mR

D (see eq. (13)) and write m̂D =
δi diag(v1, v2, v3), where we have schematically indicated with δi the fact that i values of

7



diag(v1, v2, v3) are equal. In other words for δi = δ3 we have diag(v1, v1, v1) and for δi = δ2

we have diag(v1, v2, v1) or one of its possible permutations. We thus have

mR
D = UTB PLODi δi diag(v1, v2, v3)O†Di PRORm . (22)

It is clear that in the subspace of the i degenerate eigenvalues the rotation ODi acts as
ODi δi diag(v1, v2, v3)O†Di → δi diag(v1, v2, v3) . Therefore we simplify the expression of mR

D:

mR
D = UTB PL δi diag(v1, v2, v3) PRORm . (23)

The next step consists in the redefinition of the vi by absorbing PL, PR. In this way the
degeneracy of the i eigenvalues is broken and we finally get

mR
D = UTB diag(v1, v2, v3)ORm

=


√

2
3
v1

v2√
3

0

− v1√
6

v2√
3
− v3√

2

− v1√
6

v2√
3

v3√
2

 ORm .
(24)

According to our formalism, the RH neutrino mass matrix is trivially given by

M̂R = δm diag(M1,M2,M3) , (25)

where δm indicates that m eigenvalues of diag(M1,M2,M3) are degenerate.
We now rewrite eq. (23) according to the following parametrisation

mR
D = UTB P v̂ ORm , (26)

with v̂ = diag(|v1|, |v2|, |v3|) and all the phases absorbed in the diagonal unitary matrix P .
In this basis and using the parametrisation given in eq. (26) for mR

D, the type I see-saw
formula of eq. (12) is written as

m̂ν = −DUT
TB (UTB P v̂ ORm )M̂−1

R (OT
Rm v̂ P U

T
TB)UTBD

= (DP eiπ/2) v̂M̂−1
R v̂ (eiπ/2 P D) = (v̂M̂

−1/2
R R†)(R∗M̂

−1/2
R v̂) , (27)

where D = P ∗ e−iπ/2 is a consequence of our definition of m̂ν in eq. (12), and where we have
introduced the arbitrary orthogonal complex matrix R in the last part of eq. (27). ORm

acts only in the subspace of the degenerate right handed neutrinos and in this subspace
we have by definition ORm O

T
Rm

= 1. From eq. (27) we have that

m̂−1/2
ν v̂ M̂

−1/2
R R† = 1 , (28)

and remembering that R†R∗ = RTR = 1 we arrive at our parametrisation for R∗

R∗ = m̂−1/2
ν v̂ M̂

−1/2
R . (29)

By comparing eq. (29) with the Casas-Ibarra parametrisation given in eq. (18) we deduce
that in the case of exact TB mixing the matrix R is real and according to eq. (19) the
CP-violating asymmetry vanishes.
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Nα

H

Li

∆

Lj

H

Figure 2: Vertex correction involving a triplet scalar ∆.

Note that so far we did not refer to any specific model realisation and we have assumed
just exact TB diagonalisation of mν within the context of type I see-saw. We not only
confirm the result in [33] (in which a model with the A4 flavour symmetry has exact TB
mixing leading to a vanishing CP-violating asymmetry), but also extend it to any possible
flavour symmetry responsible for the exact TB scheme 5 .

It is also straightforward to check by replacing UTB with the appropriate mixing matrix
that the matrix R still turns out to be real for other exact mixing schemes as long as their
mixing matrix also consists purely of numbers (e.g. the corresponding matrix for the
Bi-maximal mixing scheme). Note also that although we have only considered three RH
neutrinos our result is absolutely generalisable to models with either two RH neutrinos or
more than three such as [56].

The proof does not hold however in the presence of additional degrees of freedom, e.g.
in models involving type I and type II see-saw. Other contributions to the CP-violating
asymmetry will in general not vanish in the limit of exact TB mixing, rendering our result
invalid for situations which do not have only type I see-saw. In scenarios with type II
see-saw the details concerning the generation of the lepton asymmetry will depend upon
the hierarchies between the triplet (∆) and the lightest RH neutrino masses [57,58]. Even
in the case M∆ > MNα (Nα being the lightest RH neutrino) the CP asymmetry will receive
an extra contribution from the loop diagram shown in figure 2. This contribution will not
necessarily vanish, although it is constrained by the TB mixing pattern [60].

An important consequence of our proof is that if the TB mixing pattern is due to
any underlying flavour symmetry in a type I see-saw scenario, the viability of leptogenesis
depends upon possible departures from the exact pattern. In the context of models based
on discrete flavour symmetries that predict TB mixing at LO this is achieved through
next to LO (NLO) corrections. Since the size of the deviations from TB mixing are not
arbitrary, in principle one might expect the CP-violating asymmetry to be constrained by
low-energy observables such as θ13 and/or the CP-violating phases.

In order to see if this is the case let us consider the most generic situation, in which NLO
corrections affect m`, mD and MR. We can perform a linear expansion in the corrections
that appear at NLO. First, we note that m` is no longer diagonal and thus we have to
move to the basis in which the charged lepton mass matrix is diagonal:

U †` m`m
†
` U` =

(
m`m

†
`

)
diag

, (30)

5This result is basis independent and thus remains true even assuming a non-diagonal charged lepton
mass matrix.
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where U` = 1+U
(1)
` , with U

(1)
` the matrix of the NLO shifts. Eq. (9) is modified as follows(

1 + U
(1)†
L

)
U †L

(
mD +m

(1)
D

)
UR

(
1 + U

(1)
R

)
' m̂D + U †Lm

(1)
D UR + U

(1)†
L m̂D + m̂DU

(1)
R

≡ m̂′D = m̂D + m̂
(1)
D ,

(31)(
1 + V

(1)T
R

)
V T
R

(
MR +M

(1)
R

)
VR

(
1 + V

(1)
R

)
' M̂R + V T

RM
(1)
R VR + V

(1)T
R M̂R + M̂RV

(1)
R

= M̂ ′
R = M̂R + M̂

(1)
R .

Here the unitary matrices are parametrised as the LO terms shifted by the NLO ones. The
superscript “ (1) ” refers to the NLO corrections and “ ′ ” to the complete mass matrices up
to NLO. The corresponding shifts on the light neutrino masses due to the NLO corrections
can be estimated according to

O(m̂′ν − m̂ν) ∼ O(m̂Dm̂
(1)
D /M̂R) ∼ O(m̂2

DM̂
(1)
R /M̂2

R) . (32)

Similarly, we can parametrise the shift from the exact TB pattern in the neutrino mixing
matrix:

Uν = UTB

(
1 + U

(1)
TB

)
D , (33)

where U
(1)
TB arises by the interplay between all the corrections. When we constrain the

entries of U
(1)
TB by neutrino experimental data, we obtain constraints on U

(1)
` , U

(1)
L , U

(1)
R ,

V
(1)
R . Experimental data on neutrino mass splittings constrains m

(1)
D and M

(1)
R .

We write now eq. (24) in the new basis in which the RH neutrinos and the charged
leptons are diagonal:

mR′
D =

(
1 + U

(1)†
`

)
UL

(
1 + U

(1)
L

)(
m̂D + m̂

(1)
D

)(
1 + U

(1)†
R

)
U †RVR

(
1 + V

(1)
R

)
= mR

D + U
(1)†
` mR

D + ULU
(1)
L m̂DU

†
RVR + ULm̂

′
DU
†
RVR + ULm̂DU

(1)†
R U †RVR +mR

DV
(1)
R .
(34)

Thus after including NLO corrections the quantity relevant for leptogenesis becomes

mR′†
D mR′

D = mR†
D m

R
D +

[
mR†
D

(
U

(1)†
` mR

D + ULU
(1)
L m̂DU

†
RVR + ULm̂

′
DU
†
RVR+

+ULm̂DU
(1)†
R U †RVR +mR

DV
(1)
R

)
+ h.c.

]
.

(35)

Some comments are in order concerning this expression. The combination mR†
D m

R
D is shifted

by NLO corrections, and in general it is no longer real - leading to εNα 6= 0 and enabling vi-
able leptogenesis. The combination of NLO corrections that defines the shift is not directly
related with any low-energy observable. Consequently, while we conclude that general
model-independent NLO corrections guarantee a non-vanishing CP-violating asymmetry,
correlations among low-energy observables in the leptonic sector and εNα can not be es-
tablished unless the nature of the corrections is well known i.e. once the flavour model
realisation has been specified.
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5 Model building realisations of the different possi-

bilities

In the previous section we have presented a model-independent proof: exact TB mixing
produced by any flavour symmetry in a type I see-saw scenario corresponds to vanishing
CP-asymmetry. In this section we gather the different models studied in literature which
fall under the validity of the proof, and verify that they correspond to one of the six viable
cases of section 4. We have also present a toy model exemplifying the (2, 2) case (i.e. both
matrices have two degenerate eigenvalues) which has not been studied yet. We show that
all models lead to a vanishing CP-asymmetry and thus this analysis serves as an ample set
of examples of the validity our model-independent proof.

Before describing the flavour models proposed in the literature, it is useful to explain the
generic approach considered in flavour symmetry model building. The main goal of these
models is to explain the fermion mass hierarchies and mixing angles. To do so, an horizontal
flavour group Gf is added to the gauge group of the SM and the SM fields transform in a
non-trivial way under Gf . Extra fields (flavons) are added to the particle spectrum: the
flavons are invariant under SU(3) × SU(2) × U(1), but not under Gf ; they can acquire
a non-vanishing vacuum expectation value (VEV) which spontaneously breaks the flavour
symmetry in a well determined breaking chain. It is through the specific realisation of the
breaking chain that one can achieve the goal of explaining fermion data: for example, the
lepton mixing matrix becomes the TB structure when Gf is broken down to two distinct
and specific subgroups, G` in the charged lepton sector and Gν in the neutrino one, with
the type of these subgroups defining the flavour structure of the mass matrices for the
leptons (which is model-dependent).

In the following analysis we specify only which Gf was used, and the resulting neutrino
mass matrices. We leave all other details to the original papers.

a) (i,m) = (1,1)

There are only a few examples of this case in literature. This case is particularly attractive
within the context of a Grand Unified Theory (GUT). In some cases the models do not
have exact TB only because they account simultaneously for the quark sector [12], with
the Cabibbo angle generating LO deviations from exact leptonic TB - therefore they are
not as interesting for our current purpose, and in [59] leptogenesis within the sequential
dominance framework was considered in detail (note that there is no inconsistency with
our model-independent proof). Here we consider instead two other cases explicitly.

1. In [28] the authors present a model in the context of the SO(10) GUT with the
addition of the flavour group Gf = SU(3)× U(1). The breaking of Gf down to the
discrete non-Abelian group A4 provides the TB pattern for the lepton mixing matrix.
The neutrino mass matrices have the flavour structure:

mD ∝

 A B 0
B ωA 0
0 0 ω2A

 and MR ∝

 A′ B′ 0
B′ ωA′ 0
0 0 ω2A′

 (36)
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where ω = e
2iπ
3 . It is straightforward to show how the correct mixing pattern is

recovered by the diagonalisation of the charged lepton mass matrix and we refer to
the original paper for the details. For leptogenesis what is relevant are the imaginary
parts of the off-diagonal entries of the product mR †

D mR
D, and in this case it is a

diagonal matrix.

2. Another pattern has been presented in [34] in the context of an SO(10) GUT model
with A4 as the additional flavour group. The mass matrices have the following
structure

mD ∝

 A 0 B
0 C 0
B 0 A

 and MR ∝

 A′ 0 B′

0 C ′ 0
B′ 0 A′

 . (37)

After considering the charged leptons the TB mixing scheme is obtained. Computing
mR †
D mR

D, we find that the off-diagonal entries are real.

b) (i,m) = (2,1)

There are several papers in which the Dirac neutrino mass matrix has only two independent
mass eigenvalues: we can divide the discussion in terms of the flavour patterns used for
the mass matrices.

1. The first pattern is present in [19,24,29,33,39,41,43]. In the basis of diagonal charged
leptons, the neutrino mass matrices have the structure:

mD ∝

 1 0 0
0 0 1
0 1 0

 and MR ∝

 A′ + 2B′ −B′ −B′
−B′ 2B′ A′ −B′
−B′ A′ −B′ 2B′

 , (38)

where MR is exactly diagonalisable by the TB mixing. The product mR †
D mR

D is
proportional to the identity.
Two different discrete groups have been used: A4 in [19, 29, 33, 39, 41, 43] and T ′

in [24].

2. The other pattern has been presented in [37] where the authors have used the S4

discrete symmetry and it differs from the previous one in the explicit form of the
Majorana mass matrix:

mD ∝

 1 0 0
0 0 1
0 1 0

 and MR ∝

 2A′ B′ − A′ B′ − A′
B′ − A′ 2A′ +B′ −A′
B′ − A′ −A′ 2A′ +B′

 . (39)

This pattern corresponds to a completely different neutrino oscillation phenomenol-
ogy, but the contribution to leptogenesis is still vanishing in the limit of exact TB
mixing.
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c) (i,m) = (1,2)

There is only one pattern within this case [38]. The discrete group A4 is used to construct
a Majorana mass matrix with two degenerate eigenvalues and a Dirac mass matrix of the
TB-type.6 The mass matrices are given by:

mD ∝

 2A+B −A −A
−A 2A B − A
−A B − A 2A

 and MR ∝

 1 0 0
0 0 1
0 1 0

 . (40)

The product m†DmD is diagonalised by the TB mixing matrix and it is easy to verify
that also the light neutrino mass matrix has this property. mR †

D mR
D does not present any

imaginary off-diagonal factor.

d) (i,m) = (2,2)

There are no models of this kind in the literature. The difficulty consists in the possibility
that the degenerate eigenvalues of the Dirac and Majorana matrices conspire to give a
degenerate light neutrino spectrum. A fully developed model is beyond the scope of this
paper, but we present here an example. Although it requires some ad hoc conditions it
is sufficient to illustrate a possible setting in which both non-degenerate light neutrino
spectrum and TB mixing are achieved.

The flavour group consists of SO(3) (or a subgroup with an irreducible triplet repre-
sentation). The additional scalar content is a set of four flavon triplets, φ123, φ23, φ2 and
φ3 which get non-vanishing VEVs. At this level we fix only the VEVs of the first two
flavons in such a way that 〈φ123〉 ∝ (1, 1, 1) and 〈φ23〉 ∝ (0, 1,−1) (these VEVs must be
orthogonal). The structure is reminiscent of the models in [12].

The left and RH neutrinos transform as triplets under SO(3). We assume that any
additional symmetry allows the Dirac terms

(φ123iνi)(φ2αNα) , (φ23iνi)(φ3αNα) (41)

and the Majorana terms
NαNα , (φ3αNα)(φ3βNβ) . (42)

The term NαNα by itself would lead to degenerate masses in the Majorana matrix. The
degeneracy is lifted only for one of the states by the VEV 〈φ3〉 ∝ (0, 0, 1) (two eigenvalues
remain degenerate). Thus the RH neutrino mass matrix has structure:

MR ∝

 1 0 0
0 1 0
0 0 x

 , (43)

where x parametrises that the entry receives contribution due to 〈φ3〉. In the Dirac sector
one of the eigenvalues is zero. For a non-trivial choice of parameters we end up with exactly

6We underline the absence of a relevant contribution to the Dirac mass matrix, the antisymmetric
contraction of the two triplets in a singlet [30]. In order to recover the TB pattern it is possible to either
assume a fine-tuning on the parameters or alternatively to adapt the model to use another discrete group
such as S4, in which case this problem is naturally solved by its properties.
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two non-zero degenerate eigenstates. With 〈φ2〉 ∝ (0, 1, 0) and through the type I see-saw,
the term (φ123iνi)(φ2αNα) will give rise to the solar eigenstate and the term (φ23iνi)(φ3αNα)
will give rise to the atmospheric eigenstate. In this case the Dirac mass matrix is:

mD ∝

 0 t 0
0 t b
0 t −b

 , (44)

where t and b parametrise the contributions of (φ123ν)(φ2N) and (φ23ν)(φ3N) respectively.
The effective neutrino mass matrix is diagonalised by TB mixing, as this model fits within
the framework described in [12]. There is sufficient freedom to fit the squared mass dif-
ferences (as required by phenomenology), although only strongly hierarchical cases are
possible due to the vanishing eigenvalue of mD. The Dirac matrix has two degenerate
masses by requiring 3t2 = 2b2 (completely ad hoc, as it requires the conspiracy of the
VEVs of the flavons - we can express it as a very specific requirement on the magnitude of
〈φ2〉). It is straightforward to see that mR †

D mR
D is a diagonal matrix, leading to vanishing

leptogenesis.

e) (i,m) = (3,1)

This case is the most studied in literature and there are some interesting flavour patterns.

1. The first pattern has been presented in [16, 23, 26, 32] and the flavour group which
has been used is A4. The mass matrices appear as

mD ∝ 1 and MR ∝

 A 0 0
0 A B
0 B A

 . (45)

The charged leptons need to be rotated in diagonal form, and the main result is that
the lepton mixing matrix is exactly the TB scheme.

2. The second pattern [17,20,22] is similar to the previous one and it still originates in
an A4 context. The mass matrices are the following:

mD ∝ 1 and MR ∝

 A 0 B
0 A 0
B 0 A

 . (46)

In the basis of diagonal charged leptons, we obtain the TB pattern for the lepton
mixing matrix.

3. The third pattern [18] is also similar to the first one. Once again it is based on the
A4 discrete symmetry. The mass matrices are given by

mD ∝ 1 and MR ∝

 C 0 0
0 A B
0 B A

 . (47)

Like in the previous cases, when going to the basis of diagonal charged leptons it is
easy to see that the lepton mixing matrix is the TB pattern.
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For all three patterns, it is trivial to see that mR †
D mR

D is proportional to the identity
matrix.

f) (i,m) = (1,3)

This case has been studied in two distinct patterns.

1. In [25, 30] a flavour model based on the A4 group has been provided. The model is
extremely similar to the previous case, of [16, 23, 26, 32], where the structures of the
Dirac and the Majorana mass matrices are exchanged:

mD ∝

 A 0 0
0 A B
0 B A

 and MR ∝ 1 . (48)

In the basis of diagonal charged leptons the light neutrino mass matrix is diagonalised
by the TB scheme and the product m†DmD is real.

2. The second pattern has been presented in [40] and it is similar to that of [17, 20,
22], discussed in the previous case, exchanging the structure of the Dirac and the
Majorana mass matrices:

mD ∝

 A 0 B
0 A 0
B 0 A

 and MR ∝ 1 . (49)

This result has been developed in the context of the A4 flavour symmetry 7. The
authors themselves have concluded that mD does not give rise to leptogenesis.

To conclude, each pattern in each case agrees with our model-independent result. Exact
flavour symmetry imposed TB in type I see-saw leads to vanishing CP-asymmetry (the off-
diagonal entries of mR †

D mR
D are either trivially zero or real).

6 Model dependent perturbations

We concluded section 4 with the observation that by assuming general perturbations to the
TB matrix obtained with an underlying flavour symmetry there are no correlations between
low and high-energy scale CP violation parameters. This result was derived from eq. (34)
where it can be seen that the number of free parameters governing the perturbations is quite
large and thus no correlation can be expected. In the context of specific flavour models it
is possible that the TB scheme is perturbed by a small number of corrections, and in this
interesting case correlations between low-energy scale observables and the CP-violating
asymmetry may be established.

In this section we consider a supersymmetric model based on the Gf = A4 × Z3 × Z4

discrete flavour symmetry [39], which for our purposes is attractive due to its elegance

7We underline the presence of the same difficulty previously discussed in (1, 2) about [38], which can
be naturally solved by using S4 instead.
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and predictivity. The relevant NLO corrections appear only in the Dirac mass and can be
parametrised in terms of only 3 complex parameters. Neutrino masses are induced only
through type I see-saw so the results from section 4 hold - in fact we have considered it
explicitly in section 5, as one of the models with the first pattern of class (2, 1).

The three factors in Gf play different roles. The spontaneous breaking of A4 is directly
responsible for the TB mixing. The Z3 × Z4 factor avoids large mixing effects between
the flavons that give masses to the charged leptons and those giving masses to neutrinos,
and it is also responsible for the hierarchy among charged fermion masses. The flavour
symmetry breaking sector of the model includes the scalar superfields ϕT , ξ′, ϕS, ξ and
ζ. The transformation properties of the lepton superfields L, ec, µc, τ c, of the electroweak
scalar doublets Hu and Hd and of the flavon superfields are reproduced in table 1 for ease
of reference.

L ec µc τ c N c Hu Hd ϕT ξ′ ϕS ξ ζ

A4 3 1 1 1 3 1 1 3 1′ 3 1 1

Z3 1 1 1 1 ω 1 1 1 1 ω ω ω2

Z4 1 −i −1 1 1 1 −i i i 1 1 1

Table 1: Matter and scalar content of the model and their transformation properties under
Gf [39].

We present the Yukawa superpotential of the model as an expansions in 1/Λ, where Λ
is the cut-off of the theory: the LO terms are given by

W` =
1

Λ
yτ (LϕT ) τ cHd+

+
1

Λ2
y

(1)
µ (LϕT )′′ ξ′µcHd +

1

Λ2
y

(2)
µ (LϕTϕT )µcHd+

+
1

Λ3
y

(1)
e (LϕT )′ (ξ′)2 ecHd +

1

Λ3
y

(2)
e (LϕTϕT )′′ ξ′ecHd+

+
1

Λ3
y

(3)
e (LϕTϕTϕT ) ecHd ,

(50)

Wν = − 1

Λ
y (LN c) ζHu + xa (N cN c) ξ + xb (N cN cϕS) , (51)

where (. . .), (. . .)′ and (. . .)′′ stand for the contraction in the representations 1, 1′ and 1′′

of A4, respectively.
The flavon superfields acquire the following VEVs:

〈ϕT 〉 =

 0
vT
0

 , 〈ξ′〉 = u′ , 〈ϕS〉 =

 vS
vS
vS

 , 〈ξ〉 = u , 〈ζ〉 = w , (52)
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where vT , u′, vS, u and w are the small symmetry breaking parameters of the theory. This
pattern of VEVs guarantees that the lepton mixing is approximately TB. It is possible
to align these VEVs in a natural way, as the result of the minimisation of the scalar
potential [39]: we underline that the symmetry content prevents any deviations from this
pattern at NLO and allows the order of magnitude relations between parameters vT ∼ u′

and vS ∼ u ∼ w, assuming at most a mild hierarchy among the two sets.
The charged lepton mass matrix can be approximately written as

m` =

 ∼ v3T
Λ3 0 0

0 ∼ v2T
Λ2 0

0 0 ∼ vT
Λ

 vd . (53)

where vd =
〈
Hd
〉
. A lower bound on the parameters vT/Λ can be fixed by the requirement

that the τ Yukawa coupling yτ does not become too large, and we can estimate it as

vT
Λ

=
tan β

yτ

√
2mτ

v
≈ 0.01

tan β

yτ
(54)

where v ≈ 246 GeV and tan β = 〈Hu〉 /
〈
Hd
〉
. Taking mτ = (1776.84 ± 0.17) MeV and

requesting |yτ | < 3, we find a lower limit on vT/Λ of 0.007 for tan β = 2, the smallest value
we consider.

The neutrino mass matrix gets contributions from the type I see-saw according to
eq. (4). We have:

mD =

 1 0 0
0 0 1
0 1 0

 y w vu

Λ
, MR =

 b+ 2d −d −d
−d 2d b− d
−d b− d 2d

u , (55)

with vu = 〈Hu〉, b ≡ 2xa and d ≡ 2xbvS/u. The mass matrices MR and mD are µ-τ
symmetric and satisfy the conditions in eq. (11). Accordingly, MR and mν are diagonalised
by the TB mixing matrix, giving as eigenvalues M1 = |b+ 3d|, M2 = |b|, M3 = |b− 3d| and
mi = (y w vu)2/(Λ2Mi). We already mentioned in section 5 that the same mass matrices
are present in [16, 19, 21, 24]. The phenomenology has already been studied in [37], so we
summarise here the main results and refer to [37] for the details. The model can explain
both Normal and Inverse Hierarchy (NH and IH) and features lower bounds on the mass of
the lightest neutrino: in particular for the NH the lightest neutrino mass has a well defined
and narrow range of values between 4.4 meV and 7.3 meV.

In order to estimate the parameter εNα , we write the Dirac mass matrix in the basis of
diagonal and real RH neutrinos:

mR
D = mDUTBD

′ , (56)

where D′ = diag(eiφ1/2, eiφ2/2, eiφ3/2) and φα are the phases of b+ 3d, b, b− 3d respectively
(the eigenvalues of MR). As was mentioned in section 5 the product mR†

D m
R
D is a diagonal

matrix and therefore εNα = 0, in perfect agreement with our model-independent proof in
section 4.
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A non-vanishing CP-violating asymmetry can be obtained at NLO when the TB mixing
is perturbed. In this model the additional discrete Abelian symmetries Z3×Z4 only admit
NLO corrections to the Dirac terms. We do not consider terms whose contributions can
be reabsorbed in a redefinition of the LO parameters, focusing only on terms that lead to
deviations in the mixing angles:

−WNLO
ν =

1

Λ
y1 (LN c)′ (ϕSϕS)′′Hu +

1

Λ
y2 (LN c)′′ (ϕSϕS)′Hu +

1

Λ
y3 ((LN c)A ϕS) ξHu ,

(57)
where (. . .)A refers to the asymmetric contraction of the triplet representation. The devi-
ations to mD can be written as

m
(1)
D =

 0 y1 + y3 y2 − y3

y1 − y3 y2 y3

y2 + y3 −y3 y1

 vu
v2
S

Λ2
, (58)

where y3 accounts for the ratio u/vS. Note that this correction is of Tri-maximal type
[50, 51]. As the LO starts out as TB, and TB is also a (special) case of Tri-maximal, the
perturbed model fits within that mixing scheme. It is important to clarify that the gen-
eral Tri-maximal scheme is explicitly out of the validity of the model-independent proof
presented in section 4 - while particular cases of Tri-maximal have mixing matrices inde-
pendent of the masses (obviously this is the case for TB), in general it is possible to a
Tri-maximal case where mixing angles depend on the masses. The perturbed model con-
sidered here is one such case, and as we will see it can admit viable leptogenesis. Including
eq. (58), the TB mixing receives small perturbations according to Uν = UTBδU , where only
the element (δU)13 is relevant. Parametrising this term as:

(δU)13 =

√
3

2
sin θ13e

iδ ∼ O
(vS

Λ

)
, (59)

where δ is the CP-violating Dirac phase in the standard parametrisation of the lepton
mixing matrix, we write the other two mixing angles at NLO as

sin2 θ23 =
1

2
(1 +

√
2 cos δ sin θ13) sin2 θ12 =

1

3
(1 + sin2 θ13) . (60)

In figure 3, we plot eqs. (60) in red (with δ = 0) and plot the results of a numerical
analysis in green and blue points corresponding to the IH and NH neutrino spectrum
respectively (in which we take vS/Λ ∼ w/Λ = 0.007÷ 0.23, tan β = 2÷ 50 and we treat y,
y1, y2 and y3 as random numbers with modulus between 0.1 and 2).

We expect that NNLO corrections affect these relations: we estimate that NNLO per-
turbations will be of the order of sin2 θ13 and therefore sin2 θ12 will receive non-negligible
corrections.

We can impose an upper bound on vS/Λ by requiring that the correction to the TB
value of sin2 θ12 does not take it outside the experimental 3σ range: the maximal allowed
deviation from the TB value is 0.05 and from there we impose the bound vS/Λ < O(0.23).

We consider now mR′
D (the NLO Dirac neutrino mass matrix in the basis of diagonal

and real RH neutrinos). We can write:

mR′
D = mR

D +m
(1)
D UTBD

′ , (61)

18



Figure 3: Correlation between sin2 θ13 and sin2 θ23 (left panel) and sin2 θ12 (right panel).
Each panel compares the analytical approximations given in eqs. (60) (red lines) with
the numerical results. The green and blue points correspond to the IH and NH neutrino
spectrum respectively. For the analytical expressions of sin θ2

23 we have fixed the CP-Dirac
phase δ at 0. In the numerical analysis the ratio vS/Λ ∼ w/Λ has been taken in the window
bounded from the constraints arising by yτ and sin2 θ12, that is 0.007 < vS/Λ < 0.23. The
value of tan β spreads between 2 and 50, while all the other free parameters, y, y1, y2 and
y3, are treated as random numbers with absolute value between 0.1 and 2. The horizontal
dashed orange lines corresponds to the bounds at 1 and 2 σ level, respectively, for sin2 θ13,
the vertical dashed black line corresponds to the central values of sin2 θ23 and sin2 θ12 while
the vertical dashed orange lines to their bounds at 1 and 2 σ level, respectively. The plots
are cut in correspondence of the 3 σ level bound for sin2 θ13, sin

2 θ23, sin
2 θ12.

and calculate the relevant product for leptogenesis, mR′†
D mR′

D , keeping only the first terms
in the expansion in the small parameter v2

S/Λ
2:

mR′†
D mR′

D = mR†
D m

R
D +

(
D∗UT

TBm
(1)†
D mR

D + h.c.
)
, (62)

where in the second term the only off-diagonal entries are the 13 and 31 ones. In the case
of IH spectrum for the light neutrinos, the lightest RH neutrino is N2: in this case the
summation in the numerator of eq. (14) does not contain the term 13 and therefore εN2

is vanishing also at NLO. This, however, does not mean leptogenesis can not be realized
in this case. Since there is only a mild hierarchy between N2, N1 and N3 and neither εN1

nor εN3 vanishes, leptogenesis will proceed through N1,3 dynamics. In the NH case the
RH neutrino mass spectrum follows the hierarchy MN3 < MN2 < MN1 . There is a mild
hierarchy between N3 and N2 while the hierarchy between N3 and N1 is large (around a
factor 9). Consequently, the lepton asymmetry generated in N1 decays will be, in general,
erased by the lepton number violating interactions of N3. Only N3 dynamics becomes
relevant for the generation of a lepton asymmetry in this case. Note that if the hierarchy
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between N1 and N3 decreases (as could be in the case of a quasi-degenerate spectrum), so
it becomes mild, N1 dynamics should be taken into account. Henceforth, for simplicity, we
will consider only the NH case for which, according to eq. (14), the CP-violating parameter
εN3 can be written as

εN3 =
1

8π

1

v2
u

(
mR †
D mR

D

)
11

Im

[((
mR †
D mR

D

)
13

)2
]
f

(
M2

1

M3
3

)
. (63)

In the following figures we show a series of scatter plots related to the predictions
of the model and the connections among low-energy observables and εN3 . The (blue)
points correspond only to the NH neutrino spectrum (in which we take vS/Λ ∼ w/Λ =
0.007÷0.23, tan β = 2÷50 and we treat y, y1, y2 and y3 as random numbers with modulus
between 0.1 and 2). Red lines correspond to analytical results.

In figure 4 we show all the correlations between the CP asymmetry parameter εN3

and the lepton mixing angles (expressed as sin2 θ13, sin2 θ23 and sin2 θ12). As expected by
comparing eq. (63) with eq. (60), εN3 is correlated to all low-energy mixing angles.

The same information is contained in figure 5 where we show the deviations of θ13, θ12, θ23

from the respective TB value for the points that reach the necessary amount of CP asym-
metry. The deviations are compared to the reference value λ2

C ∼ 0.05, where λC is the
Cabibbo angle. This comparison is particularly interesting because λ2

C is the typical order
of magnitude of the corrections to the TB mixing allowed by neutrino data fit in models
based on flavour symmetries and predicting TB mixing (in particular, this is a natural
consequence in classes of flavour models that include GUTs [12]). Our numerical analy-
sis shows indeed that the order of magnitude of |∆θ23|, |∆θ13| is close to λ2

C while |∆θ12|
tends to be smaller. We note that only a few points reach the necessary amount of CP
asymmetry εN3 when the deviations of the mixing angles from their TB values are smaller
than λ2

C . By comparing the left and right panel of figure 5 we can get the lower bound
for sin2 θ13 necessary to have successful leptogenesis in this model, that is sin2 θ13 ∼ 10−2.
Future experiments will further constrain (and possibly rule out leptogenesis within this
model). Double Chooz will probe sin2(2θ13) to 10−2 in the next five years and Triple Chooz
will reach below that value [61].

Finally figure 6 wants to investigate the possible correlations between the high-energy
CP asymmetry parameter εN3 and the low-energy CP-Dirac and Majorana phases. The
left panel of figure 6 shows that the low energy CP-Dirac phase δ (δ in the plot) is not
correlated to εN3 . This result is not surprisingly: the phases that enter in εN3 are related
to the phases present in MR, while δ arises by the phases that appear in what we defined
as m

(1)
D in eq. (61). On the contrary the right panel of figure 6 indicates that the difference

between the Majorana phases φ1 and φ2 (∆φ12 in the plot) presents a correlation with εN3 .
The reason is very simple: at LO the phenomenological analysis of this model shows that
the NH spectrum can be reproduced only if ∆φ0

12 is small. Moreover at LO, ∆φ0
12 coincides

with the corresponding Majorana phase difference ∆φR12 of the right handed neutrinos. By
perturbing the neutrino Dirac mass matrix we introduce new arbitrary phases that can
vary in all the interval (0, 2π). However the NLO contributions are responsible both of
deviating the lepton mixing angles by the TB values and slightly modifying the neutrino
spectrum, in the range allowed by the data fit. This means that in general at NLO the
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Figure 4: Correlation between εN3 and sin2 θ13 (first row, left panel), sin2 θ23 (first row,
right panel), sin2 θ12 (second row). The horizontal orange line corresponds to εN3 ∼ 10−6,
the vertical orange lines correspond to the bounds at 1 and 2 σ level of sin2 θ13, sin2 θ23 and
sin2 θ12 respectively while the vertical dashed black lines correspond to the central values
of sin2 θ23 and sin2 θ12. The range presented in the plots covers the 3 σ level bounds.

neutrino (complex) mass eigenvalues are given by

mi ∼ m0
i + δmi , (64)

where δmi are complex parameters and m0
i the neutrino mass eigenvalues at LO. Requiring

now that ∆m2
12 is still in the range indicated for ∆m2

sol we have that δm ∼ |δm1,2| ∼ 10−3

eV for |m0
1|, |m0

2| ∼ O(
√

∆m2
sol). A straight computation shows then that the Majorana
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Figure 5: Correlation between the deviation of θ23 (left panel) and θ12 (right panel) with
θ13 from their TB mixing values for the points that satisfy εN3 ≥ 10−6. The red lines
represent the analytical results from eqs. (60). The vertical and horizontal orange lines
corresponds to |∆θ13|, |∆θ23|, |∆θ12| ∼ λ2

C with λC the Cabibbo angle.

Figure 6: The high energy CP violation asymmetry parameter εN3 versus the low energy
lepton CP-Dirac phase δ and the difference of the light neutrino Majorana phases φ1 and
φ2. In both plots the horizontal orange line corresponds to εN3 ∼ 10−6.

phase ∆φ12 satisfies

tan ∆φ12 ∼ tan ∆φ0
12 + α

δm

O(
√

∆m2
sol)

, (65)
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where ∆φ0
12 is the LO Majorana phase difference and α ∈ (0, 1) a parameter that takes into

account that the δm1,2 phases run into the interval (0, 2π). We can estimate the maximal
deviation of ∆φ12 by its LO value getting

∆φ12 −∆φ0
12 ∼

π

10
. (66)

Notice that the left panel of fig. 6 shows that the majority of all the points are indeed
inside the interval (−π/8, π/8) in perfect agreement with our analytical results for a small
LO ∆φ0

12 ≤ 0.1.
In summary our analysis shows that in the model considered it is possible to obtain

correlations between low-energy observables and the high-energy CP-violating parameter,
but it confirms that in general no correlation is present between high and low-energy CP-
violating parameters (or in the case of the Majorana phases, negligible correlation).

7 Conclusion

In this paper we considered under rather general conditions the possibility of links between
low-energy observables and high-energy parameters that are relevant for leptogenesis - in
the most general case no such connections can be recovered.

When assuming exact TB mixing independently of any specific justification, we con-
clude that it is in general possible to obtain leptogenesis. Constraining the situation to
the case of type I see-saw is insufficient to provide a link between the different type of
parameters.

In the main part of this work, we considered the more natural case where exact mixing
patterns originate from any flavour symmetry. We confirmed that the results of [33] con-
cerning TB mixing apply to the case of unflavoured leptogenesis when there is only type I
see-saw. We generalised this conclusion into a model-independent proof that is also valid
for other flavour symmetry imposed mixing schemes if the mixing matrix consists purely
of numbers - this includes Bi-maximal mixing, golden-ratio mixing, and some but not all
cases of Tri-maximal mixing. We emphasise that the proof does not hold when there are
also other types of see-saw (such as type II): in models in which there is interplay between
different see-saws, it is possible to have leptogenesis without lifting the exact (TB) pattern.
These interesting cases shall be considered in detail in future work [60]. Still in the model-
independent framework with only type I see-saw, we considered the most general NLO
corrections that can lift TB mixing and how these corrections can enable leptogenesis.

From the model-independent proof we proceeded by considering several flavour sym-
metry models with exact TB mixing and only type I see-saw. As expected, in all cases the
specific conditions led to vanishing CP asymmetry.

Finally we studied a specific example in which a flavour symmetry model has deviations
from exact TB, which can then enable leptogenesis. In a general case there would be many
parameters governing the deviation from TB mixing and thus an interesting link between
observable mixing angles and leptogenesis may not even exist. We selected an example
where the deviation is parametrised such that it is possible to obtain relatively simple ana-
lytical expressions relating the observable deviations from TB angles to the CP asymmetry.
There is a clear and strong correlation between deviations from TB angles (such as the
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non-vanishing value of θ13) and the value of the CP asymmetry parameter: particularly
we note that if we insist in having viable leptogenesis in this model we can considerably
constrain the allowed parameter space of the NH spectrum. Future experiments will probe
the remaining parameter space.

To summarise, in order to have TB mixing scheme originating from a flavour symmetry
and still have viable leptogenesis the model requires NLO corrections lifting the exact
mixing, or alternatively it requires independent contributions to the CP asymmetries such
as those that naturally arise from an interplay between different see-saws.
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Note added in proof

While completing this paper we received refs. [62, 63], where the interplay of flavour sym-
metries and leptogenesis in the context of type I see-saw is also discussed. Both papers
consider specific models based on the discrete group A4. Furthermore, ref. [62] discusses a
general model-independent approach which complements the distinct model-independent
proof we provide here.
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