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MEMS 

• MEMS 

– MicroElectroMechanical systems 

– Application in a wide variety of fields 

 

 

• Automobile industry 

 

 

• Aeronautics 

 

 

• Medecine 

 

 

• Telecom 

 

• … 

 

Common denominator: microscopic scale. 
 How does it affect the material properties ?  
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The problem 

• A macroscopic property of a MEMS can exhibit a scatter 

– Due to the fabrication process 

– Due to uncertainties of the material  

– … 

  

    The objective of this work is to estimate this scatter 

 

• Characteristic of the model: 

– Clamped microbeam 

– Macroscopic property of interest: first mode eigenfrequency 

• For a MEMS gyroscope for example 

 

• In our model, the uncertainties come from the material: 

– Polysilicon is anisotropic 

 

– Polysilicon is polycrystalline 

• Considering each grain to compute the macro quantity is too heavy 

  3-scale procedure 

 

Each grain has a random 

orientation 
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A Silicon crystal 

• What is the Young’s Modulus of Silicon ?
[1]

 

      Based on Hall, with 𝑥, 𝑦, 𝑧 aligned with 100 , [010] and [001], we have: 

 

 

 

 

• Maximum value of 𝐸 in <111> direction: 188 𝐺𝑃𝑎 

 

 

 

 

 

 

 

 

 

 
[1] “What is the Young’s Modulus of Silicon”, M.A. Hopcroft, W.D. Nix, T.W. Kenny, Journal of microelectromechanical systems, april 2010, p.229-238 

𝑬𝒙 [GPa] 𝒗𝒚𝒛 𝑮𝒚𝒛[GPa] 𝒄𝟏𝟏[GPa] 𝒄𝟏𝟐[GPa] 𝒄𝟒𝟒[GPa] 

130 0,28 79,6 165,6 63,9 79,5 
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A 3-scale procedure 

Grain-scale or micro-scale Meso-scale Macro-scale 

 Samples of the 

microstructure (volume 

elements) are generated 

 

 Each grain has a random 

orientation 

 Intermediate scale 

 

 The distribution of the 

material property ℙ(𝐶) 
is defined 

 Uncertainty 

quantification of the 

macro-scale quantity 

 

 E.g. the first mode 

frequency ℙ 𝑓1  

FE size 

Mean value of 𝐸  

FE size 

Variance of 𝐸   

1st mode 

frequency 

Probability 

Stochastic 

Homogenization 

 

 

      SFEM 
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RVE & SVE 

• Representative Volume Element (RVE)  

– 1 elasticity tensor : 𝐶𝑒𝑓𝑓 

 

• Statistical Volume Element (SVE) 

– A range of elasticity tensor 

• Depends on boundary conditions 

 

– Kinematic Uniform BC (KUBC) 

 

– Periodic BC (PBC) 

 

– Mixed BC (MBC) 

 

– Static Uniform BC (SUBC) 

    

Note : 𝐴 > 𝐵 𝑖𝑓𝑓 𝐴 − 𝐵 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 − 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 (𝐿𝑜𝑒𝑤𝑛𝑒𝑟 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔)  
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Different boundary conditions 
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SVE of different sizes 

Different SVE sizes are considered 
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Elasticity tensor computation 

• When no access to the finite element stiffness matrix 𝑲: 

𝑪𝐵𝐶 = arg min
𝑪𝐿𝑜𝑤𝑒𝑟<𝑪<𝑪𝑈𝑝𝑝𝑒𝑟

< 𝝈 >𝐵𝐶 −𝑪 < 𝝐 >𝐵𝐶  

– The bounds can be : 

» Voight & Reuss bounds 

» KUBC & SUBC 

» In Between (Huet partition theorem [1]) 
 

– E.g., this can happen with concrete experimental samples (see [2]) 

• When access to the finite element stiffness matrix 𝑲: 

– The elasticity tensor can be directly computed from the stiffness matrix 

– This is computational homogenization [5]   

– 𝐾∗ being a rewritten version of 𝐾 depending on the boundary condition: 

Each are used in [3] and [4] 

[2]  “Application of variational concepts to size effects in elastic heterogenous bodies”, Huet C.,J.Mech.Phys.Solids, 1990 

[3]  “A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures ”, Guilleminot  J., Noshadravan A.,          

--------Soize C., Ghanem R.G.,  Elsevier, 2011 
[4]  “Validation of a probabilistic model for mesoscale elasticity tensor of random polycrystals”, Noshadravan A., Ghanem R., Guilleminot J., Atodaria I, ----- ---

____International journal for uncertainty quantification, 2011 
[5]  “Computational homogenization: implementation and extension”, Kouznetsova V., Eindhoven University of Technology, 2010 

ℂ𝐵𝐶 =
1

𝑉0
  𝑿 𝑖 𝑲 𝑖𝑗

∗ 𝑿 𝑗
𝑗𝑖
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From micro to meso: results 

 

 

 The coefficient of variation is defined as : 

𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100 

 The bigger the SVE, the lower the COV 

 

 The bounds do not depend  

      on the SVE size 

 

 However   The bigger the SVE, the less 

likely ℂ is close to them 
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From micro to meso: results 

 

 𝐸𝑥
𝑢 = 𝑀𝑎𝑥 𝐸𝑥

𝐾𝑈𝐵𝐶  

𝐸𝑥
𝑙 = 𝑀𝑖𝑛 𝐸𝑥

𝑆𝑈𝐵𝐶  

1D case 

Matrix case [3,4] 

𝑪𝑙 = arg min
𝑪∈𝑪𝑎𝑑
𝑙
 𝑪𝑆𝑈𝐵𝐶 𝜃𝑘 − 𝑪 𝐹

𝑁𝑠

𝑘=1

 

𝑪𝑎𝑑
𝑢 = {𝑪 ∈ 𝕄𝑛

+(ℝ)|𝑪𝑆𝑈𝐵𝐶 𝜃𝑘 < 𝑪, 𝑘 = 1,… ,𝑁𝑠} 

 

𝑪𝑎𝑑
𝑙 = {𝑪 ∈ 𝕄𝑛

+(ℝ)|𝑪 < 𝑪𝑆𝑈𝐵𝐶 𝜃𝑘 , 𝑘 = 1,… ,𝑁𝑠} 

𝑪𝑢 = arg min
𝑪∈𝑪𝑎𝑑
𝑢
 𝑪−𝑪𝐾𝑈𝐵𝐶 𝜃𝑘 𝐹

𝑁𝑠

𝑘=1

 

 

[3] “A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures ”, Guilleminot  J., Noshadravan A., Soize 

------C., Ghanem R.G.,  Elsevier, 2011 

[4]  “Validation of a probabilistic model for mesoscale elasticity tensor of random polycrystals”, Noshadravan A., Ghanem R., Guilleminot J.,  Atodaria I, -----------

------International journal for uncertainty quantification, 2011 
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• If a Monte-Carlo procedure is applied with FEM over a microbeam: 

– No distribution and no generator: 

• For each macro realization 

– At each Gauss points:  

» a SVE should be computed 

– With distribution and generator: 

• Define a distribution encompassing  

     the microstructure statistical behaviour 

• At each Gauss point: 

– Use the generator 

 

 

 

The problem 
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 1D case of 𝐸𝑥: Beta-based distribution of 4 parameters 

 

The problem 

𝑃 𝐸𝑥 =
1

𝛽 𝛼, 𝛽

𝐸𝑥 − 𝐸𝑥
𝑙

𝐸𝑥
𝑢 − 𝐸𝑥

𝑙

𝛼−1
𝐸𝑥
𝑢 − 𝐸𝑥

𝐸𝑥
𝑢 − 𝐸𝑥

𝑙

𝛽−1
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• Maximize the information entropy 

 

– Under constraints encompassing the available information 

• Samples of ℂ 

• Bounds ℂ𝑢 and ℂ𝑙  

 

– No change of variable 

• Matrix-variate Kummer-beta distribution [6] 

 

– Using the 𝑁 space [3,4]           𝑁 =
1

𝐶−𝐶𝑙
−
1

𝐶𝑢−𝐶𝑙
 

• Non-linear change of variable 

• Matrix-variate Gamma distribution [7] 

 

– Using the 𝑁′ space             𝑁′ = 𝐶 − 𝐶𝑙 

• Linear change of variable 

• Matrix-variate Gamma distribution 

• Loose the bound information 

 

 

 

 

 

Extension to matrix case 

max
ℂ
− 𝑝 ℂ
𝑀𝑛
+ ℝ

ln 𝑝 ℂ 𝑑ℂ 

[6] “A bounded random matrix approach for stochastic upscaling”, S. Das and R. Ghanem, Society for industrial and appl. Math., 2009, 

[7] “Random matrix theory for modeling uncertainties in computational mechanics”, Soize C.,Comp. meth. In Appl. Mech. And Engrg., 2004   
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Conclusions & Perspectives 

• From samples of grain orientations, elasticity tensors can be generated at meso-

scale. 

 

• How can we propagate the uncertainties up to the macroscopic scale? 
• Relevant SVE size 

• Correlation 

• … 

 

 

 

 

 

 

 

 

• Upgrades can take various forms: 

– 3D meso to macro part 

– Perturbation or Spectral Finite Element 

– Periodic boundary condition for the microstructure 

– … 
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Thank you for your attention !  


