, gﬁg?neering C M 3

Computational & Multiscale

Mechanics of Materials
www.ltas-cm3.ulg.ac.be

Probabilistic model for MEMS micro-

beam resonance frequency

Lucas Vincent

Wu Ling

Arnst Maarten
Golinval Jean-Claude
Paquay Stéphane
Noels Ludovic

EHT = 1.00 kV Signal A = SE2 13 Aug 2012
Mag = 150.32 KX WD = 32MM  sperure size=z000ym 16:12:00

3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14)
in the context of the ERA-NET MNT framework.

CM3 December 2013 APCOM/ISCM



CM3

Content

Introduction

Definition of the problem
— A 3-scale procedure
— First results

From the microstructure towards the elasticity tensor
— RVE & SVE
— Samples of the microstructure
— First results

Conclusions & Perspectives

December 2013 APCOM/ISCM



MEMS

« MEMS
— MicroElectroMechanical systems
— Application in a wide variety of fields

/

« Automobile industry
e Aeronautics
« Medecine

e Telecom

Common denominator: microscopic scale.
» How does it affect the material properties ?

CM3 December 2013 APCOM/ISCM



The problem

« A macroscopic property of a MEMS can exhibit a scatter
— Due to the fabrication process
— Due to uncertainties of the material

—2> The objective of this work is to estimate this scatter =

* Characteristic of the model:
— Clamped microbeam

— Macroscopic property of interest: first mode eigenfrequency
* For a MEMS gyroscope for example

 In our model, the uncertainties come from the material:

— Polysilicon is anisotropic _
Each grain has a random

e . orientation
— Polysilicon is polycrystalline

« Considering each grain to compute the macro quantity is too heavy

I—) 3-scale procedure

CM3 December 2013 APCOM/ISCM 4



A Silicon crystal

« What is the Young’s Modulus of Silicon ? 1]
Based on Hall, with x, y, z aligned with [100], [010] and [001], we have:

e  Maximum value of E in <111> direction: 188 GPa
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[1] “What is the Young’s Modulus of Silicon”, M.A. Hopcroft, W.D. Nix, T.W. Kenny, Journal of microelectromechanical systems, april 2010, p.229-238
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A 3-scale procedure

» Samples of the
microstructure (volume

elements) are generated

» Each grain has a random

> Intermediate scale

» The distribution of the
material property P(C)
Is defined

» Uncertainty
guantification of the
macro-scale quantity

» E.g. the first mode

orientation frequency P(f;)
A Mean value of E
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J.'*' ’\ A
* X Variance of E
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RVE & SVE

 Representative Volume Element (RVE)

— 1 elasticity tensor : c¢//

« Statistical Volume Element (SVE)

— A range of elasticity tensor

» Depends on boundary conditions
— Kinematic Uniform BC (KUBC)
— Periodic BC (PBC)
— Mixed BC (MBC)

— Static Uniform BC (SUBC)

Note : A > Biff A — B is positive — definite (Loewner ordering)

CM3 December 2013 APCOM/ISCM 7 oyl



Different boundary conditions

Apparent

properties

Effective

property

Microstructural cell size
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SVE of different sizes

Different SVE sizes are considered

g

W
o

v
Al o
N
Pl Q

i

]
ug

Université
de Liége

APCOM/ISCM

December 2013

CM3



Elasticity tensor computation

* When no access to the finite element stiffness matrix K:

Cpc = argmin  |[< 0>, —C < € >p(||
cLower -c<cUpper

— The bounds can be :

» Voight & Reuss bounds
» KUBC & SUBC Each are used in [3]and [4]
» |In Between (Huet partition theorem [1))

— E.qg., this can happen with concrete experimental samples (see [2)

* When access to the finite element stiffness matrix K:

— The elasticity tensor can be directly computed from the stiffness matrix
— This is computational homogenization [s]
- K™ being a rewritten version of K depending on the boundary condition:

1 *
Coc =1~ E E XoKapXao
0 -
J

i

[2] “Application of variational concepts to size effects in elastic heterogenous bodies”, Huet C.,J.Mech.Phys.Solids, 1990
[3] “A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures ”, Guilleminot J., Noshadravan A.,
Soize C., Ghanem R.G., Elsevier, 2011
[4] “validation of a probabilistic model for mesoscale elasticity tensor of random polycrystals”, Noshadravan A., Ghanem R., Guilleminot J., Atodaria I,
International journal for uncertainty quantification, 2011 . ) ) )
[5] “Computational homogenization: implementation and extension”, Kouznetsova V., Eindhoven University of Technology, 2010
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From micro to meso: results

— Mean MBC
— Pdf2 Gr » The bounds do not depend
190 Pdf 6 Gr on the SVE size
sl Pdf 11 Gr
Ej;lls g: > Howeve_r —> The bigger the SVE, the less
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From micro to meso: results

/ — Mean MBC

KUBC 190 Pdf 2 Gr

E =M ax ( E ) Pdf 6 Gr
Pdf 11 Gr
Pdf 15 Gr
pdf 19 Gr

- Bounds for Si

)

1D case

150

Young modulus [GPa]

1401 |
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€, = arg min > [IC7VP(0,) ~ Cll»
Ce Cadk 1
C', = {C e M;;(R)|C < CYBC(6,),k =1,...,Ns}

Matrix case [3,4] <

C,= = arg | mln ZHC CKUBC ()| -

K CL, ={Ce M+(R)|CSUBC(0 Y<Ck=1,.. N}

[3] “A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures ”
C., Ghanem R.G., Elsevier, 2011

[4] “validation of a probabilistic model for mesoscale elasticity tensor of random polycrystals”, Noshadravan A., Ghanem R., Guilleminot J., Atodaria |
International journal for uncertainty quantification, 2011

]
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The problem

» |If a Monte-Carlo procedure is applied with FEM over a microbeam:

— No distribution and no generator:

LY

<_

. . - - FEM
» For each macro realization S f
— At each Gauss points: N ]
F3 o
» a SVE should be computed -
: Next macro sample
— With distribution and generator:
» Define a distribution encompassing
the microstructure statistical behaviour
« At each Gauss point:
AR
— Use the generator I ” FEM
|
VA >ﬁ Distribution
hd -
Fy '
i
: / Next macro sample
]
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» 1D case of E,.. Beta-based distribution of 4 parameters

CM3

The problem

E —El a—1
PED) =50 B)[ ] [ ]

Univariate beta distributions

0.12

0.10

= S
= =)
=3 @

Probability density function
S
=

— 2 grains
— 6 grains
—— 11 grains
— 15 grains

19 grains

0.02
0.0055 130 140 150 160 170 180 190
Young modulus [GPa]
December 2013 APCOM/ISCM 14



Extension to matrix case

« Maximize the information entropy —> max—j p([C] ln(p([(C])) dC
S VAL(:Y

— Under constraints encompassing the available information
« Samples of C
« Bounds C, and C,

— No change of variable
« Matrix-variate Kummer-beta distribution [6]

— Usingthe N space 34] =» N =————
C—-C; Cu—C

* Non-linear change of variable
» Matrix-variate Gamma distribution [7]

— Using the N’ space 2> N =C-—(
« Linear change of variable
* Matrix-variate Gamma distribution
* Loose the bound information

[6] “A bounded random matrix approach for stochastic upscaling”, S. Das and R. Ghanem, Society for industrial and appl. Math., 2009,
[7] “Random matrix theory for modeling uncertainties in computational mechanics”, Soize C.,Comp. meth. In Appl. Mech. And Engrg., 2004
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Conclusions & Perspectives

« From samples of grain orientations, elasticity tensors can be generated at meso-

scale.

« How can we propagate the uncertainties up to the macroscopic scale?

 Relevant SVE size

« Correlation o5 From micro to macro: COV of the resonance frequency

o

._.
&

=

—_

COV of the first mode frequency

[

0

— 2 Element
— 4 Element
— 6 Element

00

» Upgrades can take various forms:
— 3D meso to macro part
— Perturbation or Spectral Finite Element
— Periodic boundary condition for the microstructure
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Thank you for your attention !
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