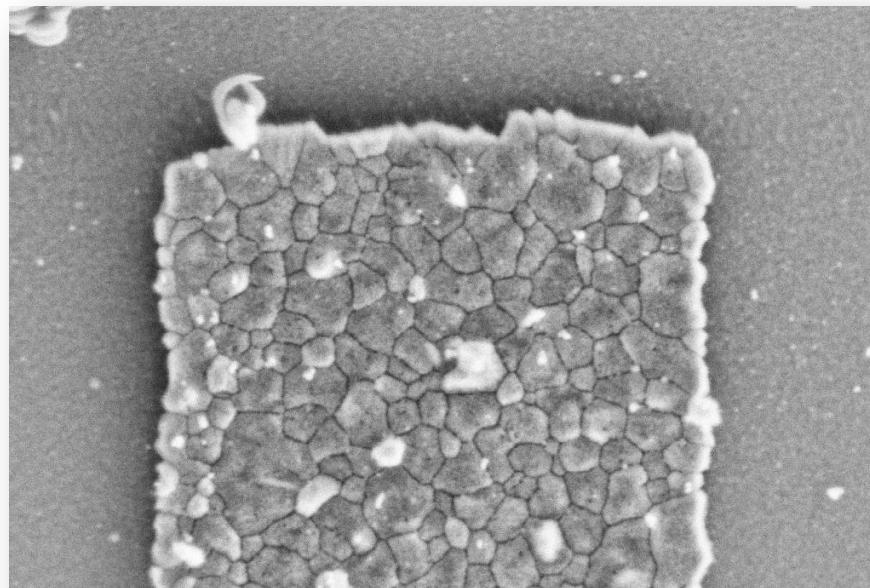


Probabilistic model for MEMS micro-beam resonance frequency



*Lucas Vincent
Wu Ling
Arnst Maarten
Golinval Jean-Claude
Paquay Stéphane
Noels Ludovic*

3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework.

- Introduction
- Definition of the problem
 - A 3-scale procedure
 - First results
- From the microstructure towards the elasticity tensor
 - RVE & SVE
 - Samples of the microstructure
 - First results
- Conclusions & Perspectives

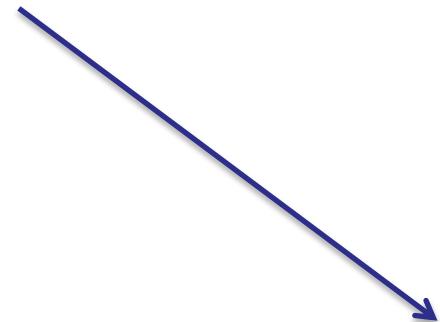
- **MEMS**

- MicroElectroMechanical systems
- Application in a wide variety of fields

- Automobile industry

- Aeronautics

- Medecine



- Telecom

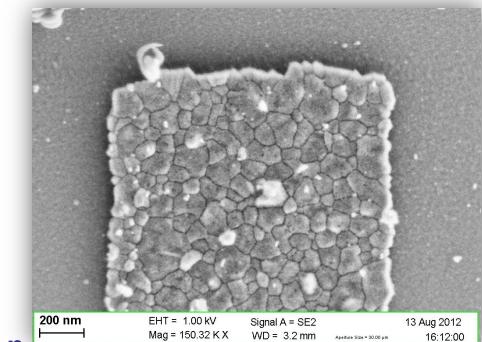
- ...

Common denominator: microscopic scale.

- How does it affect the material properties ?

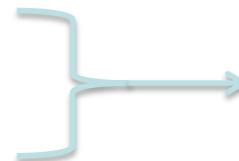
The problem

- A macroscopic property of a MEMS can exhibit a scatter
 - Due to the fabrication process
 - Due to uncertainties of the material
 - ...



→ The objective of this work is to estimate this scatter

- Characteristic of the model:
 - Clamped microbeam
 - Macroscopic property of interest: first mode eigenfrequency
 - For a MEMS gyroscope for example
- In our model, the uncertainties come from the material:
 - Polysilicon is anisotropic
 - Polysilicon is polycrystalline
- Considering each grain to compute the macro quantity is too heavy



Each grain has a random orientation

3-scale procedure

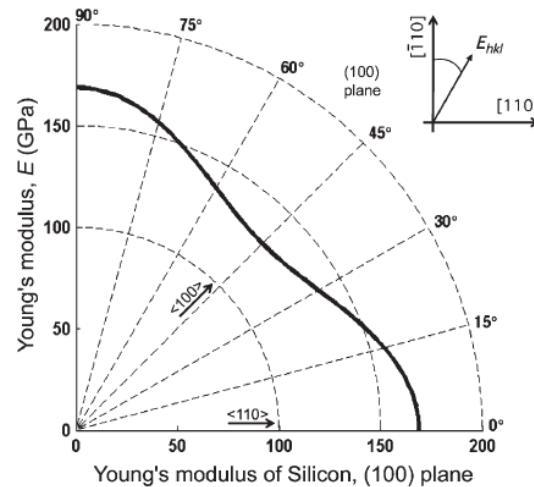
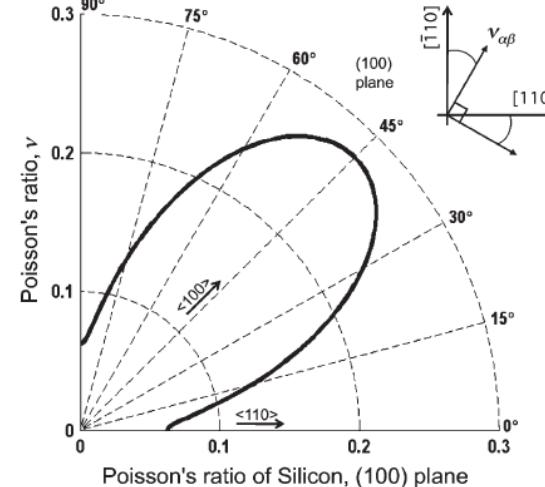
A Silicon crystal

- What is the Young's Modulus of Silicon ? ^[1]

Based on Hall, with x, y, z aligned with [100], [010] and [001], we have:

E_x [GPa]	ν_{yz}	G_{yz} [GPa]	c_{11} [GPa]	c_{12} [GPa]	c_{44} [GPa]
130	0,28	79,6	165,6	63,9	79,5

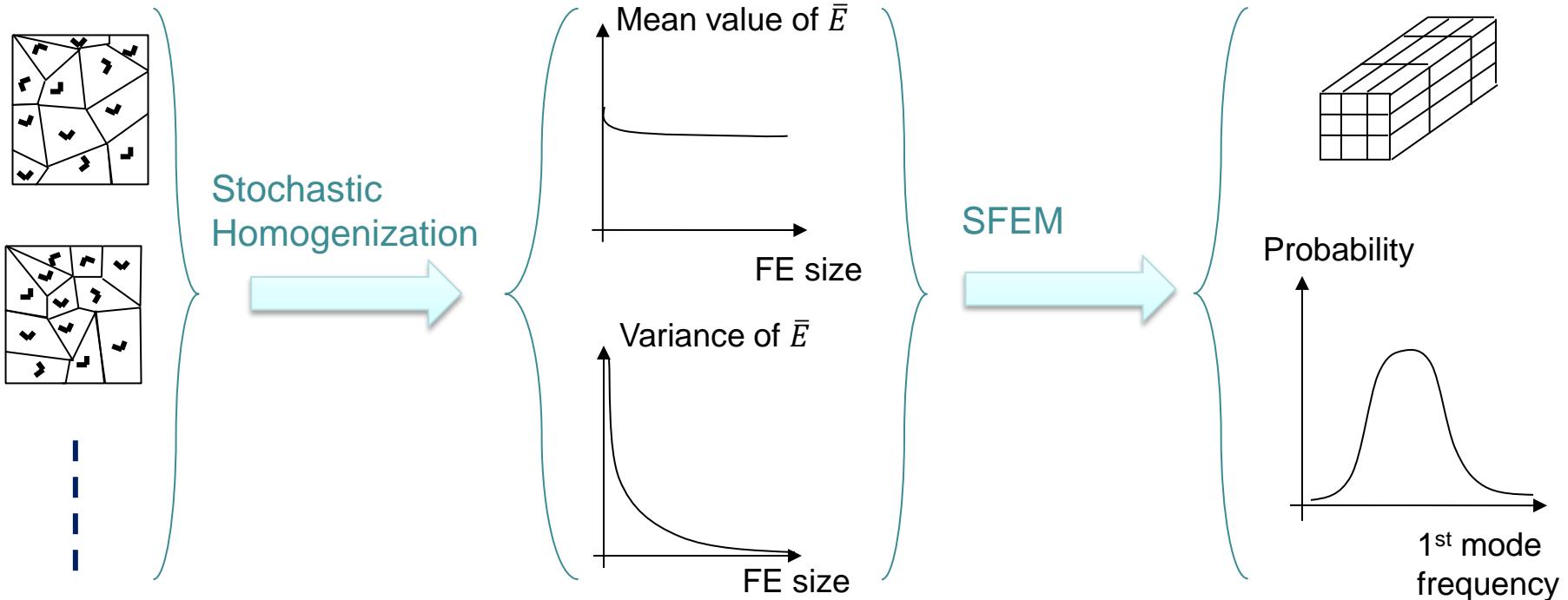
- Maximum value of E in $\langle 111 \rangle$ direction: 188 GPa



[1] "What is the Young's Modulus of Silicon", M.A. Hopcroft, W.D. Nix, T.W. Kenny, Journal of microelectromechanical systems, april 2010, p.229-238

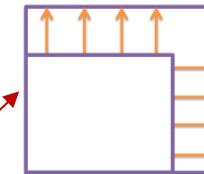
A 3-scale procedure

Grain-scale or micro-scale	Meso-scale	Macro-scale
<ul style="list-style-type: none"> ➢ Samples of the microstructure (volume elements) are generated ➢ Each grain has a random orientation 	<ul style="list-style-type: none"> ➢ Intermediate scale ➢ The distribution of the material property $\mathbb{P}(C)$ is defined 	<ul style="list-style-type: none"> ➢ Uncertainty quantification of the macro-scale quantity ➢ E.g. the first mode frequency $\mathbb{P}(f_1)$



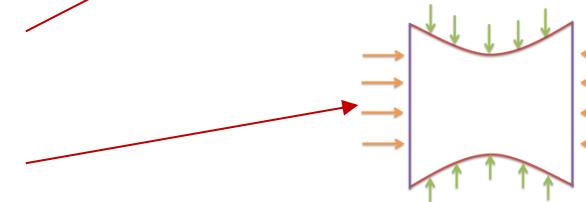
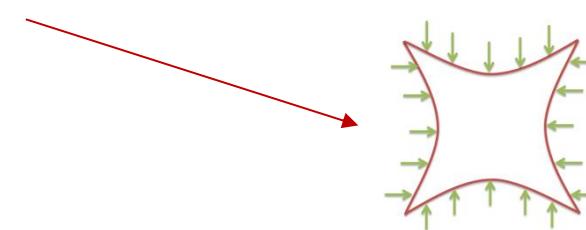
- **Representative Volume Element (RVE)**

- 1 elasticity tensor : C^{eff}



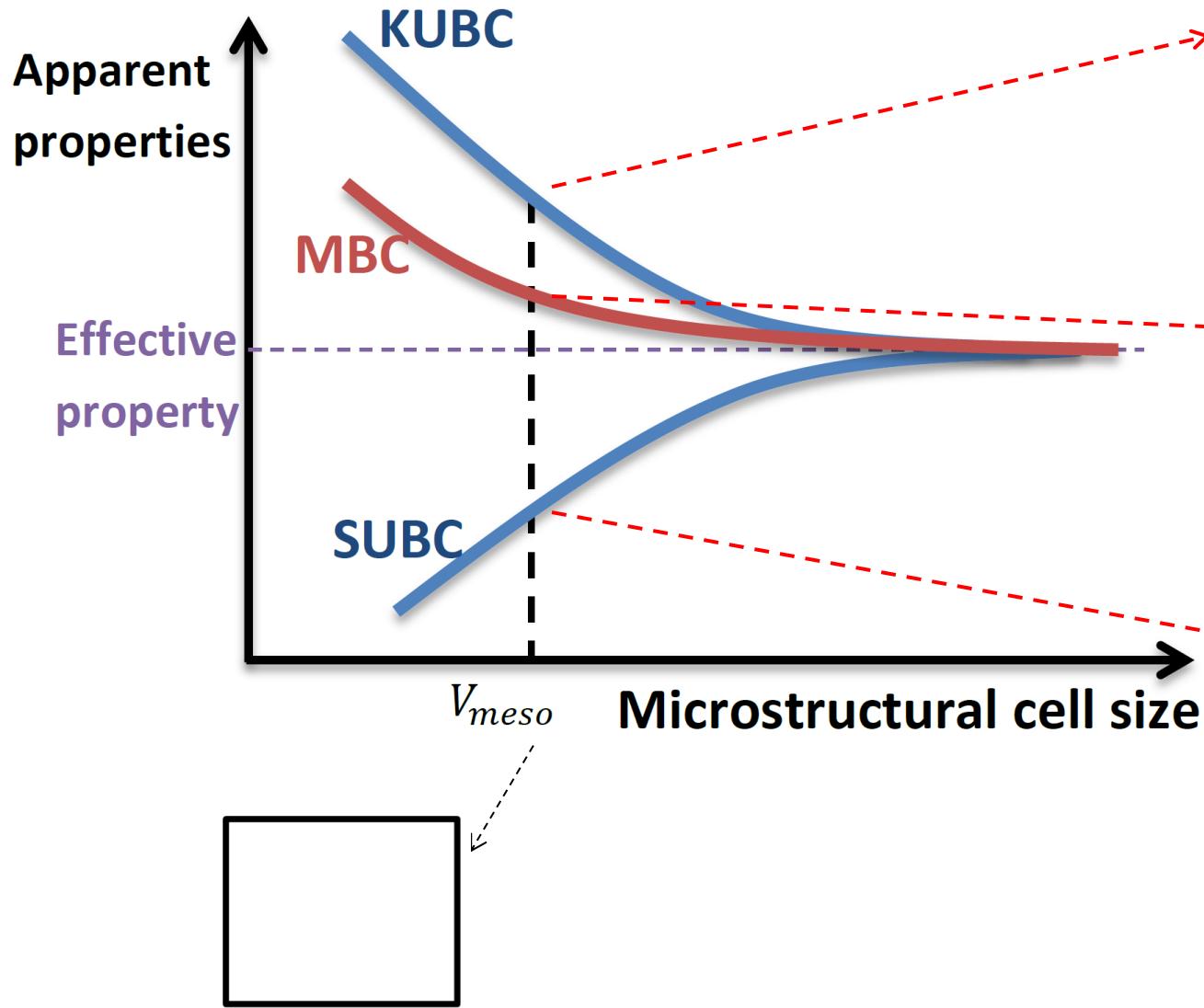
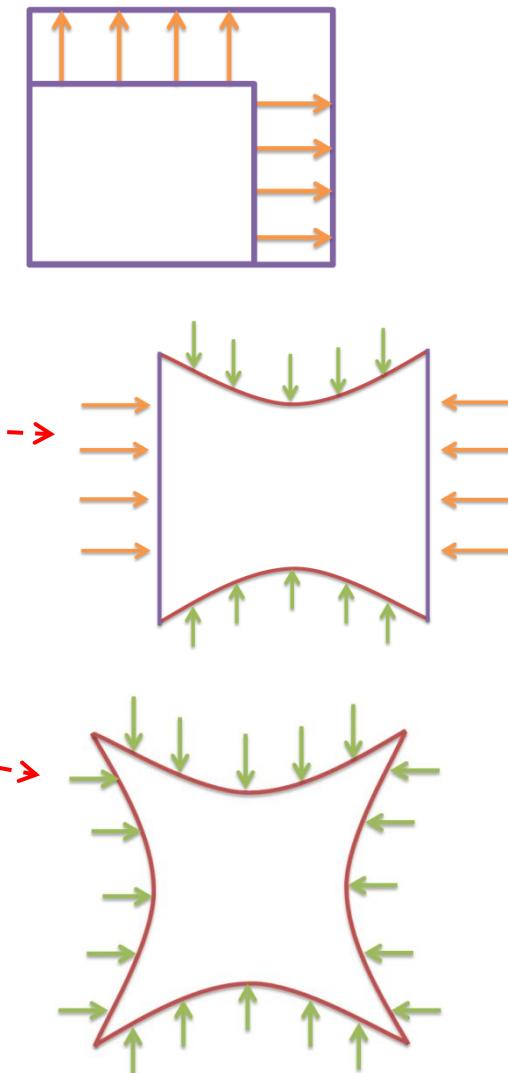
- **Statistical Volume Element (SVE)**

- A range of elasticity tensor
 - Depends on boundary conditions
 - Kinematic Uniform BC (KUBC)
 - Periodic BC (PBC)
 - Mixed BC (MBC)
 - Static Uniform BC (SUBC)

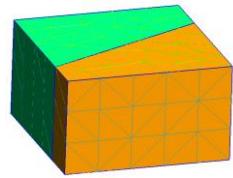
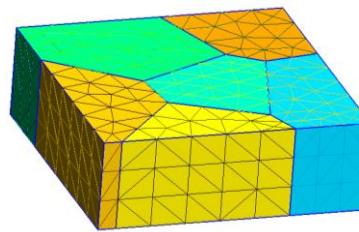
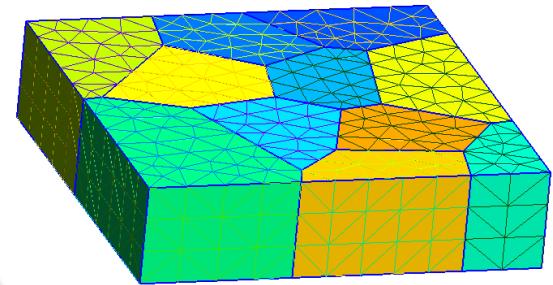


Note : $A > B$ iff $A - B$ is positive – definite (Loewner ordering)

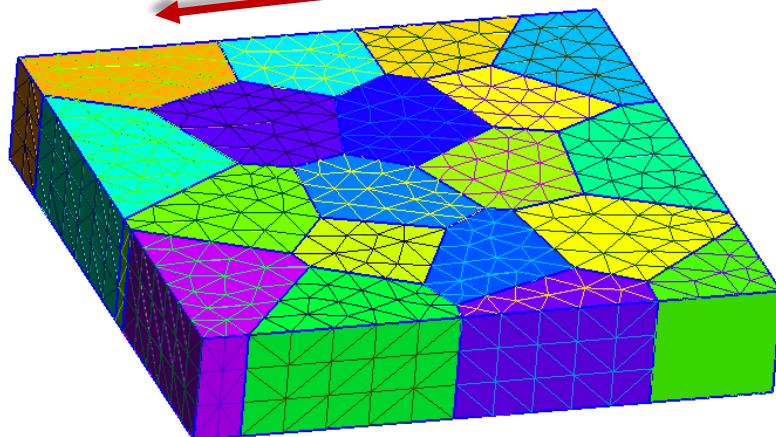
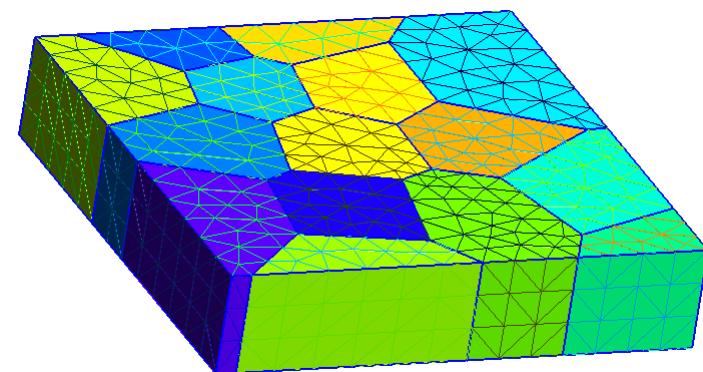
Different boundary conditions



SVE of different sizes



Different SVE sizes are considered



Elasticity tensor computation

- When no access to the finite element stiffness matrix K :

$$\mathcal{C}_{BC} = \arg \min_{\mathcal{C}^{Lower} < \mathcal{C} < \mathcal{C}^{Upper}} \|\langle \sigma \rangle_{BC} - \mathcal{C} \langle \epsilon \rangle_{BC} \|$$

- The bounds can be :

- » Voight & Reuss bounds
- » KUBC & SUBC
- » In Between (Huet partition theorem [1])

Each are used in [3] and [4]

- E.g., this can happen with concrete experimental samples (see [2])

- When access to the finite element stiffness matrix K :

- The elasticity tensor can be directly computed from the stiffness matrix
- This is computational homogenization [5]
- K^* being a rewritten version of K depending on the boundary condition:

$$\mathbb{C}_{BC} = \frac{1}{V_0} \sum_i \sum_j \mathbf{X}_{(i)} \mathbf{K}_{(ij)}^* \mathbf{X}_{(j)}$$

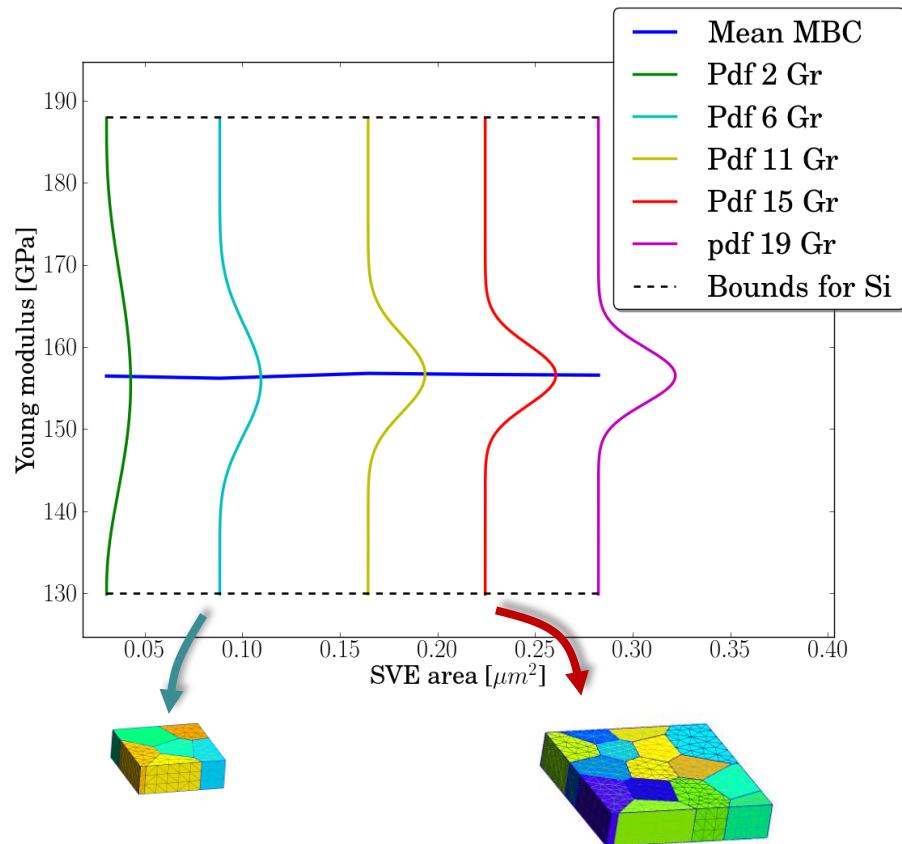
[2] "Application of variational concepts to size effects in elastic heterogenous bodies", Huet C., J.Mech.Phys.Solids, 1990

[3] "A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures", Guilleminot J., Noshadravan A., Soize C., Ghanem R.G., Elsevier, 2011

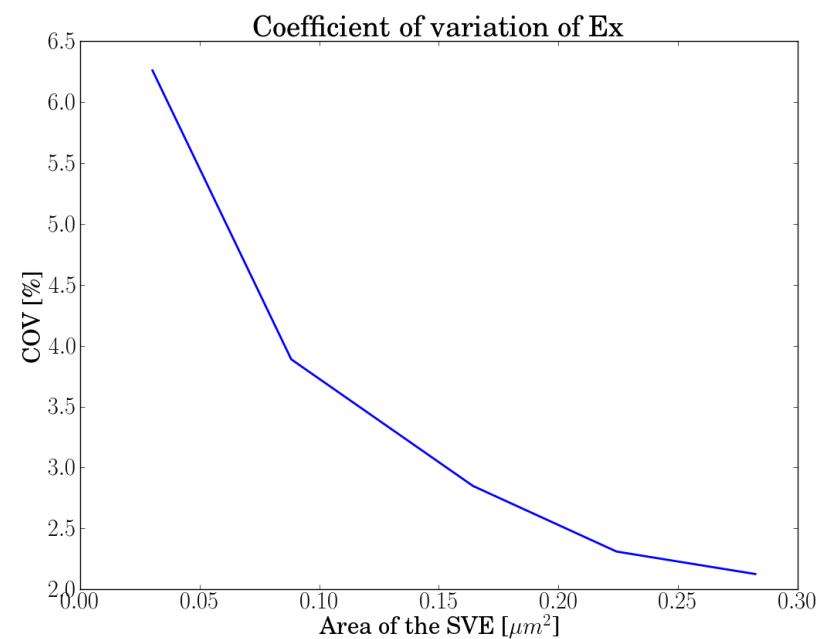
[4] "Validation of a probabilistic model for mesoscale elasticity tensor of random polycrystals", Noshadravan A., Ghanem R., Guilleminot J., Atodaria I., International journal for uncertainty quantification, 2011

[5] "Computational homogenization: implementation and extension", Kouznetsova V., Eindhoven University of Technology, 2010

From micro to meso: results



- The bounds do not depend on the SVE size
- However → The bigger the SVE, the less likely \mathbb{C} is close to them



- The coefficient of variation is defined as :

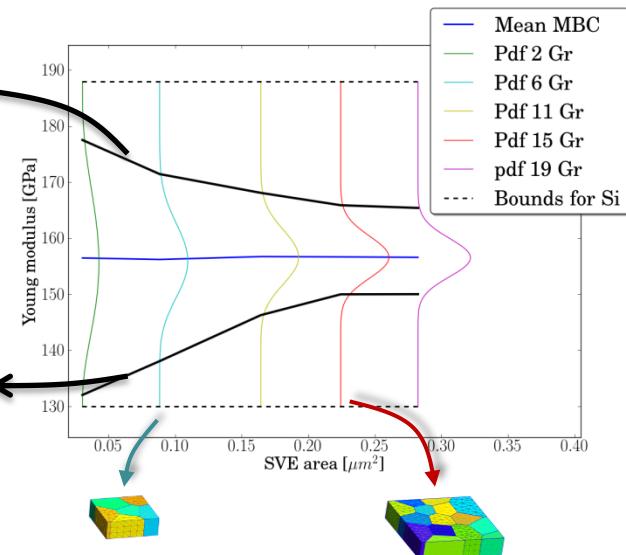
$$COV = \frac{\sqrt{Variance}}{mean} \cdot 100$$

- The bigger the SVE, the lower the COV

From micro to meso: results

1D case

$$E_x^u = \text{Max}(E_x^{KUBC})$$



$$E_x^l = \text{Min}(E_x^{SUBC})$$

Matrix case [3,4]

$$\mathcal{C}_l = \arg \min_{\mathcal{C} \in \mathcal{C}_{ad}^l} \sum_{k=1}^{N_s} \|\mathcal{C}^{SUBC}(\theta_k) - \mathcal{C}\|_F$$

$$\mathcal{C}_{ad}^l = \{\mathcal{C} \in \mathbb{M}_n^+(\mathbb{R}) | \mathcal{C} < \mathcal{C}^{SUBC}(\theta_k), k = 1, \dots, N_s\}$$

$$\mathcal{C}_u = \arg \min_{\mathcal{C} \in \mathcal{C}_{ad}^u} \sum_{k=1}^{N_s} \|\mathcal{C} - \mathcal{C}^{KUBC}(\theta_k)\|_F$$

$$\mathcal{C}_{ad}^u = \{\mathcal{C} \in \mathbb{M}_n^+(\mathbb{R}) | \mathcal{C}^{SUBC}(\theta_k) < \mathcal{C}, k = 1, \dots, N_s\}$$

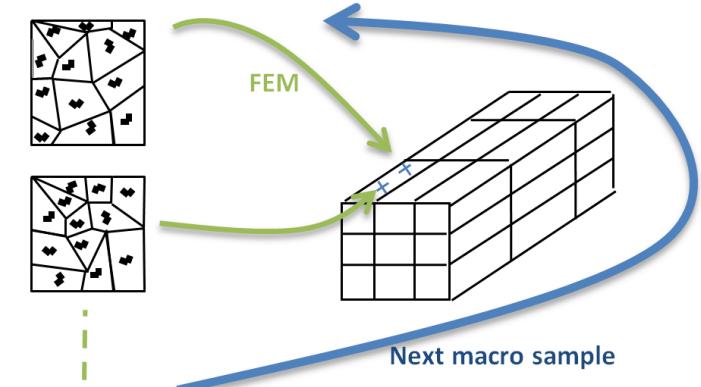
- [3] "A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures", Guilleminot J., Noshadravan A., Soize C., Ghanem R.G., Elsevier, 2011
- [4] "Validation of a probabilistic model for mesoscale elasticity tensor of random polycrystals", Noshadravan A., Ghanem R., Guilleminot J., Atodaria I, International journal for uncertainty quantification, 2011

The problem

- If a Monte-Carlo procedure is applied with FEM over a microbeam:

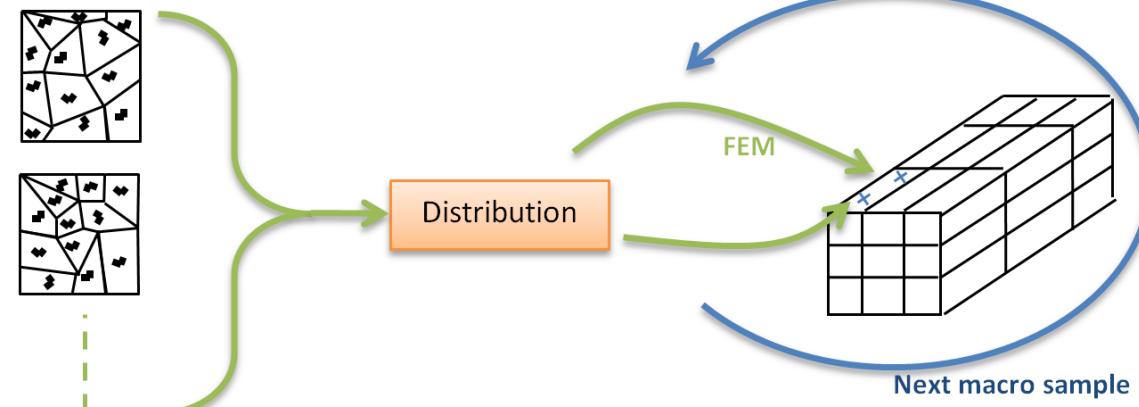
- No distribution and no generator:

- For each macro realization
 - At each Gauss points:
 - » a SVE should be computed



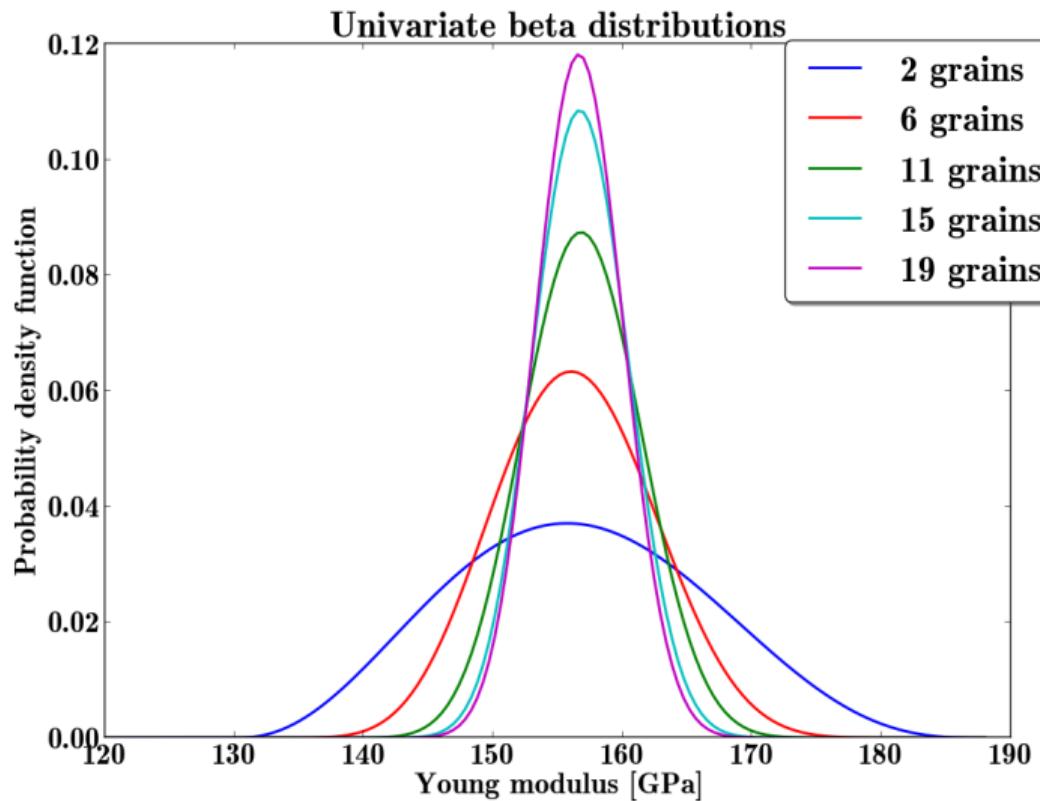
- With distribution and generator:

- Define a distribution encompassing the microstructure statistical behaviour
 - At each Gauss point:
 - Use the generator



➤ 1D case of E_x : Beta-based distribution of 4 parameters

$$P(E_x) = \frac{1}{\beta(\alpha, \beta)} \left[\frac{E_x - E_x^l}{E_x^u - E_x^l} \right]^{\alpha-1} \left[\frac{E_x^u - E_x}{E_x^u - E_x^l} \right]^{\beta-1}$$



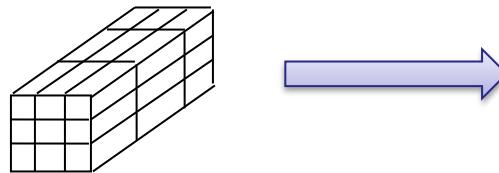
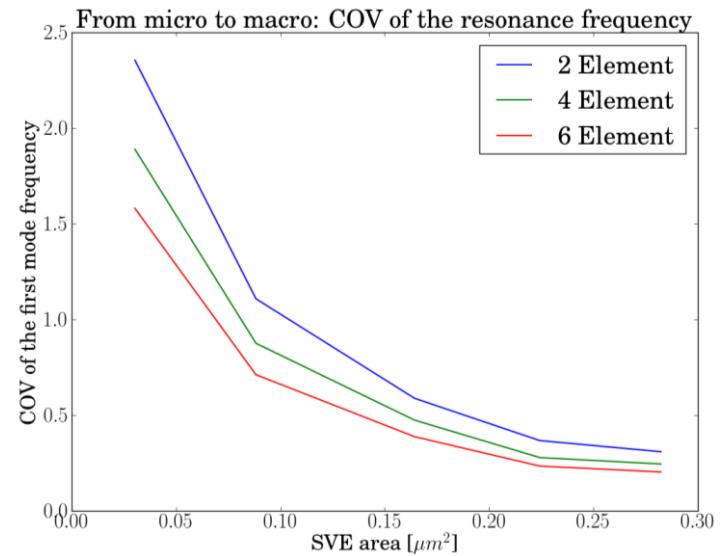
Extension to matrix case

- Maximize the information entropy $\rightarrow \max_{\mathbb{C}} - \int_{M_n^+(\mathbb{R})} p([\mathbb{C}]) \ln(p([\mathbb{C}])) d\mathbb{C}$
 - Under constraints encompassing the available information
 - Samples of \mathbb{C}
 - Bounds \mathbb{C}_u and \mathbb{C}_l
 - No change of variable
 - Matrix-variate Kummer-beta distribution [6]
 - Using the N space [3,4] $\rightarrow N = \frac{1}{c - c_l} - \frac{1}{c_u - c_l}$
 - Non-linear change of variable
 - Matrix-variate Gamma distribution [7]
 - Using the N' space $\rightarrow N' = C - C_l$
 - Linear change of variable
 - Matrix-variate Gamma distribution
 - Loose the bound information

[6] "A bounded random matrix approach for stochastic upscaling", S. Das and R. Ghanem, Society for industrial and appl. Math., 2009,

[7] "Random matrix theory for modeling uncertainties in computational mechanics", Soize C., Comp. meth. In Appl. Mech. And Engrg., 2004

- From samples of grain orientations, elasticity tensors can be generated at meso-scale.
- How can we propagate the uncertainties up to the macroscopic scale?
 - Relevant SVE size
 - Correlation
 - ...



- Upgrades can take various forms:
 - 3D meso to macro part
 - Perturbation or Spectral Finite Element
 - Periodic boundary condition for the microstructure
 - ...

Thank you for your attention !