Spray retention assessment combining high-speed shadow imagery and fluorescence techniques

Mathieu Massinon, Hassina Boukhalfa and Frédéric Lebeau
m.massinon@ulg.ac.be
Spray retention

• Retention is mainly associated with droplet primary adhesion, while bouncing and splashing are seen as detrimental.

• Impact outcomes depend on leaf surface and spray mixture properties.
Leaf surface

• A **difficult-to-wet** leaf is simultaneously characterised by:

 – its **hydrophobic surface**: waxes render the surface hydrophobic
 – its **micro-topography** reducing the contact area available for droplets: veininess, hairiness: enhance the water repellency of the hydrophobic leaf surface

• Lotus effect: the water droplet static **contact angle** can exceed 150° = **superhydrophobicity**
Spray mixture

- On superhydrophobic species, **surfactants** are often used to enhance spray formulation performances by affecting the physicochemical properties of droplets, i.e. surface tension.

- Surfactants are known to modify the **wetting behaviour** of the droplets on the leaf surface by increasing the spreading.

- Dynamic surface tension = variation over time of liquid surface tension.
Wetting models

The **Cassie-Baxter** regime (non-homogeneous wetting)

Extreme water repellency

The **Wenzel** regime (homogeneous wetting) = pinning
Possible impact outcomes

Transition from Cassie-Baxter to Wenzel wetting regime is possible because of high impact pressure and low DST
Objectives

• The aims of the study are dual

 – Propose a **methodology** for characterising spray impact on leaves relying on the simultaneous observation of droplet impacts by high speed imaging and fluorescent tracer analysis of deposits

 – **Quantify** the amount remaining on a leaf after primary impact of droplets in Wenzel’s wetting regime on horizontal barley leaves
Dynamic test bench

- 50 cm nozzle height

CMOS 20000 fps
Lens
Target surface

LED lighting

2 m/s
High speed imaging
image processing

1) Digital image: ROI above the leaf
2) Background subtraction
3) Image binarisation
4) Droplet detection and identification
5) Droplet size
6) Droplet coordinates on 2 frames
7) Droplet velocity

8) Dimensionless Weber number $We = \frac{\rho V^2 d}{\sigma}$

9) Impact outcome identification according to the physical classification
Barley leaves

- Indoor grown
- Excised leaves: 10mm x 3mm
High speed imaging

data analysis: energy classes

- Tap water + 0.2g/L fluorescein on barley leaf
- XR11003VK @2bars 160 L/ha, 10 sprayings
High speed imaging

data analysis: energy classes

- Tap water + 0.1%v/v Break-Thru S240 + 0.2g/L fluorescein on barley leaf
- XR11003VK @2bars 160 L/ha, 10 sprayings
High speed imaging data analysis: energy classes

- Tap water + 0.25%v/v Li-700 + 0.2g/L fluorescein on barley leaf
- XR11003VK @2bars 160 L/ha, 10 sprayings

Retention: tap water < Li-700 < Break-Thru S240
DST: tap water > Li-700 > Break-Thru S240
High speed imaging
data processing: evaporation

• Because of evaporation, fluorescein concentrations in droplets increase

• Correction of the measured volume is required for making correlation between the two techniques

• This was achieved by resolving equations for the droplet transport, heat and mass transfer (according to Guella 2008, International Journal of Thermal Sciences 47 886–898)
Spray retention

comparison between techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Volume (µl/0.3 cm²)</th>
<th>Tap water</th>
<th>Break Thru S240</th>
<th>Li700</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Av.</td>
<td>StD</td>
<td>Av.</td>
<td>StD</td>
</tr>
<tr>
<td>Observed volume¹</td>
<td>0.34</td>
<td>0.11</td>
<td>0.34</td>
<td>0.08</td>
</tr>
<tr>
<td>Adhesion</td>
<td>0.14</td>
<td>0.08</td>
<td>0.19</td>
<td>0.05</td>
</tr>
<tr>
<td>High speed imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebound C-B</td>
<td>0.05</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Splashing C-B</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Splashing W</td>
<td>0.15</td>
<td>0.09</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>Spectrophotometry Retention</td>
<td></td>
<td></td>
<td>0.22</td>
<td>0.12</td>
</tr>
</tbody>
</table>

¹ Total volume of droplets landing on the leaf increased to account for evaporation.

Retention = Adhesion + K * Splashing Wenzel

K = % of droplet volume splashing in Wenzel regime that remains on the leaf due to pinning
Spray retention

pinning percentage

Spraying	Tap water		Break Thru S240		Li700		
----------	-----------						
		K		K		K	
1	44,40	1,03	66,80	1,12	56,40	1,04	
2	71,90	0,91	42,00	0,96	39,00	0,87	
3	14,40	1,07	67,30	1,01	68,10	1,05	
4	38,00	1,18	70,50	1,13	32,70	1,15	
5	48,20	1,17	63,70	1,04	50,80	1,07	
6	29,80	0,67	36,50	0,92	74,30	0,83	
7	5,00	1,13	30,00	1,10	45,30	1,52	
8	83,90	1,00	46,60	1,08	43,40	0,62	
9	57,00	0,75	91,40	0,70	36,20	1,10	
10	62,40	0,99	70,20	0,96	37,00	0,90	
Average	45,50	0,99	58,50	1,00	48,32	1,02	
StD	24,74	0,17	18,99	0,13	14,05	0,24	
Conclusions

• Depending on the spray mixture, droplets fragmented in Wenzel regime accounted for 28-46% of retention at first impact, with a clear ranking as a function of DST.

• This contribution is not negligible and should be considered when modelling spray retention processes, especially on early growth stages and when using low-drift nozzles with surfactants (larger droplets more likely to splash).

• The coexistence of impact outcomes for the same impact energy is also important to be considered in retention models.
High speed imaging
results: volume percentages

• Ten trials

<table>
<thead>
<tr>
<th>Mixture</th>
<th>V_{tot} (µl)</th>
<th>% Ad</th>
<th>% R CB</th>
<th>% Sp CB</th>
<th>% Sp W</th>
<th>VMD</th>
<th>Drops number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>3.44</td>
<td>41.6</td>
<td>14.2</td>
<td>1.1</td>
<td>43.0</td>
<td>317</td>
<td>627</td>
</tr>
<tr>
<td>Water + Break Thru S240</td>
<td>3.35</td>
<td>58.0</td>
<td>2.4</td>
<td>0.3</td>
<td>39.4</td>
<td>272</td>
<td>736</td>
</tr>
<tr>
<td>Water + Li 700</td>
<td>3.31</td>
<td>35.6</td>
<td>4.3</td>
<td>0</td>
<td>60.1</td>
<td>328</td>
<td>448</td>
</tr>
</tbody>
</table>