
A comparative Genome-Wide Association Interaction study 
using BOOST and MB-MDR algorithms on Ankylosing Spondylitis 

Introduction 
Genome-Wide Association (GWA) studies have gained popularity after the 
completion of the Human Genome Project and advancement of high-throughput 
technologies. These studies aim to scan thousands of genomic variations (e.g., 
SNPs) for their association to phenotypic variables (i.e. traits), such as disease 
related phenotypes, with the hope of extracting biologically and clinically relevant 
information. Understanding of genetic, environmental as well as other components 
of the disease brings the key insights into disease pathology and approaches us 
closer to the ultimate goal - personalized medicine. 

In this work we rely on a minimal GWAI protocol for genome-wide epistasis 
detection using SNPs, as developed in our lab [6][9]. Using the advanced non-
parametric Model-Based Multifactor Dimensionality Reduction (MB-MDR) method 
[1] and BOolean Operation-based Screening and Testing (BOOST) algorithms [4][*] 
for detection of statistically significant epistatic SNP-SNP interactions, we 
investigate the effect of exhaustive (BOOST) and non-exhaustive (MB-MDR) marker 
processing strategies, LD effects, as well as different adjustment schemes for lower-
order effects (i.e. epistasis).  

Our approach was tested on Ankylosing Spondylitis (AS) data as provided by the 
WTCCC2 consortium [1]. AS is a long-term / chronic disease characterized by 
inflammation of the joints between the spinal bones. Non-steroidal anti-
inflammatory drugs calming down the immune system inflammatory responses are 
used as a treatment but there is no permanent cure for AS. The disease has also a 
strong environmental component and affects 3.5 - 13 per 1,000 people in USA [5]. 

Conclusions 
• It was again confirmed that LD effect can lead  to “redundant epistasis” 

and/or negatively affect the final results consistency. For example, compare 
BOOST exhaustive against MB-MDR ADDITIVE  comparison (4 cells) (Table 1) 

• BOOST is best compatible with MB-MDR co-dominant run on LD pruned 
data (Table 1) also confirmed by rank analysis (Fig.2)  

• The pre-filtering based on implication index is a better strategy compared to 
more restrictive gene lists resulting in 2x fold increase in % overlap due to 
larger set of candidate SNP pairs obtained via imp. index approach (Table 2) 

• MB-MDR run in co-dominant mode on LD pruned data (without LD)  
provides the hightest robustness with respect to LD pre-filtering and main 
effects correction model (Table 2) 

• Our preliminary results from MB-MDR non-exhaustive analysis show that co-
dominant lower-order effects correction scheme in MB-MDR seems to be 
less susceptible to LD effects compared to the additive one (Fig 2). 

 

Methods 
The AS SNP data were obtained from the WTCCC2 and a subset consisting of 
487,780 SNPs and assigned to 1788 cases and 4799 controls was obtained according 
to SNP and sample lists given provided in [2]. Thus our input dataset was exactly the 
same as the one used in the reference study [2]. The overall workflow is shown in 
Fig. 1 consisting of various methods assessing the effect of  Linkage Disequilibrium 
(LD), algorithm selection and  lower -order adjustment  schemes  in MB-MDR .  

Data extraction and LD pruning 

To extract the subset from raw data,  SNP data extraction was done with PLINK. To 
avoid an abundance of  redundant SNP-SNP interactions(caused by LD between 
SNPs) we implemented  LD pruning strategy via SVS 7.6 Golden Helix with LD 
correlation threshold of 0.75 and window size of 50 bp with 1 bp increment.  

Data filtering using Biofilter 2.0 

The search-space was reduced to optimize chances of finding truly biologically 
relevant SNPs (i.e. pre-filtering). This was done using Biofilter 2.0 [10] adopting two 
strategies requiring: a) a minimum of 3 data sources (e.g. KEGG, BioGrid, MINT) 
supporting given SNP-SNP interaction (implication index of 3); b) candidate gene list 
related to AS pathology and associated pathways including literature reported 
markers such as HLA-B, IL23R, ERAP1 and KIF21B [2]. 

% overlap between workflows  

The final results represented as a list of significant SNP pairs with corresponding 
statistics were compared across workflows (Fig.1). The maximal %overlap value 
between final results (maximum[(# of common SNPs pairs/# of total SNP pairs 
workflow 1) ,  (# of common SNPs pairs/# of total SNP pairs workflow 2)] ) from a 
selection of workflows are partially reported in Tables 1 and 2.  

Ranks calculation 

To compare the variability between the outcomes of different workflows, ranks (i.e. 
positions) were calculated on all outputted SNP pairs across workflows  regardless of 
statistical significance. 

Eucledian distance between workflows was found using an input vector of 36 ranks 
of common SNP pairs from top 1000 in the final MB-MDR results  list. The resulting 
dendrogram (hierarchical tree)  shows the impact of different choices (LD pruning, 
data pre-filtering strategy, algorithm, etc.) on the final results variability (Fig. 2).  

Results 
Table 1: % results overlap between  significant SNP pairs of pre-filtered 

marker set under Implication index of 3 and non-filtered data (exhaustive) 

 

 

 

 

 

 

 

 

 

 

 

Note: The higher  % result overlap, the lesser effect given variable has on results consistency 
 

Table 2:  % results overlap between MB-MDR methods run on pre-filtered 
marker set using AS related gene set or Implication Index of 3 

 

 

 

 

 
 

Note: The higher  % result overlap, the lesser effect given variable has on results consistency  
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Figure 2: Dendrogram and its distance matrix comparing  variability  of selected workflows using  ranks of 
common 36 SNP pairs. The results are based on pre-filtered data under  implication index of 3 (Methods) 

Figure 1: GWAI workflows used in this study testing the effects of various variables (LD status, marker 
pre-filtering strategies, low-order correction scheme) with application of BOOST and MB-MDR 
algorithms. [*] an optimized version of BOOST like implementation identical to original algorithm but 
accounting  for  missing genotype values  was used 
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