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Abstract

We discuss charged lepton flavor violation in supersymmetric models with extended leptonic sectors at low energies.
Contrary to the usual high-scale realizations of the seesaw mechanism, these non-minimal supersymmetric models
have new superfields and/or interactions at the supersymmetric scale. As a consequence of this, the resulting lepton
flavor violating phenomenology may be very different from that of minimal models.
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1. Introduction

Since the discovery of neutrino oscillations, the viola-
tion of lepton flavor is a well-established fact. However
this behavior has never been observed in processes in-
volving charged leptons. This is well understood in the
Standard Model (SM) minimally extended to include
neutrino masses. Since the only source of lepton fla-
vor violation (LFV) is the neutrino mass matrix itself,
all LFV processes are highly suppressed. This makes
the observation of charged lepton flavor violation a clear
sign of new physics.

New sources of LFV can be found in most extensions
of the leptonic sector. These may be caused by new in-
teractions (renormalizable or non-renormalizable) or by
entire new sectors coupled to the charged leptons. In
the case of supersymmetry (SUSY), the new degrees of
freedom provided by the superpartners of the SM lep-
tons have potentially large contributions to LFV pro-
cesses, leading to stringent constraints on the slepton
masses and mixings.

Most papers on SUSY phenomenology focus on
minimal models, such as the Minimal Supersymmet-
ric Standard Model (MSSM)1. However, neutrinos are
massless in the MSSM and thus the leptonic sector must
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1For a recent work on LFV in the MSSM see [1].

be further extended in order to account for the observed
neutrino masses and mixings. In general, this can be
done in two different ways:

• High-energy extensions: In this family of models
the new degrees of freedom responsible for neu-
trino masses live at very high energy scales. There-
fore, the physics at the SUSY scale is well de-
scribed by the MSSM and the effect of the heavy
fields is induced by Renormalization Group Equa-
tions running.

• Low-energy extensions: In this family of models
the new degrees of freedom are present at low en-
ergies. These include new particles and/or interac-
tions. Their effect on the phenomenology is direct,
as they fully participate at the SUSY scale.

The first category can be seen as Minimal SUSY, since
the low-energy theory is just the MSSM. These are the
most studied SUSY neutrino mass models in the liter-
ature and the simplest example is the classical SUSY
seesaw2. On the contrary, models belonging to the sec-
ond category can be seen as non-minimal SUSY. Here

2By classical SUSY seesaw we mean the usual realization of the
seesaw mechanism where the seesaw messengers have masses close
to the unification scale.

Available online at www.sciencedirect.com

Nuclear Physics B (Proc. Suppl.) 248–250 (2014) 20–25

0920-5632/© 2014 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/npbps

http://dx.doi.org/10.1016/j.nuclphysbps.2014.02.005



Author's personal copy

B3

τ
λ233

μ
h0 ν̃3

μ3

μ2

τ

h̃−d

μ

h0
h̃−d

Figure 1: Tree-level R-parity violating contributions to h → μτ. On the left, a Bλ contribution. On the right, a μ2
i contribution. Figure borrowed

from [2].

we will concentrate on this case and discuss some recent
works related to non-minimal extensions of the leptonic
sector in SUSY models. As will be clear from the fol-
lowing examples, non-minimal SUSY models may have
a very different LFV phenomenology from that of min-
imal ones.

2. R-parity violating models

R-parity violation (RPV) is usually regarded as a dan-
gerous possibility due to the non-observation of proton
decay. For that reason, most SUSY models simply as-
sume this ad-hoc symmetry that forbids all renormal-
izable baryon (B) and lepton (L) number violating op-
erators. However, there is no need to forbid all these
operators. In fact, in order to stabilize the proton it is
sufficient to get rid of just one of these terms, namely
the baryon number violating one.

Furthermore, the presence of R-parity violating cou-
plings leads to a much richer collider phenomenology
due to the decay of the lightest supersymmetric parti-
cle (LSP). This adds a further step in the SUSY decay
chains at the LHC and changes dramatically the result-
ing signatures [3, 4]. This has also been recently consid-
ered in order to relax the stringent bounds on the squark
and gluino masses, otherwise increased to values be-
yond expectations based on naturalness arguments, see
for example [5, 6].

In what concerns the leptonic sector, the lepton num-
ber violating interactions induce Majorana neutrino
masses [7, 8]. These models are thus a very econom-
ical framework to explain neutrino masses and mixings
and, as we will discuss below, usually have many non-
standard LFV signatures.

Finally, the tight connection between neutrino masses
and the decay of the LSP allows us to have a direct probe
for a general class of these models (those where the rel-
evant L violating operator is the bilinear term μi L̂iĤu) at
the LHC, see the recent Ref. [9].

2.1. Higgs boson LFV decays
After the recent discovery of the long-awaited Higgs

boson, the focus has shifted towards the experimental
determination of its properties. On the one hand, they
are crucial to conclude that the particle discovered at
the LHC actually corresponds to the Higgs boson, the
footprint left by the spontaneous breaking of the SM
gauge symmetry. On the other hand, even if this new
particle turns out be a very SM-like Higgs boson, there
is still hope for some non-standard properties.

The LFV decay h → �i� j, with i � j, has recently
got some attention [10, 11]. As shown in [10], in the
case of final states including τ leptons, LHC data can
already put constraints similar to those from low-energy
experiments. Therefore, the question is what type of
models allow for large Higgs LFV branching ratios and
whether these are compatible with the usual low-energy
constraints.

This question was recently addressed in the context
of R-parity violating models in [2, 12]. The authors of
these references considered the MSSM extended to in-
clude all renormalizable (L violating) RPV couplings
and computed Br(h → μτ) at the 1-loop level. The key
point in RPV models is the particles-sparticles mixing
induced by the RPV parameters and how it leads to tree-
level LFV Higgs decays.

Two examples are shown in figure 1. On the left-
hand side, a Bλ contribution is shown, whereas on the
right-hand side a μ2

i contribution is presented. Here μi
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Figure 2: Br(h→ μτ) contours on the B2−λ232 plane. The continuous
horizontal and vertical lines show approximate limits due to neutrino
masses (in case of B2) and charged current experiments (in case of
λ232). Figure borrowed from [2].

and λi jk are the superpotential couplingsW ⊃ μi L̂iĤu +
1
2λi jk L̂iL̂ ĵec

k and Bi is the soft SUSY breaking parameter
L ⊃ BiL̃iHu

3.
The parameter combination that gives rise to the

largest Br(h → μτ) is Bλ, where the mixing between
the Higgs boson and the sneutrinos is combined with
the lepton number violating λ coupling. However, the
same combination of couplings contributes to neutrino
masses [13, 14, 15]. Moreover, the λ coupling is con-
strained by charged current experiments [16]. For these
reasons, the largest value for Br(h → μτ) compati-
ble with the previous bounds is actually found to be
quite small. This is shown in figure 2, where sev-
eral Br(h → μτ) contours are drawn on the B2 − λ232
plane. From this figure one can easily conclude that
Br(h→ μτ) can reach, at most, a few × 10−5.

Although this result is a little disappointing (the LHC
sensitivity with 20 f b−1 at 8 TeV was estimated in [11]
to be around Br ∼ 10−3), further investigation in ex-
tended RPV scenarios might reveal better chances.

2.2. Exotic muon decays

A very interesting framework for lepton flavor vi-
olation is that of spontaneous R-parity violation. In
this case, and in order to establish a bridge to neutrino
masses, one considers a supersymmetric theory that in

3We are following here the notation in [2, 12]. The μi parameters
should not be confused with the usual Higgs superpotential mass term
μ.

principle conserves lepton number, but whose vacuum
breaks it4. If the breaking is caused by the vacuum ex-
pectation value (VEV) of a scalar field with an odd lep-
ton number, R-parity is broken as well.

The main difference with respect to explicit R-parity
violation is the existence of a massless Goldstone boson,
the Majoron (J) [17, 18], associated to the spontaneous
breaking of the continuous U(1)L symmetry. The nature
of this massless state is actually of great importance for
the phenomenological success of the model. The first
attemp in this direction was made in [19], where the
breaking of R-parity was caused by the VEV of a left-
handed sneutrino. The model was eventually excluded
since the doublet nature of the majoron leads to conflict
with LEP bounds and astrophysical data [20, 21]. How-
ever, more refined models, where the violation of lepton
number is induced by a gauge singlet, are still valid pos-
sibilities. We will consider here the model introduced in
[22].

The model under consideration [22] contains three
additional singlet superfields, namely, ν̂c, Ŝ and Φ̂, with
lepton number assignments of L = −1, 1, 0 respectively.
The superpotential can be written as

W = Yi j
u Q̂îuc

jĤu + Yi j
d Q̂id̂ jĤd + Yi j

e L̂îec
jĤd (1)

+ Yi
νL̂îν

cĤu − h0ĤdĤuΦ̂ + hΦ̂ν̂cŜ +
λ

3!
Φ̂3.

For simplicity we consider only one generation of ν̂c and
Ŝ . Adding more generations of ν̂c or Ŝ does not add any
qualitatively new features to the model. At low energy,
i.e. after electroweak symmetry breaking, various fields
acquire VEVs. Besides the usual MSSM Higgs boson
VEVs vd and vu, these are 〈Φ〉 = vΦ/

√
2, 〈ν̃c〉 = vR/

√
2,

〈S̃ 〉 = vS /
√

2 and 〈ν̃i〉 = vi/
√

2. Note, that vR � 0
generates effective bilinear terms μi = Yi

νvR/
√

2 and that
vR, vS and vi violate lepton number as well as R-parity.

Although the presence of a massless majoron is al-
lowed by the experimental contraints, it dramatically
changes the phenomenology both at collider and low-
energy experiments [23, 24]. In particular, it leads to
new LFV processes, such as μ → eJ or μ → eJγ. The
exotic decay μ → eJ was first studied in [25] and later
revisited in [24], where the decay with an additional
photon was also considered.

The decays �i → � j J can be calculated from the gen-
eral coupling χ+i − χ−j − P0

k . A straightforward com-
putation [24] shows that the e − μ − J coupling, OeμJ ,

is of the form OeμJ ∼ 1
vR
× RPV parameters, which

4One could also think of spontaneous baryon number violation,
but that is clearly out of the scope of this talk.
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makes us conclude that, in general, one expects large
partial decay widths to majorons if vR is low. How-
ever, searches for μ→ eJ have to deal with a huge irre-
ducible background coming from the standard muon de-
cay μ→ eνν. Moreover, there are no experiments look-
ing for μ → eJ and the current limit on the branching
ratio, Br(μ→ eJ) � 10−5, dates back to 1986 [26]5. For
these reasons, we consider the decay μ → eJγ which
might be more interesting due to the existent experi-
ments looking for μ→ eγ.

It is easy to find a very simple relation between the
two branching ratios

Br(μ→ eJγ) =
α

2π
I(xmin, ymin)Br(μ→ eJ). (2)

Here I(xmin, ymin) is a phase space integral given by

I(xmin, ymin) =
∫

dxdy
(x − 1)(2 − xy − y)

y2(1 − x − y)
, (3)

the dimensionless parameters x, y are defined as usual

x =
2Ee

mμ
, y =

2Eγ
mμ

(4)

and xmin and ymin are the minimal electron and photon
energies measured in a given experiment.

The question now is whether the MEG experiment
can look for this process. Figure 3 shows the value of
the phase space integral I(xmin, ymin) as a function of
xmin for three different values of ymin and for two choices
of cos θeγ. The MEG proposal describes the cuts used in
the search for μ → eγ as xmin ≥ 0.995, ymin ≥ 0.99
and |π − θeγ| ≤ 8.4 mrad. For these values one finds
I 
 6 · 10−10. A limit for Br(μ → eγ) of Br(μ → eγ) ≤
10−13 then translates into a limit of Br(μ → eJ) ≤ 0.14,
obviously meaningless. To improve upon this bound,
it is necessary to relax the cuts. For example, relaxing
the cut on the opening angle to cos θeγ = −0.99, the
value of the integral increases by more than 3 orders of
magnitude for xmin = ymin ≥ 0.95.

On the other hand, such a change in the analysis is
prone to induce background events, which the MEG
cuts were designed for to avoid. In particular, accidental
background from muon annihilation in flight6. There-
fore, although one could in principle increase the value

5In fact, the bound we provide here is based on a reinterpretation
of the results of [26], which considered a slightly different scenario.

6Less important is the irreducible background induced by prompt
events from the standard model radiative decay μ→ eννγ. Moreover,
kinematical information might allow to discriminate this decay from
μ→ eJγ.

of the phase space integral I(xmin, ymin), the background
in that case would make the search for a positive sig-
nal impossible. Certainly, a better timing resolution of
the experiment would be required to reduce this back-
ground.

3. Supersymmetric low-scale seesaw models

Let us now briefly discuss LFV in low-scale seesaw
models. For more information about the phenomenol-
ogy in non-SUSY models see [27].

The most popular way to address neutrino masses is
the famous seesaw mechanism. In its traditional form,
the seesaw mechanism explains the smallness of neu-
trino masses thanks to the suppression by a high scale,
Λ, at which neutrino masses are generated. Several real-
izations (supersymmetric or not) of this framework are
known. In the supersymmetric versions of these real-
izations, the low energy spectrum is composed by the
MSSM superfields, since the seesaw messengers decou-
ple at Λ � mS US Y .

At the SUSY scale, the misalignment of the slepton
mass matrices with respect to those of the SM charged
leptons induces lepton flavor violation. However, differ-
ent LFV processes may have very different rates. The
classical supersymmetric seesaw usually predicts that
the branching ratios for the decays �i → 3� j are roughly
a factor α smaller than those for the corresponding de-
cays �i → � jγ [28, 29, 30],

Br(�i → 3� j) 
 α3π

⎛⎜⎜⎜⎜⎜⎜⎝log

⎛⎜⎜⎜⎜⎜⎜⎝m2
�i

m2
� j

⎞⎟⎟⎟⎟⎟⎟⎠ − 11
4

⎞⎟⎟⎟⎟⎟⎟⎠Br(�i → � jγ) .

(5)
Therefore, in these scenarios, which belong to the min-
imal SUSY category, the most relevant LFV process is
�i → � jγ.

The relation in Eq. (5) can be traced back to the so-
called dipole dominance in high-scale seesaw models.
Among all contributions to �i → 3� j, the dipole gener-
ated in photon penguins is the dominant one. For this
reason, the branching ratios for �i → � jγ and �i → 3� j

turn out to be proportional. However, the dipole domi-
nance can be broken in non-minimal scenarios that in-
clude new superfields besides those in the MSSM. This
is in fact the case of supersymmetric low-scale seesaw
models.

Contrary to the classical SUSY seesaw, in low-scale
seesaw models the new states (in addition to those of
the MSSM) do not decouple: indeed, the seesaw mes-
sengers can be as light as to be present at the SUSY
scale, leading to new contributions that can change the

A. Vicente / Nuclear Physics B (Proc. Suppl.) 248–250 (2014) 20–25 23
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Figure 3: The phase space integral for the decay μ → eJγ as a function of xmin for three different values of ymin = 0.95, 0.99, 0.995 from top to
bottom and for two different values of cos θeγ. To the left cos θeγ = −0.99, to the right cos θeγ = −0.99997.

picture dramatically 7. This has recently fuelled a sig-
nificant number of studies. Let us now mention some of
them:

• Non-SUSY boxes: Several authors have recently
studied LFV in the presence of light right-handed
neutrinos, paying special attention to �i → 3� j

and μ − e conversion in nuclei [32, 33, 34, 35].
Surprisingly, it has been found that the main con-
tributions to these two processes may come from
(non-supersymmetric) box diagrams. These non-
SUSY contributions tend to dominate for light
right-handed neutrinos. Therefore, although they
are not genuine SUSY contributions, they must be
taken into account in any SUSY study.

• Z-penguins: The presence of light ‘right-handed’
sneutrinos also gives rise to new contributions. In
[36] it was pointed out that in this case the Z-
penguins, usually regarded as subdominant, can
in fact provide the dominant contributions to LFV
processes such as �i → 3� j and μ − e conversion in
nuclei. This was further explored in [37, 38, 39],
where enhancements to the abovementioned pro-
cesses thanks to the supersymmetric Z-penguins
were found in several contexts.

7A prime example of this class of models is the inverse seesaw
[31]. The inverse seesaw can be embedded in the MSSM by the addi-
tion of two extra gauge singlet superfields with opposite lepton num-
bers (+1 and −1). In this framework one can in principle have large
neutrino Yukawa couplings compatible with a seesaw scale close to
the SUSY one.

In both cases, the relation in Eq. (5) is not fulfilled
and one can actually have �i → 3� j and μ−e conversion
in nuclei as the most constraining observables.

4. Final remarks

In this talk we have reviewed some recent develop-
ments in lepton flavor violation in non-minimal SUSY
models. The bottom line is that lepton flavor violation
may be much richer than expected when one goes to
non-minimal supersymmetric extensions of the leptonic
sector. In most models the common lore (established in
the MSSM) turns out to be completely wrong, and thus
specific studies must be performed in order to correctly
describe the corresponding phenomenology. This in fact
translates into two messages: (1) for the theorists, lepton
flavor violation might be much more intricate than what
minimal models predict. We should be open-minded
and consider non-standard scenarios where the leptonic
sector is extended beyond the MSSM realization. And
(2) for the experimentalists, although minimal models
are well motivated, lepton flavor violation might show
up in non-standard channels. We must be ready to find
a signal there as well.
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