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The Art of Modelling

Global Carbon Cycle: Processes and Time Scales
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(Adapted from Holmén, 1992)

—  Natural Processes with long time scales
—  Natural Processes with short time scales
—  Human Perturbations
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Modelling

OBSERVATION HYPOTHESES
(Data) (Theory)

MODEL

- statistical
- mechanistic
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The Art of Modelling

Model Development: General Principles

@ Four stages

© Problem ldentification
© Model Formulation

© Model Solution
© |Interpretation of the results

@ Equal importance for each stage

@ Not a uni-directional procedure

(following Boudreau, 1997)
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Development of a Model

@ Formulation

e processes to include / exclude

e mathematical representation of the processes
e approximations adopted

hypotheses made

@ Solution
depends on the situation
@ Interpretation

e secondary results: consequences
e model to be refined or to simplified

(following Boudreau, 1997)
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The Art of Modelling

lllustration: Application to an Actual Question

Question

How much CO, is released by volcanic and hy-
drothermal activity (metamorphic fluxes included)?

How does this compare to the amount of CO, re-
leased by human activity?
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Model Formulation: Hypotheses and Simplifications

@ Time Scale: 1,000 — 10,000 years and more

o little variability of volcanic and hydrothermal fluxes

e biosphere at steady state : fluxes have no influence

e burial of organic matter counter-balanced by kerogen carbon
weathering: fluxes cancel out

e sea-floor weathering poorly known and small: neglected

@ Steady state
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The Art of Modelling

Carbon Cycle Model: Processes Considered

> Exchange of carbon between ocean and atmosphere
D> Exchange of carbon between ocean/atmosphere and crust

volcanic
output

silicate
weathering

air—sea carbonate
exchange weathering
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hydrothermal
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Carbonate Chemistry in Seawater

@ Carbonate system equilibria
COyaq) T2 H,0 = HCO; +H;07
HCO; +H,0 = CO% +H,0"

@ Special roles played by particular species
e atmospheric pco, +— [CO

o CaCOj; burial «+— [CO3

2(aq)]surface
]deep—sea

@ Speciation calculated from combinations
e Dissolved Inorganic Carbon
Cr = [CO, o]+ [HCO3 ]+ [CO3 ]
o Total Alkalinity
At ~ [HCO3]+42[CO5 ]+ [B(OH); ]+ [OH"] — [H;07]
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The Art of Modelling

Carbon Cycle Model: Fluxes Considered

® Creation and destruction of alkalinity

> Exchange of carbon between ocean and atmosphere
[ Exchange of carbon between ocean/atmosphere and crust

volcanic
output

silicate air—sea carbonate
weathering exchange weathering

G-sa Goo Comenn

.

hydrothermal
CRUST processes
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Carbon Cycle Model: Conservation Equations

@ C,im : total amount of C in the atmosphere
@ C, . : total amount of C in the ocean

° Catm + Coce =C

@ A : total amount of alkalinity in the ocean

dca m
dtt — Cvol - Csil—a - Ccar—a + Co—>a - Ca—>o
dcoce
dt — Chyd + Csil—a + Cear—a + Cear—r — Co—>a + Ca—>o - Csed
dCatm dCoce dC
= — = ( Cvo Ccar—r - Cse
dt | dr dt hyd F Cvol + d
dA
. Asi Acar - Ase
gt | + d
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The Art of Modelling

Typical Weathering Reactions for Silicate Minerals

@ Dissolution of albite with precipitation of kaolinite

2NaAlSi;0g +2CO, + 11H,0 —»
Al,Si,05(OH), +2Na* +2HCO; +4H,Si0,

@ Dissolution of anorthite with precipitation of kaolinite

CaA|25i208 + 2 02 +3 H2O —
Al,Si,0 (OH), + Ca+ + 2HCO;

@ Dissolution of microcline with precipitation of pyrophillite

2KAISi;0g+2C0, +6H,0 —»
Al,Si,0,4(OH), + 2K+ +2HCO; +2H,Si0,
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Typical Weathering Reactions for Silicate Minerals

@ Dissolution of chlorite with precipitation of kaolinite

Mg5A|25i3010+10 02+5H20 —
Al,Si,O5(OH), +5Mg** +10HCO; +H,Si0,

@ Dissolution of microcline with precipitation of gibbsite

KA|S|308 + 02 ‘|’4H2O —
Al(OH); + K" +HCO3 +H,SiO,
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The Art of Modelling

Sources and Sinks of DIC and TA in the Ocean

@ Sources : continental weathering
e carbonate rocks: congruent dissolution

CaCO; +CO, +H,0 — Ca*" +2HCO3
e silicate rocks: incongruent dissolution

silicate mineral 4+ bCO, + water —
secondary minerals 4 cations+ bHCO3 +sH,SiO,

@ Sinks : burial of biogenic carbonates

Ca®t +2HCO; — CaCO5 + CO, +H,0
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Global Balance of the Ocean-Atmosphere System

@ Relationships between carbon and alkalinity fluxes

Ccar—r — Ccar—a

Asil — Csil—a
Acar - Ccar—a + Ccar—r = 2 Ccar—r
Ased = 2 Csed

@ Upon introduction into the C et A balance equations:

dC

— = Cvo Cear—r — Cee
ar hyd T Cvol 1 d
dA

. Asi Acar - Ase

gt | + d
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The Art of Modelling

Carbon Cycle Model: Resolution

dC

_dt o Chyd + CVOI + Ccar_r - CSECI
dA

E = Csil—a + 2 Ccar—r —2 Csed
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Carbon Cycle Model: Resolution

e Steady state conditions: At > 10%yr

dA

dC
—0 D
dt

9= _0 et 0
dt ©

@ Accordingly, the balance equations for C et A become

Chyd + Cvol + Ccar—r - C~sed = 0 (1)
Csil—a +2 Ccar—r —2 Csed = 0 (2)

o Finally, equation (1) — 1 x equation (2) yields

Chyd + Cool = % Gsil-a
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The Art of Modelling

Carbon Cycle Model: Resolution

@ Initial problem reduced to: Cg_, =7

Criv — siI—a"‘Ccar—a + Ccar—r

e Riverine HCO; data analysis
o total amount: 31,6 — 37,7 x 1012 molHCO3 per year
e 66% stem from the atmosphere

@ Hence:
Csil—a: 0.32x Cyjy

and thus
Chyd + Coi= 0.16 X G5y -
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Solution and Interpretation

Result

Since
Ciiv = (31.6 — 37.7)x10*2 mol C/yr,

we find that

Chyd + Col = (5.1 = 6.0) x 102 mol C/yr
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The Art of Modelling

Solution and Interpretation

Interpretation

@ Comparison with anthropogenic CO, emissions
@ Secondary result: sedimentary flux Cseq

Csed - Chyd =+ CvoI + Cear—r (equation (1))
% Csil—a + Cear—r

% Csil—a + % Ccar—a + % Ccar—r

— % Criv

@ Hence:

Ceed = (15.8-18.9)x 10 molC/an
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Solution and Interpretation

Fossil Fuel Combustion and Cement Production
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1950 89.9 35.3 8.1 15 1.9 135.8
2000 197.5 234.8 107.3 18.8 4.0 562.5
2010 317.3 259.9 141.0 37.3 6.1 761.6

Units: Tmol C/yr (original data in Tg C/yr). Data sources: Boden et al. (2011),
for years before 2008; Boden and Blasing (2012) for 2009-2010 (preliminary).

Guy Munhoven Modelling of the Marine Carbon Cycle



The Art of Modelling

Carbon Cycle: Present-day and Pre-industrial
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Carbon Cycle: Present-day and Pre-industrial
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The Art of Modelling

Summary of Part |

@ Geochemical Carbon Cycle: complex system
= quantitative study requires models
@ Four stages for development of a model

© Identification of the problem
@ Formulation of the model
© Resolution of the model

© Interpretation of the results

@ lllustration on an concrete example
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Outline

Part | — The Art of Modelling

Part Il — Marine Carbon Cycle Modelling

© Marine Carbon Cycle Modelling: why?
© Marine Carbon Cycle: Global Features
© Types of Models

@ Outline of a Typical Plankton Model
© Results
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Marine Carbon Cycle Modelling

Marine Carbon Cycle Modelling: Why?

@ CO, uptake: ~ 25-35% of human-released atmospheric CO,
absorbed by the oceans

@ biological activity responsible for 80% of the vertical DIC
gradient (Six and Maier-Reimer, 1996)

@ seasonal pCO; times series strongly influenced by biological
processes

@ paleoclimatic records derived from biogenic sediments:
interpreting them requires understanding of how they form

@ understanding carbon cycle variations in the deep past
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Marine Carbon Cycling: Global Features

Looking at the oceans from above
@ surface ocean ApCO, (Takahashi et al., 2009)

Looking underneath

@ sediment types and their distributions

Opening it up
@ vertical profiles
@ thermohaline circulation

@ geochemical separation Atlantic vs. Indian and Pacific
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Ocean-Atmosphere CO5 Exchange
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Sea-floor and Surface Sediments: Bathymetry

0
80°N 200
60°N -400
-600
40°N 800
-1000
20°N
-1500
Ea -2000
-2500
20°S
-3000
40°S -3500
-4000
60°S
-4500
o -5000
CUESRS  Seafloor topography (m)
-9000

20°E 60°E 100°E 140°E 180° 140°W 100°W 60°W 20°W 20°E

Source: Sarmiento and Gruber (2006)

Guy Munhoven Modelling of the Marine Carbon Cycle



Marine Carbon Cycle Modelling

Sea-floor and Surface Sediments: Carbonate

Sediment CaCOj; (weight %)
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Source: Sarmiento and Gruber (2006)

Guy Munhoven

Marine Carbon Cycle Modelling

Modelling of the Marine Carbon Cycle

Sea-floor and Surface Sediments: Organic Carbon
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Marine Carbon Cycle Modelling

Sea-floor and Surface Sediments: Opal

no data

CUSHE  Sediment opal (weight %)
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Source: Sarmiento and Gruber (2006)
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Surface Sediment Composition in Summary

@ Carbonate
e distribution linked to depth of the sea-floor below sea-level:
sediments at great depth are devoid of carbonate
e up to 90% on mid-ocean ridges
@ Organic Carbon

o generally 1-2%, locally up to 10%
e organic carbon oxidation plays important role for carbonate
dissolution (source of CO,, pore water acidification)
e Opal
e abundant in the Southern Ocean (Opal Belt)
e abundant in the Eastern Equatorial Pacific
@ Non biogenic

o clay minerals (Red Clay deep-sea sediments)
e quartz (aeolian input, detrital)
e volcanic ash and authigenic minerals
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Carbon Cycle: Present-day and Pre-industrial
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DIC Gradients
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Marine Carbon Cycle Modelling

Origin of DIC Gradients in the Ocean
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The Biological Carbon Pump

@ Pump — transport against a concentration gradient
@ DIC low in euphotic zone, high at depth

@ Organic production in euphotic zone fuelled by
upwelled macronutrients (phosphate, nitrate)
o Effects on atmospheric CO, (Broecker and Peng, 1993)

e shut-down of organic production in the euphotic zone
(Strangelove Ocean): pCO; = 470 ppm

e complete consumption of all upwelled nutrients:
pCO, = 150 ppm
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Gradients of Dissolved Oxygen
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Gradients of Phosphate
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Marine Carbon Cycle Modelling

The Carbonate (Counter)Pump

@ For every 10 moles of carbon that get exported as organic
carbon about 1 mol gets exported as carbonate carbon
@ Rain Ratio: carbonate-C/organic-C

e about 0.1 on average

e close to 0 at high latitudes: little carbonate production,
but rather opal (siliceous) production instead

e typically 0.3 at low latitudes

@ Increasing carbonate export to the deep ocean
makes CO» increase as well

@ May be counter-intuitive at first, but ...
Ca?t +2HCO; — CaCO;5+ CO, +H,0
@ Acts mainly through alkalinity changes
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Gradients of Alkalinity
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Marine Carbon Cycle Modelling

Model Types

@ Box models: 1 — 15 boxes typically, 1 — 4 vertical layers,
simple productivity flux expressions

o Box-diffusion models: similar horizontal resolution than box
models, fine vertical resolution (generally > 50 levels)

@ 3D models: horizontal resolution of the order of 2° to 3°,
30 unevenly spaced vertical levels and more, complex
biogeochemical /ecosystem models with 2 — 5 nutrients,

2 — 4 plankton classes, etc.

o Earth system Models of Intermediate Complexity
(EMICs): compromise on spatial resolution (coarser
resolution, reduced dimensions), improve on feedback network
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Box Model of the Ocean Carbon Cycle: MBM-MEDUSA
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Marine Carbon Cycle Modelling

Box Model of the Ocean Carbon Cycle: MBM-MEDUSA

@ One-box atmosphere and ten-box ocean with prescribed
hydrodynamics

@ Tracers: pCO,, DIC, alkalinity, POy, O5, 13C 14C

@ Biogeochemical fluxes
e POM: proportional to PO, influx into surface boxes

e carbonate: proportional to POC
o calcite/aragonite: prescribed partitioning of carbonate

@ Coupled to the sediment model MEDUSA for calcite,
aragonite, POM, clay
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Box Model of the Ocean Carbon Cycle: MBM-MEDUSA
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Marine Carbon Cycle Modelling

Box Models

@ Long-term simulation experiments are possible
(up to millions of years)

@ Prescribed hydrodynamics limit applicability

@ Representation of complete feedback loop difficult or
necessarily highly parametrised (e.g., no interactive climate
modules in general, ...)

@ Detailed analysis of response is possible

@ More comprehensive exploration of the model parameter space
than with other model types

Guy Munhoven Modelling of the Marine Carbon Cycle

Marine Carbon Cycle Modelling

@ Attractive alternative to both box and 3D models

@ Large variety

@ Focus on atmospheric, oceanic and marine biogeochemical
components
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Marine Carbon Cycle Modelling
Bern3D

Atmosphere (Ritz et al., 2011)

@ 2D single-layer Energy and Moisture Balance Model
(36 x 36 grid cells)

Ocean
@ 36 x 36 grid cells, 32 vertical levels
@ frictional geostrophic balance model (Miiller et al., 2006)
Ocean Biogeochemistry (Parekh et al., 2008)
e tracers: DIC, alkalinity, DOM, 13C, #C, PO4, O», iron and
silicic acid
@ Biogeochemical model with POM, opaline and carbonate
shells (calcite, aragonite)
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GENIE-1

Atmosphere

@ 2D energy and moisture balance model (EMBM) after Weaver
et al. (2001)

Ocean
@ 36 x 36 grid with equal-area elements, 8 vertical levels

@ reduced physics (frictional geostrophic) 3D-model, coupled to

a dynamic-thermodynamic sea-ice model
(Edwards and Marsh, 2005)

Ocean Biogeochemistry
e tracers: DIC, alkalinity, POg4, O, 33C and *C, Si, ...

e reference: Ridgwell et al. (2007), Ridgwell and Hargreaves
(2007)
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Marine Carbon Cycle Modelling
AViTe

Atmosphere (Weaver et al., 2001)

@ 3.6° (zonal) by 1.8° (meridional) Energy and Moisture
Balance Model

Ocean

o GFDL Modular Ocean Model (MOM) version 2.2

@ 3.6° (zonal) by 1.8° (meridional), 19 unequally spaced levels,
from 50 m at the surface to 518 m at the deepest level
(bottom at 5396 m).

Ocean Biogeochemistry (Schmittner et al., 2008)
e tracers: DIC, alkalinity, NO3, POyg4, O>

@ NPZD model with two phytoplankton classes, carbonate
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LOVECLIM (Goosse et al., 2010)

Atmosphere

@ quasi-geostrophic model ECBIlt (T21L3 resolution, i.e.,
64 x 32 Gaussian grid) by Opsteegh et al. (1998)

Ocean

e CLIO3, a primitive-equation, free-surface Oceanic General
Circulation Model coupled to a thermodynamic-dynamic
sea-ice model (Goosse and Fichefet, 1999)

@ 3°x 3% 20 vertical levels
Ocean Biogeochemistry
@ LOCH ocean carbon cycle model (Mouchet, 2011)
e tracers: DIC, alkalinity, PO4, O,, Si, DOM (DOP), 13C, C,

@ biogeochemical model with POM, calcite, aragonite,
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Marine Carbon Cycle Modelling

CLIMBER-2

Atmosphere

@ 2.5-dimensional statistical-dynamical model
(Petoukhov et al., 2000; Ganopolski et al., 2001)

Ocean
@ multi-basin zonally averaged model (after Stocker et al., 1992)

@ 2.5° |atitudinal resolution, 11 uneven vertical levels with an
upper mixed layer of 50 m thickness

Ocean Biogeochemistry (Brovkin et al., 2002)

@ representation of biological processes based upon the model of
Six and Maier-Reimer (1996), extended to two DOM types

e tracers: POy, Os, alkalinity, DIC, fast DOM, slow DOM, 3C
and 14C for DIC and DOM

Guy Munhoven Modelling of the Marine Carbon Cycle

Marine Carbon Cycle Modelling

Ocean Carbon Cycle Modelling

@ Variety of EMIC configurations: 2D multi-basin ocean models,
various horizontal and vertical resolutions

@ Similarity of carbon cycle models: biogeochemical export flux
models (export out of the euphotic layer)

@ lllustration of principles and ideas: the plankton model of Six
and Maier-Reimer (1996)
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Plankton Model

@ Following developments of Six and Maier-Reimer (1996)

Export production model

@ In conjunction with a transport model providing the
distribution of advective, diffusive and convective velocities

@ Five compartments: extended NPZD model

o Nutrients

e Phytoplankton

e Zooplankton (grazers, herbivores and carnivores)

o Detritus (dead phytoplankton and zooplankton, faecal pellets)
also called Particulate Organic Matter (POM)

e Dissolved Organic Matter
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Phytoplankton (P)

— = transportp

+ growthp —grazingp,, 7 — deathp — DOM _exudationp

@ growthp (photosynthesis) depends on P itself and is limited
by nutrient (/) availability

N

growthp = up(T,L) x P X Not N

@ up(T,L) maximum growth rate, depends on temperature (T)
and limited by incoming light (L)

@ growthp vanishes below the euphotic zone (top 100 m)
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Phytoplankton (P)

ar t t
— = transpor
dt portp

+ growthp —grazingpy,, 7 — deathp — DOM _exudationp

@ grazingpp, 7 (the grazing loss from herbivores, i.e.,
zooplankton) depends on the zooplankton concentration (Z,
incl. herbivores and carnivores), and is limited by P

'D_Pmin

grazingpp, 7z = g(T) x Z Py P

@ Pin needed to avoid that phytoplankton goes extinct
e g(T) grazing rate, (weakly) depends on temperature
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Phytoplankton (P)

— = transportp

+ growthp —grazingp,, 7 — deathp — DOM _exudationp

@ deathp — death rate of phytoplankton (by senescence), set to
deathp = dP(P — Pmin)

assumed to be exported as POM out of the euphotic layer

@ DOM_exudationp — exudation rate of DOM by
phytoplankton

DOM _exudationp = xp(P — Pnin)
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Monod Rate Law
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Zooplankton (Z)

— = transport,

+ growth > — death  — DOM _exudation 7

@ growth > results from phytoplankton ingestion

o only a fraction e, of “grazingpy, 7" is ingested,
the rest (1 — €her) is egested as faecal pellets (to POM)

e only a fraction 7 of the ingested phytoplankton contributes to
growth, the rest (1 —7z) of the ingested phytoplankton is lost
by metabolism (to N and DIC)

growthy = &ner X ¥z X grazingpy, 7
metabolppyz = &her X (1 —¥2) X grazingpyp, 7
egestppyz = (1 —&ner) X grazingpy, 7
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Zooplankton (Z)

— = transport,

+ growth > — death  — DOM _exudationz

@ deathy — death rate of zooplankton
(by senescence and higher trophic level grazing)
o is set to deathy = dz(Z — Znin)
e a fraction €., of deathz is remineralised
(metabolised after ingestion)
o the remainder (1 — €.p) is exported as detritus
(dead remains + faecal pellets) out of the euphotic layer

metabolzp, 7 = &an X deathy

exporty = (1 —&an) X deathy
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Zooplankton (Z)

— = transport,

+ growth > — death  — DOM _exudation 7

@ DOM_exudationy — exudation rate of DOM by zooplankton

DOM _exudationz = xz(Z — Zuin)
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Dissolved Organic Matter (DOM)

dDOM
dt

= transportpowm

+ DOM _exudationp + DOM _exudation — reminpom

@ sources: exudation of DOM by phyto- and zooplankton

@ reminpopm — remineralization rate of DOM by bacterial
activity, set to

reminpom = rpom(N) x DOM

where

N
Nremin + N

reflecting the fact that bacteria require nutrients

mom(N) = rpomo X
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Detritus (D or POM)

dbD d . . :
= EsmklngD — reminp(0>)

@ D fed by the Total Particle Production (TPP) in the euphotic
zone, i.e., the faecal pellets and P-detritus produced there

@ in the euphotic zone (above 100m): D=0

@ below the euphotic zone (below 100 m):

z 08
sinkingp, = TPP X <1OO m>

following the particle flux profile of Suess (1980), where

100m
TPP = / (deathp + egestp byZ T exportz)dz
0
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Detritus (D or POM)

b d . . ,
= EsmklngD —reminp(03)

@ reminp(0O2) — oxic remineralization rate, limited by a
maximum rate rpg X D and by the available dissolved O5.
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Nutrients (/)

N t t
E— = ranspor
dt porty

— growthp + metabolppy, 7 + metabol 7, 7

+ reminpom -+ reminp

@ nutrients linked to carbon content of different compartments
and fluxes by constant Redfield-type ratios
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Redfield Ratios

o Redfield (1934): mean biomass N:P ratio of plankton ~ 16

o Redfield, Ketchum, and Richards (1963): mean biomass C:P
ratio of plankton ~ 106

@ Suggests idealized composition
OM = (CH20)106(NH3)16(H3PO4)

and idealized “chemical reaction” for the formation of
plankton biomass

106 CO2 +16 HNO3 + H3P0O4 +122H,0 — OM + 1380,

@ Redfield ratio C:N:P:O, = 106:16:1:—138

@ Planktonic N:P ratio close to seawater NOg:POi_ ratio
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Redfield Ratios
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Redfield Ratios

Several possible pathways of OM remineralization

@ oxic respiration
OM+1380; — 106 CO, + 16 HNO3 4+ H3PO4 + 122H,0
@ partial denitrification

OM +84.8HNO3 — 106 CO, +42.4N, + 16 NH3 + H3PO4 + 148.4H,0

@ and others: complete denitrification, Mn2* reduction, Fe
reduction, SOﬁ_ reduction, methanogenesis
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Shells in the Export Production

@ Export flux (TPP) must be completed to include hard parts
(carbonate and opaline shells)

o Competitive advantage of silicate-builders over
carbonate-builders (Maier-Reimer, 1993)

@ Silicate shell (opal) production (Maier-Reimer et al., 2005)

[S1]

exportS” = Usj X TPP x m

e Carbonate shell export production (Maier-Reimer et al., 2005)

[Silo

tearb = MHearb X TPP X —————
exporte,p, = Hearb X X[SI]O—I-[SI]
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Further Details For the Hungry

@ Limiting nutrient: phosphate

@ Only processes outlined: actual implementation needs
consideration of units linking the different compartments and
allowing conversion between them

@ Light limitation depends on latitude, season, ice-cover,
possibly on auto-shading, . ..

@ Phytoplankton growth in the Six and Maier-Reimer model
also dependent on mixed-layer depth
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New Developments

Additional limiting nutrients: NOs, Fe, Si
Opaline and carbonate shells
Calcite and aragonite

Suboxic remineralization of detritus (e.g., by nitrate reduction)
PISCES (Pelagic Interaction Scheme for Carbon and
Ecosystem Studies, Aumont and Bopp, 2006):

e Twenty-four compartments: two living phytoplankton size
classes, two living zooplankton size types, three non-living
compartments, ...

e Five modelled limiting nutrients for phytoplankton growth:
Nitrate and Ammonium, Phosphate, Silicate and Iron

@ PlankTOM (Dynamic Green Ocean Project): marine

ecosystem dynamics based on Plankton Functional Types
(see Le Quéré et al., 2005)
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CLIMBER-2: Present-Day Phosphate

Observation
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CLIMBER-2: Present-Day Oxygen

Observation Model
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CLIMBER-2: Present-Day Dissolved Inorganic Carbon

Observation Model
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CLIMBER-2: Present-Day Total Alkalinity
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Bern3D: Opal and Carbonate Export Fluxes, DIC

a) Zonal-mean DIC in the Atlantic [umol/kg] __b) Zonal-mean DIC in the Pacific [umol/kg]
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