Modélisation des variations glaciaires-interglaciaires du CO₂ atmosphérique : Rôle de l'érosion continentale

Modelling Glacial-Interglacial Atmospheric CO₂ Variations : The Role of Continental Weathering

Guy MUNHOVEN

Laboratoire de Physique Atmosphérique et Planétaire Institut d'Astrophysique et de Géophysique Université de Liège

25 novembre 1997

Variations glaciaires-interglaciaires du CO₂ atmosphérique : Le signal de Vostok

- oscillation entre
 - niveau glaciaire de 190 200 ppmv
 - niveau interglaciaire de 260 280 ppmv
- bonne corrélation avec le climat

Organisation de la présentation

- 1. Cycle du carbone
 - contemporain (actuel/préindustriel)
 - changements glaciaires-interglaciaires
 - nouvelle hypothèse pour variations de CO₂
- 2. Rôle de l'érosion continentale dans le cycle du carbone
 - consommation de CO₂ et production de HCO₃⁻
 - différence silicates-carbonates
 - influence des variations sur CO₂ atmosphérique
- 3. Modèle du cycle du carbone océanique
- 4. Reconstructions et simulations
 - traceurs dans l'océan : (${}^{87}Sr/{}^{86}Sr$,) Ge/Si
 - modèle d'érosion : GEM-CO₂
- 5. Conclusions et perspectives futures

Cycle du carbone actuel et préindustriel

Chimie des carbonates en milieu marin

Équilibres chimiques du système carbonate

$$CO_{2(aq)} + 2 H_2O \rightleftharpoons HCO_3^- + H_3O^+$$
$$HCO_3^- + H_2O \rightleftharpoons CO_3^{2-} + H_3O^+$$

Rôles particuliers de différentes espèces

- p_{CO_2} atmosphérique $\longleftrightarrow [CO_{2(aq)}]_{surface}$
- dépôt de $CaCO_3 \longleftrightarrow [CO_3^{2-}]_{profond}$

Spéciation calculée à partir de combinaisons

• Carbone Inorganique Dissous

$$C_{\mathsf{T}} = [\mathsf{CO}_{2(\mathsf{aq})}] + [\mathsf{HCO}_3^-] + [\mathsf{CO}_3^{2-}]$$

• Alcalinité Totale

$$\begin{split} A_{\mathsf{T}} &\simeq [\mathsf{HCO}_3^-] + 2\,[\mathsf{CO}_3^{2-}] + [\mathsf{B}(\mathsf{OH})_4^-] \\ &+ [\mathsf{OH}^-] - [\mathsf{H}_3\mathsf{O}^+] \end{split}$$

Règles générales

$$C_{\mathsf{T}} \xrightarrow{\oplus} p_{\mathsf{CO}_2} \qquad C_{\mathsf{T}} \xrightarrow{\oplus} [\mathsf{CO}_3^{2-}]$$
$$A_{\mathsf{T}} \xrightarrow{\ominus} p_{\mathsf{CO}_2} \qquad A_{\mathsf{T}} \xrightarrow{\oplus} [\mathsf{CO}_3^{2-}]$$

Sources et puits de carbone inorganique dissous et d'alcalinité pour l'océan

Sources : érosion continentale

• roches carbonatées : dissolution *congruente*

 $CaCO_3 + CO_2 + H_2O \longrightarrow Ca^{2+} + 2HCO_3^{-}$

• roches silicatées : dissolution incongruente

minéral silicaté + $b CO_2$ + eau \longrightarrow minéraux secondaires + cations + $b HCO_3^- + s H_4SiO_4$

Puits : dépôt de carbonates biogéniques

 $Ca^{2+} + 2 HCO_3^- \longrightarrow CaCO_3 + CO_2 + H_2O$

Contraintes et propriétés fondamentales du système

- $au_{ ext{carbone}} \simeq 100$ ka $au_{ ext{alcalinite}} \simeq 50$ ka
- À long terme (typiquement > 1 Ma)

- À l'échelle glaciaire-interglaciaire (10 100 ka) :
 - * contrainte respectée en moyenne

 \implies fluctuations possibles

- * activités hydrothermale et volcanique peu variables
- * nouvelle contrainte

$$\frac{d\widehat{A}}{dt} - 2 \ \frac{d\widehat{C}}{dt} = C_{\mathsf{sili}} - \overline{C_{\mathsf{sili}}}$$

L'hypothèse d'érosion des silicates

Une consommation accrue de CO_2 par les processus d'érosion, et plus spécialement d'érosion de silicates, pendant les périodes glaciaires contribue de manière significative à réduire la concentration de CO_2 dans l'atmosphère.

Cependant :

- grandes étendues couvertes de glace
- climat plus froid et plus sec

 \implies réduction de l'intensité générale de l'érosion

D'autre part :

- réduction de la roche en fines particules sous l'action des glaciers
- observation : production spécifique de matières dissoutes sur bassins partiellement glacés supérieure à la moyenne

 \implies effet net difficile à prévoir

Modèle du cycle du carbone océanique

Caractéristiques du modèle

Configuration

- Volumes et salinités : niveau de la mer & 5 profils hypsométriques
- Niveau de la mer $\div \Delta \delta^{18}$ O (SPECMAP)
- Températures selon reconstructions

Traceurs modélisés

- *C*_T Carbone inorganique dissous
- A_{T} Alcalinité totale
- PO₄ Phosphate
- O₂ Oxygène
- $p_{CO_2} CO_2$ atmosphérique
- $\delta^{13}\overline{C}$, $\Delta^{14}C$

Circulation océanique

- dérivée de champs d'OGCM (Hamburg)
- calibrée sur distribution de $\Delta^{14}C$

Flux de matière

Flux de matière organique

- Surface \longrightarrow Thermocline et Profond : proportionnel à \mathcal{F}_{PO_4} entrant en Surface
- reminéralisation complète dans les réservoirs Thermoclines et Profonds
- suivant C/N/P = 106/16/1

Flux de carbonate

- Marges continentales
 - Récifs de corail :
 - $\ast \ profondeur < 100 \ m$
 - * vitesse de variation du niveau de la mer
 - * 7,0 × 10¹² mol CaCO₃/an (0–5000 ans AP)
 - Bancs et marges :
 - * ÷ surface immergée
 - * $7,5 \times 10^{12}$ mol CaCO₃/an (0–5000 ans AP)
- Océan ouvert
 - production \div production organique
 - Profond : dissolution/accumulation déterminées par Modèle de colonne sédimentaire

Modèle de colonne sédimentaire

Modèle du cycle du carbone océanique

Reconstructions et simulations Approche par traceurs marins

I. ⁸⁷Sr/⁸⁶Sr de l'eau de mer

- utilisé pour Cénozoïque et Phanérozoïque
- données problématiques

Résultats et conclusions

- érosion des silicates processus non négligeable pour CO₂ atmosphérique
- caractérisation des produits d'érosion des silicates par ⁸⁷Sr/⁸⁶Sr insuffisante
 - \Rightarrow possibilité de construire un scénario d'érosion en accord avec CO₂ de Vostok et 87 Sr/ 86 Sr

Mais :

 Données retirées pour cause de non-reproductibilité

II. Ge/Si de l'eau de mer

Taille de réservoir $: 10^{12}$ mol Si (Ge/Si: 10^{-6} mol/mol)Flux : 10^{12} mol Si/an (Ge/Si: 10^{-6} mol/mol)

Ge/Si marin — méthodologie

- Interprétation de (Ge/Si)_{opale}
 - \star fractionnement biologique (-20%, 0%)
 - * accumulation d'opale (taux const., temps de résid. const.)
 - \star variations du drainage (-20%, 0%, +20%)
 - \star (Ge/Si)_{hyd} (5 × 10⁻⁶, 10 × 10⁻⁶, 20 × 10⁻⁶,)

 \Rightarrow apport fluvial 2 – 3,5 fois plus important au LGM que maintenant

• Conversion Flux de Si \longrightarrow Flux de HCO₃⁻

Étude de la relation intensité d'érosion $\longleftrightarrow [HCO_3^-]_{sili}/[H_4SiO_4]$

- \star moyenne globale : 1,76 \pm 0,10
- ★ Amazone : 1,04 1,10
 Congo/Zaïre : 0,55
- \star \Rightarrow zones tempérées et froides : \sim 3,2

Approche choisie : $[{\rm HCO}_3^-]_{\rm sili}/[{\rm H_4SiO_4}] \equiv 1.76$

Reconstructions et simulations — approche par traceurs marins

Reconstructions et simulations Modèle d'érosion GEM-CO₂

 $GEM-CO_2$ – Global Erosion Model for CO_2 fluxes

- Calcule la consommation de CO₂ atmosphérique et le transfert de HCO₃⁻ correspondant en fonction
 - du type de roche affleurante
 - de l'intensité du drainage
- Problèmes à résoudre pour l'application au Dernier Maximum Glaciaire
 - adaptation de la lithologie actuelle aux conditions géographiques appropriées (glace, marges continentales)
 - reconstruction de l'intensité du drainage

Lithologie actuelle

Drainage UNESCO

Lithologie des marges continentales et couverture de glace au dernier maximum glaciaire

Reconstructions et simulations — modèle d'érosion GEM-CO₂

Reconstruction du drainage Méthodologie

- Contraintes observationnelles \longrightarrow tendances
- Climatologies de GCM : GISS, ECHAM2, LMD4bis, LMD5ter
- 2 méthodes utilisées pour obtenir des distributions de drainage à partir des climatologies de GCM

$$- D^{\text{GCM}} = P^{\text{GCM}} - E^{\text{GCM}}$$

- modèle empirique reliant le drainage à
 - * saisonnalité des précipitations
 - * température
 - * morphologie

 $\Rightarrow D^{\text{GCM}} = fct(P^{\text{GCM}}, T^{\text{GCM}}, \text{param. de terrain})$

•
$$\Delta D = D^{\rm GCM}({\rm LGM}) - D^{\rm GCM}({\rm Actuel})$$
$$D({\rm LGM}) = D({\rm Actuel}) + \Delta D$$

• $\mathsf{GEM}\text{-}\mathsf{CO}_2 \longrightarrow \mathsf{HCO}^-_{3\,(\mathsf{atm})}$ & $\mathsf{HCO}^-_{3\,(\mathsf{tot})}$ au LGM

Apport de bicarbonate par les rivières

Reconstructions et simulations - modèle d'érosion GEM-CO₂

Reconstructions et simulations - modèle d'érosion GEM-CO₂

Conclusions et perspectives futures

- Développement d'un modèle du cycle du carbone océanique
- Test d'une nouvelle hypothèse pour expliquer les variations glaciaires-interglaciaires de CO₂ atmosphérique

Hypothèse d'érosion des silicates

- Deux méthodes pour la reconstruction de la consommation de CO_2 et de la production de HCO_3^-
 - interprétation de traceurs marins
 - modèle d'érosion des continents
- Résultats très contrastés
- Perspectives
 - étude quantitative de l'érosion par les glaciers
 - étude systématique de $[HCO_3^-]_{sili}/[H_4SiO_4]$
 - amélioration du modèle