Modélisation des variations glaciaires-interglaciaires du CO₂ atmosphérique : Rôle de l'érosion continentale

Modelling Glacial-Interglacial Atmospheric CO₂ Variations: The Role of Continental Weathering

Guy MUNHOVEN

Laboratory of Planetary and Atmospheric Physics Institut d'Astrophysique et de Géophysique Université de Liège

25th November 1997

Glacial-Interglacial Atmospheric CO₂ Variations: The Vostok Record

- oscillation between
 - glacial level of 190 200 ppmv
 - interglacial level of 260 280 ppmv
- well correlated to climate

Outline of this Presentation

- 1. The Global Carbon Cycle
 - present-day/pre-industrial
 - glacial-interglacial changes
 - new hypothesis for CO₂ variations
- 2. The Role of Continental Weathering in the Global Carbon Cycle
 - CO_2 consumption and HCO_3^- production
 - silicate vs. carbonate difference
 - influence of variations on atmospheric CO₂
- 3. Model of the Oceanic Carbon Cycle
- 4. Reconstructions and Simulations
 - marine tracers: (⁸⁷Sr/⁸⁶Sr,) Ge/Si
 - erosion model: GEM-CO₂
- 5. Conclusions and Future Work

The Carbon Cycle at Present and at Preindustrial Times

Marine Carbonate Chemistry

Chemical equilibria between carbonate species

$$CO_{2(aq)} + 2 H_2O \rightleftharpoons HCO_3^- + H_3O^+$$
$$HCO_3^- + H_2O \rightleftharpoons CO_3^{2-} + H_3O^+$$

Special roles of different species

- atmospheric $p_{CO_2} \longleftrightarrow [CO_{2(aq)}]_{surface}$
- $CaCO_3$ deposition $\longleftrightarrow [CO_3^{2-}]_{deep}$

Speciation calculated from combinations

• Dissolved Inorganic Carbon

$$C_{\rm T} = [{\rm CO}_{2({\rm aq})}] + [{\rm HCO}_3^-] + [{\rm CO}_3^{2-}]$$

• Total Alkalinity

$$\begin{split} A_{\mathsf{T}} &\simeq [\mathsf{HCO}_3^-] + 2\,[\mathsf{CO}_3^{2-}] + [\mathsf{B}(\mathsf{OH})_4^-] \\ &+ [\mathsf{OH}^-] - [\mathsf{H}_3\mathsf{O}^+] \end{split}$$

General rules

$$C_{\mathsf{T}} \xrightarrow{\oplus} p_{\mathsf{CO}_2} \qquad C_{\mathsf{T}} \xrightarrow{\oplus} [\mathsf{CO}_3^{2-}]$$
$$A_{\mathsf{T}} \xrightarrow{\ominus} p_{\mathsf{CO}_2} \qquad A_{\mathsf{T}} \xrightarrow{\oplus} [\mathsf{CO}_3^{2-}]$$

The Role of Continental Weathering in the Global Carbon Cycle

Sources and Sinks of Dissolved Inorganic Carbon and of Alkalinity in the Ocean

Sources: continental weathering

• carbonate minerals: *congruent* dissolution

 $CaCO_3 + CO_2 + H_2O \longrightarrow Ca^{2+} + 2HCO_3^{-}$

• silicate minerals: incongruent dissolution

silicate mineral $+ b \operatorname{CO}_2 + \operatorname{water} \longrightarrow$ secondary minerals +cations $+ b \operatorname{HCO}_3^- + s \operatorname{H}_4\operatorname{SiO}_4$

Sinks: deposition of biogenic carbonates

 $Ca^{2+} + 2 HCO_3^- \longrightarrow CaCO_3 + CO_2 + H_2O$

The Role of Continental Weathering in the Global Carbon Cycle

Basic Constraints and Properties of the System

- $au_{
 m carbon} \simeq 100 \ {
 m kyr} au_{
 m alkalinity} \simeq 50 \ {
 m kyr}$
- Long time-scales (typically > 1 Myr)

- Glacial-interglacial time-scales (10 100 kyr):
 - * constraint fulfilled on average

 \implies fluctuations possible

- hydrothermal and volcanic activities
 exhibit only little variability
- * new constraint

$$\frac{d\widehat{A}}{dt} - 2 \ \frac{d\widehat{C}}{dt} = C_{\mathsf{sili}} - \overline{C_{\mathsf{sili}}}$$

The Silicate Weathering Hypothesis

An increased consumption of CO_2 by weathering processes — and more specifically by silicate weathering during glacial times plays a significant role in reducing atmospheric CO_2 levels.

However:

- large areas covered by ice-sheets
- climate conditions colder and drier

 \implies reduction of global weathering rates

On the other hand:

- production of fine-grained, easily weatherable materials by glaciers
- observation: specific solute yields from partially glaciated basins much higher than average

 \implies net effect difficult to predict

The Role of Continental Weathering in the Global Carbon Cycle

Model of the Oceanic Carbon Cycle

Model Characteristics

Configuration

- Volumes and salinities: sea level & 5 depth profiles
- Sea level $\div \Delta \delta^{18}$ O (SPECMAP)
- Temperatures from reconstructions

Modelled tracers

- C_T dissolved inorganic carbon
- A_{T} total alkalinity
- PO₄ phosphate
- O₂ oxygen
- p_{CO_2} atmospheric CO₂
- $\delta^{13}\overline{C}$, $\Delta^{14}C$

Water circulation

- derived from Hamburg OGCM velocity field
- calibrated on $\Delta^{14}{\rm C}$ distribution

Material Fluxes

Organic matter fluxes

- Surface \longrightarrow Thermocline and Deep: proportional to \mathcal{F}_{PO_4} entering Surface
- complete remineralization in Thermocline and Deep reservoirs
- following C/N/P = 106/16/1

Carbonate fluxes

- Continental margins
 - Coral-reefs:
 - * depth < 100 m
 - * rate of sea level change
 - * 7,0 × 10¹² mol CaCO₃/yr (0–5000 yr BP)
 - Banks and shelves:
 - * ÷ flooded area
 - * $7.5 \times 10^{12} \text{ mol CaCO}_3/\text{an} (0-5000 \text{ yr BP})$
- Open ocean
 - production \div organic production
 - Deep: dissolution/accumulation determined by Sedimentary Shell Model

Sedimentary Shell Model

Model of the Oceanic Carbon Cycle

Reconstructions and Simulations Tracer-based Approaches

I. Seawater ⁸⁷Sr/⁸⁶Sr

- used for Cenozoic and Phanerozoic studies
- problematic data for glacial-interglacial times

Results and conclusions

- role of silicate weathering processes cannot be neglected for atmospheric CO₂
- insufficient characterization of silicate weathering products by ⁸⁷Sr/⁸⁶Sr
 - \Rightarrow possible to construct weathering scenario both in agreement with Vostok CO_2 and seawater $^{87}Sr/^{86}Sr$ records

But:

- Data withdrawn: impossible to reproduce them
- II. Seawater Ge/Si

<u>Reservoir size</u> : 10^{12} mol Si (Ge/Si: 10^{-6} mol/mol) Flux : 10^{12} mol Si/yr (Ge/Si: 10^{-6} mol/mol)

Seawater Ge/Si — methodology

• Interpretation of $(Ge/Si)_{opal}$

- \star biological fractionation (-20%, 0%)
- * opal accumulation (constant rate/resid. time)
- * runoff variations (-20%, 0%, +20%)
- \star (Ge/Si)_{hyd} (5 \times 10 $^{-6}$, 10 \times 10 $^{-6}$, 20 \times 10 $^{-6}$)

 $\implies \begin{array}{l} \text{riverine dissolved Si flux at LGM} \\ 2 - 3.5 \text{ times present-day value} \end{array}$

• Si flux $\longrightarrow HCO_3^-$ flux conversion

Analysis of

weathering intensity $\longleftrightarrow [\mathsf{HCO}_3^-]_{\mathsf{sili}}/[\mathsf{H}_4\mathsf{SiO}_4]$ relationship

- \star global average: 1,76 \pm 0,10
- ★ Amazon: 1.04 1.10 Congo/Zaire: 0.55
- \star \Rightarrow temperate and cold areas: ~ 3.2

Adopted approach: $[\mathsf{HCO}_3^-]_{\mathsf{sili}}/[\mathsf{H}_4\mathsf{SiO}_4] \equiv 1.76$

Reconstructions and Simulations — Tracer-based Approaches

with biological fractionation of -20%, with constant runoff

Reconstructions and Simulations GEM-CO₂ Erosion Model

 $GEM-CO_2$ – Global Erosion Model for CO_2 fluxes

- calculates atmospheric CO₂ consumption rate and corresponding HCO₃⁻ transfer as a function of
 - outcropping rock type
 - runoff intensity
- Problems to resolve in order to apply GEM-CO₂ under LGM climate conditions
 - adaptation of present-day lithological map to LGM geography (ice, continental margins)
 - reconstruction of LGM runoff distribution

Present-day Lithology

UNESCO Runoff

Continental Margin Lithology and Ice-sheet Extension at the Last Glacial Maximum

Runoff Reconstruction Methodology

- Observational constraints \longrightarrow trends
- GCM climatologies: GISS, ECHAM2, LMD4bis, LMD5ter
- 2 methods used to derive runoff distributions from GCM climatologies
 - $D^{\text{GCM}} = P^{\text{GCM}} E^{\text{GCM}}$
 - empirical model relating runoff to
 - * seasonality of precipitation
 - * temperature
 - * morphology

 $\Rightarrow D^{\text{GCM}} = fct(P^{\text{GCM}}, T^{\text{GCM}}, \text{terrain parameters})$

$$\begin{aligned} \bullet \qquad \Delta D = D^{\mathsf{GCM}}(\mathsf{LGM}) - D^{\mathsf{GCM}}(\mathsf{Present}) \\ D(\mathsf{LGM}) = D(\mathsf{Present}) + \Delta D \end{aligned}$$

• $\mathsf{GEM}\text{-}\mathsf{CO}_2 \longrightarrow \mathsf{HCO}^-_{3\,(\mathsf{atm})}$ & $\mathsf{HCO}^-_{3\,(\mathsf{tot})}$ at LGM

Bicarbonate Transfer to the Ocean

Atmosphere/Lithosphere Contributions 40 Bicarbonate Fluxes (10¹² mol/yr) $HCO_{3(tot)}^{-}$ 35 30 HCO_{3 (atm)} 25 20 0 50 100 150 Age (kyr BP) Silicate/Carbonate Contributions 20 Atmospheric CO₂ Consumption (10¹² mol/yr) Silicate Rock Weathering 15 Carbonate Rock Weathering 10 GISS (Empirical) ECHAM2 (P-E) 5 ECHAM2 (Empirical) LMD4bis (P-E) LMD4bis (Empirical) LMD5ter (P-E)0 0 50 100 150 Age (kyr BP)

Reconstructions and Simulations — GEM-CO_2 Erosion Model

Reconstructions and Simulations — GEM-CO_2 Erosion Model

Conclusions and Future Work

- Development of an oceanic carbon cycle model
- Test of a new hypothesis to explain glacial-interglacial atmospheric CO₂ variations

Silicate Weathering Hypothesis

- Reconstruction of CO₂ consumption and HCO₃⁻ production rates based on two different methods
 - interpretation of marine tracers
 - model of continental erosion
- Contrasting Results
- Perspectives
 - quantitative study of the impact of glaciers on global weathering rates
 - systematic analysis of $[HCO_3^-]_{sili}/[H_4SiO_4]$
 - further development of the carbon cycle model