

Nicolas De Cock, Mathieu Massinon, Frédéric Lebeau Université de Liège, Gembloux Agro-Bio Tech

Introduction • O

Goal Methods

Conclusions Results

Agricultural spray application

Deposition

From the nozzle to the plant → Effect of the size on droplets driftability

Retention

Droplet impacts on the plant surface \rightarrow Effect of the droplets energy on the retention

$$We = \frac{\rho v^2 l}{\sigma}$$

Spray characterization techniques

- Laser diffraction spectrometry (LDS) Droplet size
- Phase Doppler Anemometry (PDA)
 - Droplet size and speed
- Particle/Drop Image Analysis (PDIA)
 - Based on image analysis
 - Droplet size and speed

Need coherent light (laser) → High cost

 Based on optic theory

→ Require liquid optical properties

Objective

Development of a versatile, low cost and accurate **spray characterization tool** based on high speed imaging

Introduction Goals Methods OOO Results Conclusions

Image acquisition set-up

Introduction Goals

Methods OOO Results Conclusions

Out of focus drops rejection

Determination of focus parameter threshold

Introduction Goals Methods OO Results Conclusions

Velocity measurement

Droplet tracking based on:

Droplet size

Most probable displacement

 $D_{max} = v_{max} \Delta t$

 θ deviation in respect to the main flow

Introduction Goals Methods OOO Results Conclusions

Sampling probality

Nicolas De Cock

Experiment conditions

- Simultaneous measurements with PDA and shadowgraphy
 - Teejet TP 11001 at 4.5 bars
 - ► Tap water

Introduction Goals Methods **Results** O Conclusions

Techniques comparison

Drop size distribution

Distribution parameters

	PDA	Shadowgraphy
D _{v10} [μm]	91,5	73,8
D _{ν50} [μm]	132,4	124,3
D _{ν90} [μm]	178,0	202,1
Relative Span Factor (RSF)	0,665	1,033
Number of drops	71 999	39 815

$$RSF = \frac{Dv_{90} - Dv_{10}}{Dv_{50}}$$

Conclusions

- An image processing method has been presented
- Good agreement between PDA and imagery technique has been found

Further work

Assessment of the technique capability for distinguishing the BCPC categories

Thanks for you attention !

Questions ?

Introduction Goals Methods Results Conclusions

Appendix

Spray formation

Droplet impacts

Nicolas De Cock

Appendix

Correction factor (slide 11)

