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In this talk we show how it is possible to apply the general scheme of effective scat-

tering theory to the description of hadronic processes. We perform the numerical

tests of the tree level bootstrap constraints for renormalization prescriptions in the

case of elastic kaon-nucleon scattering process.

1 Introduction

In papers [2]-[4] an attempt is made to develop an effective field theory formalism suitable

for description of hadronic scattering processes (see also [1]). It was shown that the

requirements of consistency of perturbation series for scattering amplitude lead to certain

restrictions for the effective Hamiltonian parameters that are called bootstrap equations.

Actually, we are unable to solve the bootstrap system explicitly. So, roughly speaking,

the only way to check the consistency in our effective theory approach is the numerical

testing.

An important property of the bootstrap system is its renormalization invariance.

This property allows one to compare with experiment the results that follow already

from the tree level bootstrap system. In many cases this data fitting leads to reasonable

consequences. This can be considered as a strong evidence in favor of consistency of our

approach. The similar verification was successful in the cases of πK [2] and πN elastic

scattering processes (see references in [1]).

In this talk we discuss the application of our formalism to the case of KN elastic

scattering. The resonance spectrum of KN reaction is measured with much less precision
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than that of πN reaction. However, it is possible to single out the set of sum rules that

are well saturated by the known experimental data.

On the other hand, those sum rules that are not so well saturated with available data

permit us to speculate about the possible scenarios that allow to amend the situation.

So here we also aim to show that our approach is a powerful tool to study the resonance

spectrum.

2 Bootstrap for KN scattering

The amplitude of KN elastic scattering M
βj

αi = 〈Nβ(k′)Kj(p
′) |(S − 1)|Nα(k)Ki(p)〉

can be presented in the following form:

M
βj

αi = δ β
α δ

j
i M+(λ, λ′) + δ j

α δ
β

i M−(λ, λ′),

where M±(λ, λ′, s, t, u) = u+(λ′, k′)
{
A±(s, t, u) + p̂+p̂′

2 B±(s, t, u)
}

u−(λ, k). Here k, k′

(p, p′) stand for the nucleon (kaon) momenta, p̂ ≡ pµγµ; α, i, β, j = 1, 2 are the isospin

indices; λ, λ′ stand for nucleon spin variables; u(k′, λ′), u(k, λ) — for Dirac spinors.

Invariant amplitudes A± and B± are the functions of an arbitrary pair of Mandelstam

kinematical variables s, t, u.

The detailed theoretical background of our calculations is discussed in [1]. Here we

shall only briefly recall the main steps needed to construct the set of tree level bootstrap

constraints for renormalization prescriptions (RP’s) in KN reaction.

We work in the framework of the general formalism of effective theories. This means

that the corresponding interaction Hamiltonian contains all local terms consistent with

given algebraic symmetry requirements. We consider a very narrow class of so-called

localizable effective theories. In this case to construct a consistent tree level approximation

it is necessary to turn to the extended perturbation scheme which, along with the fields

of stable particles, also contains an infinite number of fields corresponding to auxiliary

unstable ones (resonances) of arbitrary high spin and mass. The tree level amplitude

of a scattering process 2 → 2 calculated in this formalism takes a form of an infinite

sum of resonance exchange graphs plus another (also infinite) sum of all possible contact

terms. Thus one needs to establish certain guiding principle that would allow to fix the

order of summation of this formal series for tree level amplitude. This problem can be

solved by passing to the minimal parametrization (see [4]) and by using the method of

Cauchy forms. Minimal parametrization allows one to get rid of those combination of

Hamiltonian parameters which do not contribute to the renormalized S-matrix. It can be
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shown that the tree level amplitude is completely determined by the values of three-leg

minimal vertices (in some cases, one also needs to impose one additional RP fixing the

value of the amplitude at certain kinematical point).

The method of Cauchy forms allows one to present the tree-level 2 → 2 scattering am-

plitude as a uniformly convergent series of pole contributions in three mutually intersect-

ing (near the corners of Mandelstam triangle) layers Bs{s ∼ 0}, Bt{t ∼ 0}, Bu{u ∼ 0}.

Bootstrap system naturally arises as a requirement that the Cauchy forms (different in

different layers) should coincide in the domains of intersection of layers. For example, let

us consider the system of those tree level bootstrap constraints for A− invariant ampli-

tude which appear from the domain where the layers Bs and Bu intersect. Namely, the

difference of Cauchy forms in two layers Ã−(s, u)
∣∣∣
Bs

− Ã−(u, s)
∣∣∣
Bu

≡ Φ−
A(u, s) should

be identically zero in the vicinity of the point s = 0, u = 0:

∂p+k

∂uk∂sp
Φ−

A(u, s)

∣∣∣∣
u=0

s=0

= 0, p, k = 0, 1, 2, ... . (1)

The explicit form of the generating function Φ−
A(u, s) is given in the Appendix.

The point of major importance is that, if the calculations are carried out in the

scheme of renormalized perturbation theory with on-shell normalization conditions, the

bootstrap equations are nothing but a system of restrictions for the admissible values of

RP’s (real parts of pole positions and triple couplings). In that way bootstrap system

results in a set of constrains for observable physical spectrum of the theory. Thus once

established on the tree-level, these relations must also hold at higher loop orders, just

because at each loop order one should impose the same RPs. This explains our direct

use of the experimental values of resonance masses and coupling constants (e.g. given in

[5]) to perform the numerical comparison with data. If our scheme is somehow suitable

for the description of physical world the bootstrap constrains must hold.

3 Numerical tests

Now we pass to our numerical tests. As a first example we show how it is possible to

obtain the estimate for the GΣ(1385)KN coupling with the help of sum rules that follow

from the bootstrap system. Our first goal is to find the sum rules that can be saturated

with a small number of well established resonances. The up-to-date information on the

KN resonance spectrum is incomplete in the region of high mass and spin. Much is

unclear with M > 1 GeV meson resonances in the t-channel of elastic reaction. One also
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needs to keep in mind the possible existence of s-channel S = +1 exotic resonances. Let

us consider the sum rule that follows from the bootstrap condition (1) for the invariant

amplitude A− and corresponds to k = p = 1. It turns out that in this sum rule the

contributions of certain not well established resonances is wiped out. This sum rule can

be considered as purely baryonic one (only baryons with J = 3
2 , 5

2 , ... can contribute),

because in the meson sector only isospin 1 resonances of odd spin J ≥ 3 (e.g., ρ3(1690))

can in principle contribute to it. An assumption is made that heavy meson contributions

are suppressed by small ∼ 1
M

factors. In our present analysis we also will not take account

of possible contributions of exotic resonances with strangeness S = +1. However, in what

follows we show that several sum rules provide an indirect evidences in favor of existence

of exotic resonances.

Thus we try to saturate our sum rule by the contributions of baryons with masses

M < 2 GeV and spins J ≤ 5
2 (see [5]). Imputing the deficit to the unknown contribution

of Σ(1385) we can estimate the value of Σ(1385)KN coupling constant. This gives:

GΣ(1385)KN = 1.3 ± 0.4. The experimental value of this constant (see, e.g., [6] p.61) is:

GΣ(1385)KN = 1.06 ± 0.13. The agreement looks impressive. However, there are several

sufficiently well established resonances with M > 2 GeV . The large contribution of

Λ(2100) seems to slightly disturb the sum rule. This gives: GΣ(1385)KN = 1.5 ± 0.7.

This shift can be compensated by the contributions of Σ(2100) and of the other heavy

Σ resonances in this region.

It is very instructive to consider also the sum rules which follow from the bootstrap

constrains for A− (1) with many derivatives. These sum rules can be well saturated with

the reliable experimental data on S = −1 baryon spectrum with J = 3
2 , 5

2 (mesons with

J = 0, 1, 2 do not contribute). This gives a strong evidence in favor of consistency of our

approach, because the shape of these sum rules crucially depends on our assumptions

(in particular, on the concrete formulation of the summability principle [1]). The results

are presented in the Table 1. The fact that the balance becomes worse with the growth

of k shows that the contribution of baryons with spin J > 5
2 becomes relatively more

important in these sum rules.

However, not all sum rules are well saturated with known data. For example the

sum rules for A+ look very nasty. At first glance, nothing could compensate the huge

positive contribution of (I = 1, J = 3
2 ) resonances nearest to the KN threshold. There

are certain possibilities to overcome this difficulty. First of all, it is interesting to notice

that a similar situation was encountered in the “toy bootstrap model” [3] based on

Veneziano string amplitude. In certain sum rules for the resonance parameters of the
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p k Sum Rule p k Sum Rule

0 1 13.0 ÷ 19.8 ≃ 19.8 ÷ 24.7 1 1 15.3 ÷ 24.2 ≃ 13.7 ÷ 21.8

0 2 20.7 ÷ 25.7 ≃ 23.4 ÷ 28.4 1 2 16.2 ÷ 22.7 ≃ 14.9 ÷ 21.2

0 3 48.0 ÷ 55.1 ≃ 43.8 ÷ 50.9 1 3 23.6 ÷ 31.2 ≃ 23.8 ÷ 32.4

0 4 151.0 ÷ 167.3 ≃ 111.4 ÷ 125.1 1 4 44.0 ÷ 55.7 ≃ 50.2 ÷ 66.5

1 0 23.8 ÷ 48.5 ≃ 24.3 ÷ 43.2 1 5 99.8 ÷ 123 ≃ 131.4 ÷ 171.8

.

Table 1: Saturation of sum rules (1) for different values of p, k.

string amplitude it is sufficient to take into account the contribution of a relatively small

number of first poles to saturate it with high precision. At the same time, in some another

sum rules it is necessary to sum over the contributions of considerable number of poles

to compensate the “accidentally large” contribution coming from several first poles. It is

possible that heavy resonances with JP = 3
2

+
and JP = 5

2

+
could in principle gradually

compensate the large contribution of Σ(1385). The same mechanism could work for other

sum rules from this group with k > 1. Another interesting possibility is to interpret the

deficit in these sum rules as an indirect evidence for the existence of exotic baryons with

strangeness S = +1 (so-called Z or θ baryons). One can easily check that the contribution

of a baryon with S = +1 and JP = 3
2

+
below the KN threshold, or of a JP = 3

2

−
baryon

above it, can significantly compensate the deficit. However, one is forced to assume the

existence of at least two exotic baryons with isospin 0 and 1, respectively. Otherwise, it

is impossible to attain the mutual cancellation of the contributions from exotic sector in

those sum rules which are satisfactorily saturated with the S = −1 baryons.

4 Conclusions

The numerical tests (that were carried out for πN , KN , πK and ππ reactions) make it

possible to conclude that our approach, at least, does not roughly contradict to presently

known phenomenology. However, at the moment we are unable to give an answer to

the main question: “How many independent RP’s are needed to fix the physical content

of effective scattering theory?” To answer it, we need to somehow solve the bootstrap

system. A possible way to solution is provided by the application of general theory

of analytic continuation along with the tool of infinite-dimensional matrices. We also

need to study if the higher order bootstrap constrains (1-loop, ...) impose additional
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restrictions on the set of RP’s or just follow from the tree-level bootstrap.
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Appendix

Here we give the explicit expressions for the baryon part of the generating functions of

bootstrap system for the amplitude A−: Φ−
A(u, s) =

∑
S=+1

c
−

I
GRsKN F l

A
(−NM,−(Σ+u))

s−M2 −
∑

S=−1

b
−

I
G

RuKN
F l

A
(−NM,−(Σ+s))

u−M2 . The residue of the amplitude in the pole corresponding

to a baryon resonance of strangeness S = ±1, isospin I, spin j = l + 1
2 , normality N and

mass M is given by F l
A(M, χ) = (M + m)P ′

l+1(1 + χ
2φ

) + (M −m) (M+m)2−µ2

(M−m)2−µ2 P ′
l (1 + χ

2φ
).

Here P ′
l stands for derivatives of ordinary Legender polynomials; m (µ) is the nucleon

(kaon) mass; φ =
−→
k 2

C.M.F ; b−I , c−I are the isotopic coefficients; Σ = M2 − 2(m2 + µ2);

GRKN is the dimensionless coupling constant.
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