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Abstract. We discuss the basic principles of constructing a meaningful perturbative scheme for
effective theory. The main goal of this talk is to explain the approach and to present recent results
[1] – [5] obtained with the help of the method of Cauchy forms in several complex variables.

Our work is aimed to develop a field-theoretic scheme providing the basis for dual
models and, simultaneously, a link between two methods – the quantum field theory and
the analytic theory of S-matrix. Besides, it concerns with the problem of renormalization
of conventionally nonrenormalizable theories.

We rely on Weinberg’s general scheme (see Chs. 2-5 of [6]) of constructing a quantum
theory in terms of field operators that create and annihilate the true asymptotic states
(corresponding to stable particles). Following [7], we call a theory effective if the
interaction Hamiltonian (in the interaction picture) contains all terms consistent with the
requirements of a given algebraic (linear) symmetry. The scheme is quantum ab initio
and the problem of dynamical (nonlinear) symmetries requires special consideration.
Here we do not discuss it.

We only consider a special class of localizable effective theories. An initial effec-
tive theory (constructed according to Weinberg’s scheme solely from the fields of true
asymptotic states) is called localizable if its tree level amplitudes can be reproduced
in the framework of the well-defined tree level approximation based on the Hamilto-
nian of extended effective theory which – along with the fields of stable particles – also
contains complementary auxiliary fields corresponding to fictitious unstable particles
(resonances) of arbitrary high spin and mass. This implies that infinite sums of graphs
providing formal expressions for tree level amplitudes of the initial theory converge, at
least in certain small domains of the corresponding complex spaces. The existence of
such domains is, in any case, necessary to assign meaning to the initial theory. It is pre-
cisely those domains where the tree level amplitudes of both theories must coincide with
each other. Thus the extended theory just provides an analytic continuation of the tree
level amplitudes constructed in the framework of the initial effective theory. In fact, our
approach is just an attempt to extend Weinberg’s quasiparticle method (see [8] and refs.
therein) to the case of relativistic quantum theory.

It should be stressed that we only consider the case when the extended effective theory
(as well as the initial one) does not contain massless particles of spin J > 1/2. Besides,
we are only interested in constructing the effective scattering theory – the calculation of



Green functions is not implied. This means that the renormalization procedure possesses
certain specific features allowing one to avoid attracting unnecessary renormalization
prescriptions. The divergences which might occur in Green functions off the mass shell
never bother us.

The last point deserves comment. In the case of customary renormalizable theories
the number of renormalization prescriptions (RP) fixing the finite parts of counterterms
is equal to that of coupling constants in the Hamiltonian (including mass and kinetic
terms), this latter one being finite. “Hidden” couplings create no problem (see, e.g., [9]).
In case of effective theories the situation looks quite different. They are renormalizable
by construction because all possible local monomials are presented in the Hamiltonian.
The problem is that the number of coupling constants is essentially infinite. This means
that, to obtain finite results for all Green functions, one needs to point out a complete
self-consistent infinite set of independent RP’s. The structure of this set must provide
a guarantee of convergence of infinite series appearing at every given order of loop
expansion due to the presence of field derivatives of arbitrary high degree and order in the
effective Hamiltonian. Otherwise, the resulting amplitudes would make no sense. The
problem of constructing of such a set looks unsolvable until we have no regularity fixing
its structure (possibly, up to a finite number of independent constants). The requirement
of localizability is extremely useful in this very respect. As shown in [4], [5], in case of
effective scattering theory it is possible to perform a detailed classification of parameters
(combinations of coupling constants) appearing in expressions for the renormalized S-
matrix elements of extended effective theory. This allows one to separate a group of
resultant parameters. This group only contains the parameters which do contribute to
renormalized S-matrix elements and thus require formulating the RP’s. Finally, it is
possible to show that crossing symmetry together with the requirement of convergence
impose strong limitations on the allowed values of resultant parameters. In the case of
tree level parameters describing the amplitudes of binary processes these limitations
take a form of an infinite system of (algebraic) bootstrap equations connecting the
values of the resultant coupling constants and the mass parameters appearing in the
Hamiltonian. It is a direct consequence of the postulated properties of meromorphy
and polynomial boundedness of the tree level amplitudes in every 3-dimensional band
Bx{x ∈R, x∼ 0; νx ∈C}, where x stands for (real) momentum transfer and νx – for the
corresponding (complex) energy-like variable.

We demand such properties for the following reasons. First, the polynomial bound-
edness property of the full (non-perturbative) amplitudes follows from the general ax-
iomatic requirements. Hence it makes sense to construct the perturbation series in such
a way that at every step the perturbative amplitude possesses the property of polynomial
boundedness with the same degree of bounding polynomial as that of the full (non-
perturbative) amplitude – this gives a chance to avoid strong corrections from the higher
order terms. Besides, this requirement provides a guarantee that we deal with tempered
distributions. Second, the property of meromorphy of tree level amplitudes follows from
the summability requirement. The meaning of this term can be explained as follows. At
every given order of loop expansion we have to take account of an infinite number of
graphs. In absence of guiding principle fixing the summation order there is a danger ei-
ther to get diverging series or to fall in contradiction with basic properties like crossing
symmetry. That is why it looks reasonable to impose the summability requirement in the



following form. In every sufficiently small domain of the complex space of kinematical
variables there must exist an appropriate order of summation of the formal sum of con-
tributions coming from the graphs of a given loop order, such that the reorganized series
happens convergent. Altogether, these series must define a unique analytic function with
only those singularities which are presented in contributions of individual graphs or can
be reproduced in the framework of the same loop order of extended theory containing
auxiliary fields corresponding to unstable particles. This definition can be considered
as a generalization (or, better, detailing) of the localizability requirement. From this for-
mulation it follows that to study the most general localizable effective theory it is quite
sufficient to consider the case of extended theory with no ad hoc limitations on the
structure of set of resonance parameters. In turn, this means that the tree level ampli-
tudes of the extended theory must be meromorphic functions of kinematical variables.
They must be polynomially bounded in certain energy-like variables at fixed values of
the other ones,the degree of bounding polynomials being dictated by unitarity.

Here it is pertinent to stress one point. To present the results of resonance saturation
of dispersion relations (DR) for the amplitudes with nondecreasing asymptotic behavior
the following form is often used:

A(z,x) = P(z,x)+
∞

∑
k=1

[
rk(x)

z− pk(x)

]
. (1)

Here z stands for energy-like variable, x – for any real parameter (say, the momentum
transfer) and P(z,x) – for so-called subtracting polynomial in z with the coefficients
depending on x. However, it should be noted that in the case of infinite number of
resonances this form is to be taken just as a formal one. Usually, it is tacitly assumed that
the series of pole contributions in the RHS converges. Unfortunately, this is not always
true (see, e.g., [11]). This suggestion imposes too strong limitations on the values of
resonance parameters rk(x) and pk(x). In fact, it states that resonances do not affect
the asymptotic behavior of the amplitude in question. In case of strong interactions this
looks too restrictive. For this reason in our work we use the method of Cauchy forms
specially adjusted for the case of several variables (see [2], [4]); this allows us to avoid
implicit postulating of the resonance spectrum properties. Using this method it is easy
to write down the most general form of the result. In case when the amplitude has only
simple poles at zk = pk(x) 6= 0 with residues rk(x) and behaves, say, like a constant (it
only makes sense to speak about the contour asymptotics) for x ∈ (a,b) and |z| → ∞, it
looks as follows

A(z,x) = A(0,x)+
∞

∑
k=1

[
rk(x)

z− pk(x)
+

rk(x)
pk(x)

]
, x ∈ (a,b). (2)

It is possible to show (see [2]) that in this case the functional series Sn = ∑∞
k=1

rk(x)
pn

k(x)
is certainly convergent for n ≥ 2 and may happen divergent for n < 2. In case when
S1≤M < ∞ the only possibility to fulfil the postulated asymptotic behavior is to demand
that A(0,x) 6= 0. This means that the asymptotics is completely formed by A(0,x), i.e.,
the contribution of resonances is irrelevant. These problems disappear if one uses the
Cauchy form (2).



The summability requirement imposes certain restrictions on the parameters of theory.
As shown in cited above papers, those restrictions for the tree level parameters follow
from the condition of identical coincidence of two Cauchy forms representing the
amplitudes of cross-conjugated processes. Each one of these forms is only applicable
in the corresponding 3-dimensional band (layer). In the intersection of those layers both
forms are equally applicable and thus must coincide. This requirement leads to an infinite
system of algebraic relations between the resultant parameters.

The corresponding mechanism may be illustrated by the following example. Consider
a rational function of two complex variables F(x,y). Let us suppose it has a single simple
pole (in x) in the layer By{ y ∈ R, y ∈ (−η ,+η); x ∈ C} and also a single simple pole
(in y) in the ‘orthogonal’ layer Bx{ x ∈ R, x ∈ (−ξ ,+ξ ); y ∈ C}. Let us also assume
that F(x,y) is decreasing at infinity in each layer and that it is regular at the origin
M(0,0). Now let us try to answer the following question: what is the structure of the
set of numerical parameters providing a complete description of functions that possess
these properties?

Every function regular at the origin is completely fixed by the coefficients fi j of its
series expansion F(x,y) = ∑ fi jxiy j. The above question can be rephrased in a more
concrete way: how many independent combinations of these coefficients can be arbitrary
and what are these combinations? Or, in terms of field theory: how many independent
renormalization prescriptions is it necessary to impose in order to completely fix the
amplitude F(x,y) and what is the explicit form of those prescriptions?

In the layer By we have F(x,y) = ρ(y)
x−π(y) . By condition, the functions ρ(y) and π(y) are

regular in the vicinity of the origin. Hence, π(y) = ∑πiyi, ρ(y) = ∑
i=0

ρiyi. By analogy,

in Bx: F(x,y) = r(x)
y−p(x) , where p(x) = ∑ pixi ,r(x) = ∑ rixi. Hence in the intersection

domain Bx∩By ≡ Dxy:

r(x)
y− p(x)

=
ρ(y)

x−π(y)
, (x,y) ∈ Dxy{x ∈ (−ξ ,+ξ ), y ∈ (−η ,+η)} . (3)

Substituting π(y), ρ(y), p(x) and r(x) into (3), we obtain an infinite system of conditions
on the coefficients pk,rk,πk,ρk:

ri+1π0− pi+1ρ0 = ri, ρi+1 p0−πi+1r0 = ρi, ri+1 p j+1 = ρi+1π j+1 i, j = 0,1, ... (4)

This system provides an example of what we call the bootstrap equations. Once solved,
it permits to express the parameters pi,ri in terms of πi,ρi. So it gives an answer to the
question wether it is possible to carry out the analytic continuation from one layer to
another. This is an infinite system of equations with respect to 2×∞ (formal notation!)
unknown parameters, needed to reexpress the function F(x,y) in the layer Bx in terms of
the parameters defining it in the layer By. In general, it is very difficult to find solutions
of such systems and even to show their solvability. Fortunately, in this simple example
it turns out possible to write down the solution in explicit form. Separating the variables
in (3), taking derivatives and solving the corresponding ordinary differential equations,
one finds:

F(x,y) =
ad +bc

−d +axy+bx+ cy
. (5)



The important property of this result is that it contains only 4 arbitrary parameters! This
means that the infinite system (4) only happens consistent if the function F(x,y) defined
in the layer By belongs to the four-parametric family (5). This is the only case when
there exists the analytic continuation of this function from By into Bx with the desired
properties. It is clear that in this case the continuation is unique.

This exercise gives an idea of the “power” of bootstrap restrictions. The direct analysis
of the system (4) would lead to the same conclusion. In this simple example it happens
possible. Unfortunately, the regular method of solving infinite algebraic systems is not
known, except few trivial cases.

With the help of (5), one can express the parameters fi j = fi j(a1,a2,a3,a4) in terms
of “fundamental constants” ai (i = 1, . . . ,4). Then one can choose four arbitrary co-
efficients fk (k = 1,2,3,4) (or four arbitrary combinations) that allow the inversion
ai = ai( f1, ..., f4), and impose arbitrary “renormalization prescriptions” for these four
quantities. The values of all other parameters should respect the conditions (4).

So, to fix the amplitude F(x,y) uniquely it is sufficient to impose four independent
renormalization prescriptions defining the “fundamental” constants a,b,c,d.

Precisely the same mechanism provides the system of bootstrap constraints for the
parameters of pion-nucleon resonances (see [10]). The most important feature of this
system is the renormalization invariance: bootstrap equations are nothing but the re-
strictions for renormalization prescriptions. This very property allows us to compare
the bootstrap equations directly with known experimental data.
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