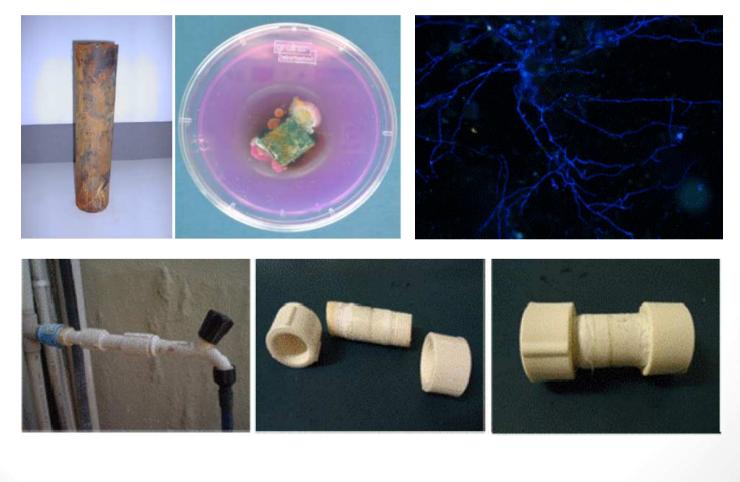
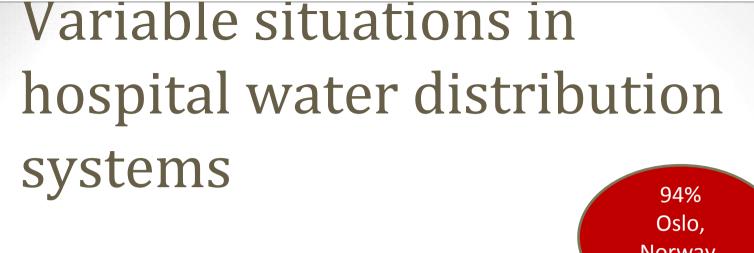


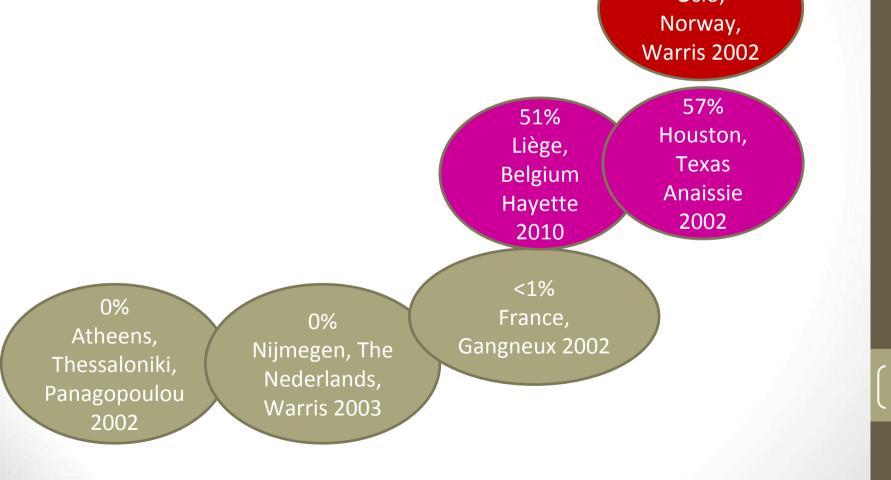
BELGISCHE VERENIGING VOOR MENSELIJKE EN DIERLIJKE MYCOLOGIE

SOCIETE BELGE DE MYCOLOGIE HUMAINE ET ANIMALE


FILAMENTOUS FUNGI IN HOSPITAL DISTRIBUTION SYSTEMS: WHAT IS THE RISK?

MARIE-PIERRE HAYETTE University Hospital of Liège

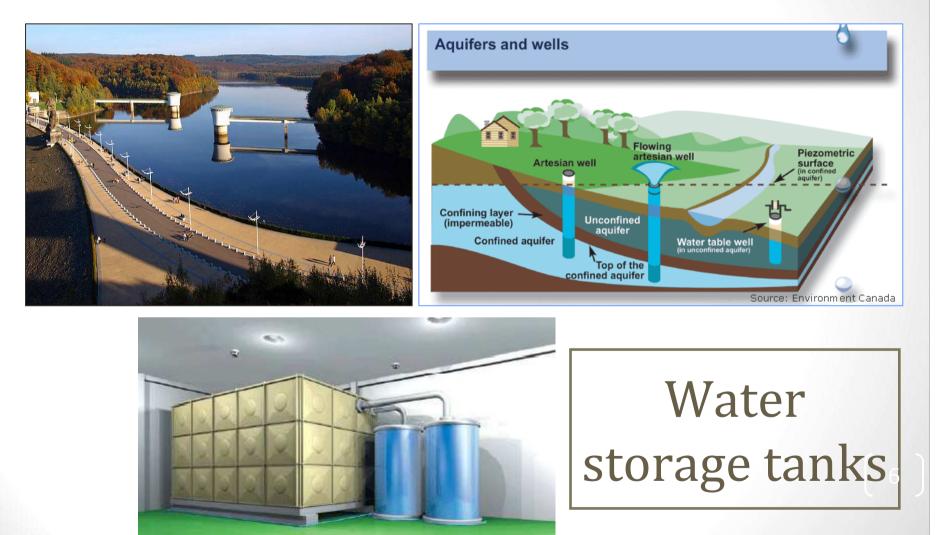




Presence of fungi in biofilms

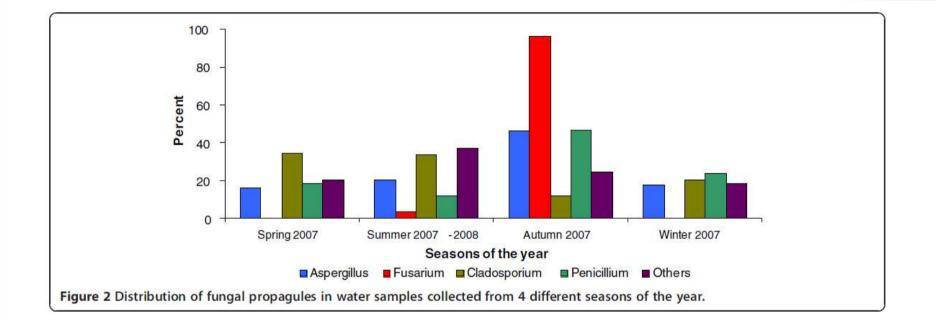
Siqueira V. IJERPH 2011

Surveys : 1996-2003


Country, Place, Period of time Year		Type of	Main isolation	Most frequent fungal isolates	
		water	method		
United Kingdom,	United Kingdom, Autumn and		Membrane	Aspergillus, Cladosporium,	
1996	Spring	network	filtration, Direct	Epicoccum, Penicillium and	
			plating and Bating	Trichoderma	
Greece,	One collection	Tap water	Membrane	Penicillium, <u>Aspergillus</u> and	
Thessaloniki,	(126 samples)	(hospital and	filtration	Acremonium	
1998		community)			
Greece, 85	One collection	Municipal water	Membrane	Penicillium and Aspergillus	
haemodialysis	(255 samples)	supplies of	filtration		
units, 1998		haemodialysis			
		centres			
Germany, North	12 months	Drinking water	Pour-plating	Acremonium, Exophiala,	
Rhine-Westphalia,				Penicillium and Phialophora	
1998/9					
Norway,	December,	Drinking water	Membrane	Penicillium, Trichoderma	
14 networks,	June and	(surface and	filtration	and <u>Aspergillus</u>	
2002/3	September	groundwater)			

Siqueira V. IJERPH 2011

SURVEYS 2004-2010


Country, Place, Year	Period of time	Type of water	Main isolation method	Most frequent fungal isolates
Portugal, Braga,	12 months	Tap water	Membrane	Penicillium and
2003/4			filtration	Acremonium
Pakistan, Karachi,	One collection	Water	Direct plating	Aspergillus niger and
2007	(30 samples)	(and fruit juice)		A. clavatus
Australia,	18 months	Municipal water	Membrane	Cladosporium, Penicillium,
Queensland, 2007/8			filtration	Aspergillus and Fusarium
Brazil, Recife,	5 months	Water treatment	Membrane	Penicillium, <u>Aspergillus</u>
2009/10		plant; tap water	filtration	and <i>Phoma</i>
Portugal, Lisbon,	4 months	surface water;	Membrane	Aspergillus, Cladosporium,
2010		spring water; groundwater	filtration	Penicillium
Belgium, Liège	4 months	Гар water+MDS	Membrane filtration	Fusarium, Aspergillus. Penicillium, Paecilomyces
			Siqueira V	. IJERPH 2011

Origin of the water

Warris A CID 2002

Highest concentration in autumn

Mesquita-Rocha S, BMC Infect Dis 2013

Fusariosis Associated with Pathogenic Fusarium Species Colonization of a Hospital Water System: A New Paradigm for the Epidemiology of Opportunistic Mold Infections

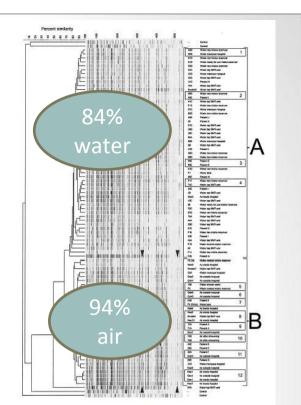
Elias J. Anaissie,¹ Robert T. Kuchar,² John H. Rex,² Andrea Francesconi,⁴ Miki Kasai,⁴ Frank-Michael C. Müller,⁴ Mario Lozano-Chiu,² Richard C. Summerbell,⁵ M. Cecilia Dignani,¹ Stephen J. Chanock,⁴ and Thomas J. Walsh⁴ Houston university Hospital, Texas, 2001 Numerous cases of *Fusariosis over a 10- year period*

- 162/283 (57%) *Fusarium sp. in* water samples
- 18 strains of *F. solani* from patients/17 *F. solani* from environment

Table 2.Molecular biotyping profiles of related strains of *Fusarium solani* isolated from patient and environmentalsamples from a hospital in Houston, Texas.

	Pattern score, by laboratory and testing method ^b					
Type of matched isolate,	Laboratory A			Laboratory B:		
by source; isolate no. ^a	RAPD RFLP		IR-PCR	RAPD	Relatedness ^c	
Patient-environment						
<mark>1</mark> 381, 1370	Highly probable	Probable	Probable	Highly probable	Probably related	
1379, 1369	Probable	Highly probable	Probable	Probable	Possibly related	
Patient-patient						
1328, 1379	Probable	Highly probable	Highly probable	Probable	Probably related	
1242, 1319	Highly probable	Probable	Probable	Highly probable	Probably related	
1317, 1377	Highly probable	Probable	Probable	Highly probable	Probably related	
Environment-environment						
1368, 1370	Probable	Highly probable	Probable	Probable	Possibly related	

Fusariosis Associated with Pathogenic Fusarium Species Colonization of a Hospital Water System: A New Paradigm for the Epidemiology of Opportunistic Mold Infections


Elias J. Anaissie,' Robert T. Kuchar,² John H. Rex,² Andrea Francesconi,⁴ Miki Kasai,⁴ Frank-Michael C. Müller,⁴ Mario Lozano-Chiu,² Richard C. Summerbell,⁵ M. Cecilia Dignani,¹ Stephen J. Chanock,⁴ and Thomas J. Walsh⁴ Houston university Hospital, Texas, 2001 Numerous cases of *Fusariosis over a 10- year period*

- 1. First study that demonstrates that water is a **reservoir** for opportunistic fungi
- 2. Genetically diverse strains of *F. solani* can contaminate the water system and persist for years
- 3. WDS can disseminate the fungi by way of aerosols from shower and sink
- 4. Isolates of *Fusarium* can cause nosocomial infections

Molecular Epidemiology of *Aspergillus fumigatus* Isolates Recovered from Water, Air, and Patients Shows Two Clusters of Genetically Distinct Strains

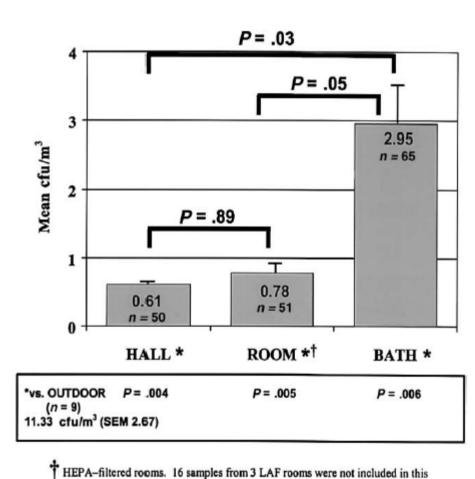
Adilia Warris,^{1,2,3}* Corné H. W. Klaassen,⁴ Jacques F. G. M. Meis,⁴ Maaike T. de Ruiter,⁴ Hanneke A. de Valk,⁴ Tore G. Abrahamsen,⁵ Peter Gaustad,³ and Paul E. Verweij^{2,6}

- University Hospital of Oslo, Norway_18 months
- Sampling of water, air, patients with IA
- Genotypic study

- **1.** A. fumigatus in strains were clustered in 2 different genetic groups
- 2. Intake reservoir is the source of *A. fumigatus* strains found in tap water inside the hospital

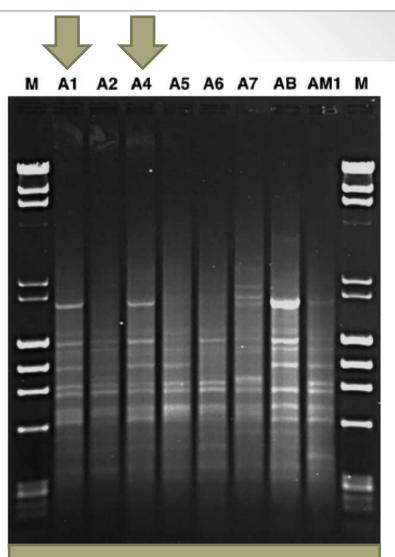
Warris A, JCM 2003

Pathogenic *Aspergillus* Species Recovered from a Hospital Water System: A 3-Year Prospective Study


Elias J. Anaissie,¹ Shawna L. Stratton,¹ M. Cecilia Dignani,¹ Richard C. Summerbell,³ John H. Rex,⁴ Thomas P. Monson,² Trey Spencer,¹ Miki Kasai,⁵ Andrea Francesconi,⁵ and Thomas J. Walsh⁵

Study conducted in the Hospital of Little Rock, Arkansas

 Comparison of genotypic profile of environmental strains and patients isolates

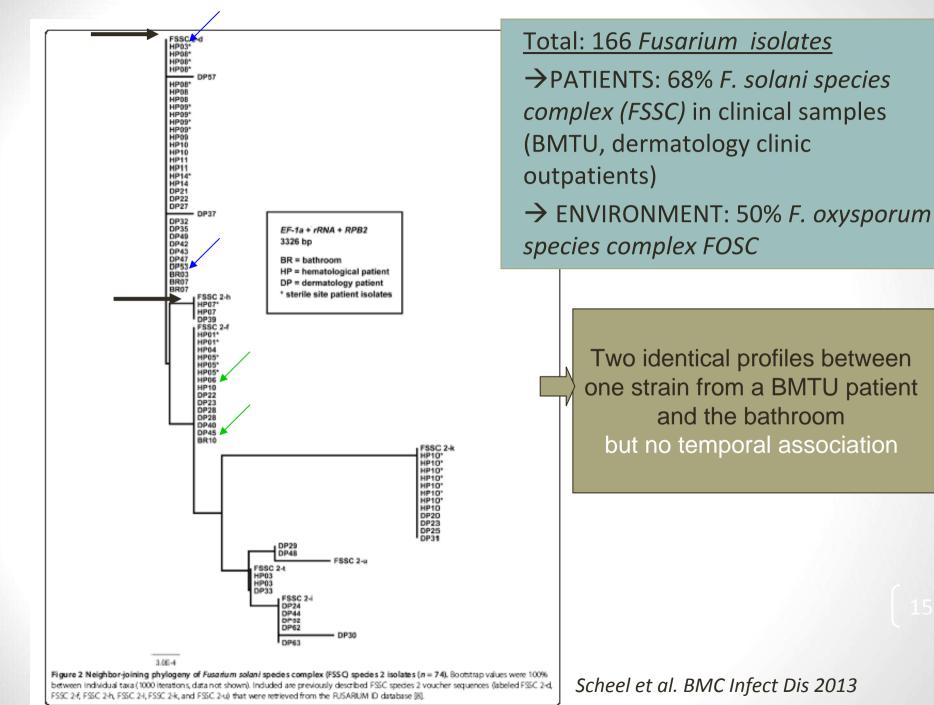

- 1. 21% Aspergillus positive water samples from patients care areas
- 2. Significantly higher concentration of air-borne propagules were found in bathrooms

Higher rates in the shower

analysis.

An isolate of *A. fumigatus* of a patient with IPA was
 genotypically identical to an isolate recovered from the shower wall of patient's room

A1 patient isolate A4 isolate form patient's shower wall


RESEARCH ARTICLE

Open Access

Molecular analyses of *Fusarium* isolates recovered from a cluster of invasive mold infections in a Brazilian hospital

Christina M Scheel^{1*†}, Steven F Hurst^{1†}, Gloria Barreiros^{2†}, Tiyomi Akiti^{2†}, Marcio Nucci^{2†} and S Arunmozhi Balajee^{3†}

Scheel et al. BMC Infect Dis 2013

Sampling methodology: « guidelines? » Kauffmann-L

Kauffmann-Lacroix C, BMC Infect Dis 2013

- French multicentric study from Feb 2004 \rightarrow March 2005
- \rightarrow no difference in colonisation between cold and hot water
- →No Aspergillus fumigatus <u>but</u> dematiaceous fungi +++

Baseline study + regular survey
Controle if working on the WDS
Controle if IFI (16)

WHEN?

Sampling methodologies: media

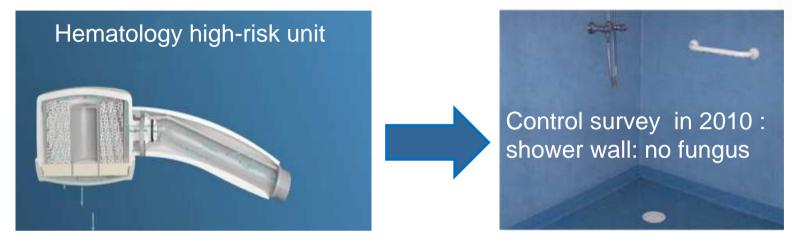
	Glucose (g)	рН	Antibiotiques	
CMA/2 Corn meal agar half streng	0	5.8-6.2	No	
CZ Czapec agar	30	6.0-6.4	No	
DG18 Dichloran 18% glycerol agar DRBC Dichloran RoseBengale Chloramphenicol agar	DG18: recommended medium: 2 avantages → characteristic colony appearance → inhibits overgrowth of fast growing fungi (<i>Trichoderma</i> , mucorales)			
NGRBA Neopeptone glucose rose Bengale aureomycine	10	6.3-6.7	Aureomycine	
PDA Potato dextrose agar	20	5.4-5.8	No	
MEA Malt extract agar	20	5.0-5.5	No	
SDA Sabouraud dextrose agar	40	5.4-5.8 Siqueira	No a V. IJERPH 2011	

Study at the University Hospital of Liège

- CHU Liège: 955 Beds, 3 sites, Surface and underground water
- Filtration + chlorination before to enter the hospital <u>and</u> >65°C for hot water.
- Study during 4 months from Feb 2005- March 2006
- Methodology: 197 sampling points
 - 500 ml cold and 500 ml hot water
 - filtration on 0,45µ Millipore membranes
 - Sabouraud agar medium (+ATB)
 - Incubaton at 30°C for 1 month

Hayette MP Med Mycol 2010

Results


• contamination rate: 51%

				Site 3		
	Sampling sites					
Filamentous fungi	Three sites $(N = 197) n (\%)$	ST $(N = 107) n (\%)$	OA $(N = 40) n (\%)$	NDB $(N = 50) n (\%)$	P (ST, OA, NDB)	
Acremonium spp.	3 (1.5)	1 (0.9)	1 (2.5)	1 (2)	NS	
Alternaria spp.	1 (0.5)	1 (0.9)			NS	
Aspergillus spp.	12 (6)	8 (7.4)	4 (10)	—	NS	
A. flavus	2 (1)	2(1)		-	NS	
A. fumigatus	4 (2)	2(1)	2 (5)	-	NS	
A. nidulans	2 (1)	2(1)		-	NS	
A. niger	2(1)		2 (1)	-	NS	
A. sydowii	2 (1)	2(1)		-	NS	
Cladosporium spp.	6 (3)	4 (3.7)	1 (2.5)	1 (2)	NS	
Fusarium spp.	23 (11.6)	3 (2.8)	6 (15)	14 (28)	≤0.001	
Monilia spp.	7 (3.5)	2 (1.8)	3 (7.5)	2 (4)	NS	
Paecilomyces spp.	14 (7)	6 (5.6)		8 (16)	≤0.05	
Penicillium spp.	22 (11.2)	9 (8.4)	6 (15)	7 (14)	NS	
Sterile mycelia	10 (5)	5 (4.6)	1 (2.5)	4 (8)	NS	
Trichoderma spp.	4 (2)	1 (0.9)	2 (5)	1 (2)	NS	
Contamination rates	102 (51)	40 (37.3)	24 (60)	38 (76)	≤0.01	

ST, Sart Tilman; OA, Ourthe-Amblève; NDB, Notre-Dame des Bruyères; N, total number of tested samples; n, number of samples; NS, not significant; (-), no observation.

Hayette MP Med Mycol 2010

Conclusion of the study and preventive measures

•Implementation: quite easy

•Regular replacement more difficult to implement !!!

Hayette MP JMM 2010 Ortolano G AJIC 2008

Conclusion

- There is a need for guidelines
- Every hospital with severe immunosuppressed patients should be aware of the potential danger
- \rightarrow sampling tap water and shower walls
- →implement point-of-use filtration systems and organize replacement
- \rightarrow avoid showering during severe immunosuppression
- \rightarrow replace shower by baths

