

Ni/Al₂O₃ xerogel catalysts for biogas cleaning

Vincent CLAUDE, Dominique TOYE, Benoît HEINRICHS, Stéphanie D. LAMBERT

Laboratory of chemical engineering, University of Liege, B-4000 Liege, Belgium

Introduction

The thermo-chemical conversion method that is biomass gasification is generating emphatic interest for the production of biogas (CO + H_2). However, this process presents two major drawbacks: (i) the tar formation and (ii) the presence of sulphur compounds in gaseous effluents. In order to counter these effects, two solutions are commonly used: physical cleaning (washing, cyclone, filter...) and chemical destruction. The chemical way, which consists in catalytic removal of tars by a catalyst composed of a metallic element dispersed on a refractory oxide matrix, appears to be a very interesting solution. In this way, Ni/Al₂O₃ xerogel catalysts were synthesized by the sol-gel process by using aluminium precursors, 3-(2-aminoethylamino)propyltrimethoxysilane (**EDAS**) to complex Ni²⁺ ions, and s tearic acid in water and ethanol used as solvents.

The complexation of Ni²⁺ ions by EDAS allows to disperse homogeneously, after calcination and reduction steps, Ni nanoparticles into the alumina network

 $Al(NO_3)_3$ \checkmark \checkmark H_2O \checkmark \checkmark \checkmark \checkmark Ethanol \checkmark \checkmark \checkmark \checkmark $Ni(NO_3)_2$ \checkmark \checkmark \checkmark \mathbf{V} EDAS \checkmark \checkmark Stearic acid \checkmark

Note: *Ni loading* = 2%wt.

Crystallinity

XRD measurements were realized on samples after H_2 reduction (750°C, 1h, 5°C/min)

Ni particle size

Al₂O₃ cristallite size

- $\succ \gamma$ -Al₂O₃ in all samples
- > Ni₍₀₎ presence with EDAS
 - > $NiAl_2O_4$ presence without EDAS

12,2

3,3

Higher alumina cristallites size without EDAS

- ➢ All samples are micro-mesoporous.
- EDAS highly improves S_{BET} and the presence of small mesopores (3-10 nm).
- Stearic acid enhance mesopores content

Conclusions and perpectives

2θ (degree) Ni particle size (XRD) Standard EDAS EDAS + S1

12

3,2

N.A.

5,4

Sintering	resistance

TEM observations after Temperature Programmed Reduction (25-1000°C, 2°C/min, H_2)

Stearic acid affords a very effective influence against nanoparticles sintering

> EDAS and surfactants increase the specific surface area of Ni/Al₂O₃ xerogel catalysts and the dispersion of Ni particles.

