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Abstract 

Tropical Coral reefs are among the richest and most important 

ecosystem on Earth. This success would not be possible without the 

symbiosis established between corals and unicellular algae of the 

genus Symbiodinium that provide them with photosynthesis-derived 

carbon. Unfortunately, with the climatic upheaval that we witness 

today, the long-term survival of coral reefs could be in jeopardy. 

Massive loss of symbiotic algae, a phenomenon known as coral 

bleaching, becomes indeed more and more frequent throughout the 

globe and already urged scientists to study its mechanisms for more 

than a decade. Their research highlighted the central role of reactive 

oxygen species in the collapse of symbiosis. They also established that 

the expulsion of Symbiodinium from its host is mainly operated 

through the death of the host cell. The ensuing events, although 

determining the eventual survival of the energetically compromised 

coral, are however much less detailed. In this work, we decided to 

investigate these “post-bleaching” events and focused our efforts on 

the evaluation of cell proliferation and mucocyte number, for the role 

they may respectively play in regenerative processes and 

heterotrophic feeding. For this purpose, we worked with the sea 

anemone model A. pallida in which we analyzed the incorporation of a 

thymidine analogue (EdU). After preliminary experiments assessing 

the general repartition and the circadian variations of cellular 

proliferation in healthy specimens, we conducted a series of bleaching 

experiments using a variety of stresses. Every treatment, namely cold 

and darkness, heat and light or exposition to a photosynthesis 

inhibitor, drastically reduced the Symbiodinium density. This reduction 

was always accompanied by important histological modifications. In 

every case, we highlighted an increase in cellular proliferation in both 

the ectodermis and the gastrodermis as well as an increase in 
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ectodermal mucocyte density. These values returned then to normal 

as algae that survived the stress progressively repopulated anemones. 

Further experiments showed that, following bleaching, a small 

fraction of the newly produced ectodermal cells migrate to the 

gastrodermis. Along with new gastrodermal cells, they most probably 

operate a regeneration of the wounded tissue, differentiating into 

host cells in order to harbor new algae. Another experiment also 

indicated that a small but significant part of ectodermal newly 

produced cells might differentiate into mucocytes, therefore 

explaining their increased density in bleached individuals. We 

hypothesize that the higher amount of mucus produced, in addition to 

providing protection against various aggravating stresses, would be a 

way to efficiently increase the feeding capacity of the bleached 

cnidarians. This heterotrophic shift would therefore allow a sufficient 

energy income until full restoration of the symbiosis. This work 

emphasizes the need to focus more attention on the post-bleaching 

period, a critical time in which some modifications might be decisive 

for coral and coral reef survival.  
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Résumé 

Les récifs coralliens tropicaux font partie des plus riches et plus 

importants écosystèmes sur terre. Ce succès ne serait pas possible 

sans la symbiose établie entre les coraux et les algues unicellulaires du 

genre Symbiodinium qui fournissent ces derniers en carbone d’origine 

photosynthétique. Malheureusement, avec le bouleversement 

climatique que nous observons aujourd’hui, la survie à long terme des 

récifs coralliens pourrait bien être en péril. La perte massive d’algues 

symbiotiques, un phénomène connu sous le nom de blanchissement 

corallien, devient en effet de plus en plus fréquente à travers le 

monde et a déjà poussé les scientifiques à en étudier les mécanismes 

depuis plus d’une décennie. Leurs recherches ont mis en évidence le 

rôle central joué par les espèces réactives de l’oxygène dans 

l’effondrement de la symbiose. Elles ont aussi établi que l’expulsion de 

Symbiodinium s’opère principalement par la mort de la cellule hôte. 

Les événements qui s’en suivent, bien que déterminant dans 

l’éventuelle survie du corail énergétiquement compromis, sont 

cependant beaucoup moins détaillés. Dans ce travail, nous avons 

décidé d’investiguer ces événements “post-blanchissement” et avons 

alors focalisé nos efforts sur l’évaluation de la prolifération cellulaire 

et du nombre de mucocytes, pour les rôles qu’ils pourraient 

respectivement jouer dans les processus de régénération et 

l’alimentation hétérotrophe. Pour ce faire, nous avons travaillé avec 

l’anémone modèle A. pallida chez laquelle nous avons analysé 

l’incorporation d’un analogue de la thymidine (EdU). Après quelques 

expériences préliminaires évaluant la répartition générale et les 

variations circadiennes de la prolifération cellulaire chez des 

spécimens sains, nous avons conduit une série d’expériences de 

blanchissement en utilisant une variété de stress. Chaque traitement, 

à savoir le froid et l’obscurité, le chaud et la lumière ou l’exposition à 

un inhibiteur de la photosynthèse, a réduit de manière drastique la 
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densité en Symbiodinium. Cette réduction a alors toujours été 

accompagnée par des modifications histologiques importantes. Dans 

chaque cas, nous avons mis en évidence une augmentation de la 

prolifération cellulaire tant au sein de l’ectoderme que de 

l'endoderme ainsi qu’une augmentation de la densité en mucocytes 

ectodermiques. Ces valeurs retournèrent ensuite à la normale alors 

que les algues ayant survécu au stress recolonisaient progressivement 

l’anémone. Des expériences supplémentaires ont montré que, suite 

au blanchissement, une faible fraction des nouvelles cellules 

ectodermiques migrent vers le gastroderme. Accompagnées des 

nouvelles cellules d'origine endodermique, ces dernières opèrent 

probablement une régénération du tissu blessé, se différentiant en 

cellules hôtes de manière à abriter de nouvelles algues. Une autre 

expérience a également indiqué qu’une faible mais significative partie 

des nouvelles cellules ectodermiques se différentieraient en 

mucocytes, expliquant dès lors leur densité accrue chez les individus 

blanchis. Nous faisons l’hypothèse que la quantité supérieure de 

mucus produite, en plus de fournir une protection contre divers stress 

aggravants, pourrait être un moyen d’accroitre efficacement la 

capacité à se nourrir des cnidaires blanchis. Ce shift hétérotrophique 

pourrait dès lors permettre un apport énergétique suffisant jusqu’à la 

restauration complète de la symbiose. Ce travail souligne la nécessité 

de se concentrer d’avantage sur la période post-blanchissement, un 

moment critique durant lequel certaines modifications pourraient être 

décisives pour la survie du corail et des récifs coralliens. 
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Preamble 

In the beginning, there was light. 

And with light came energy. 

And thanks to this energy emerged life in all its exuberance. 

From then on, the story is well-known, mostly hard working 

plants being eaten and so injecting carbon into the food chain. 

Some organisms, though, opted for a more, let’s say… fair trade 

policy. These organisms chose to fuse with the vegetable instead of 

eating it and yet managed to build some of the most precious 

ecosystems of earth: the coral reefs. 

Unfortunately, nowadays, light and the precious energy it carries 

overwhelm this fragile association. These same sunrays that once gave 

birth to coral reefs now threaten them and may one day cause their 

demise. 

For the sake of those magnificent structures, not only for their 

beauty and what they are in essence but also for what they represent 

for mankind, we have to try something. We have to grasp any pieces 

of knowledge leading to a better understanding of coral reef 

ecosystems for, even trivial, they can be paving stones on the road 

leading to their salvation. 

Such is the purpose of this manuscript, trying humbly to unravel a 

few very specific, although important, details of coral histology. 

Helping to beat the odds and possibly allowing us to consider a future 

in which coral reefs will keep flourishing from the light. 





 

Chapter 1 

General Introduction 

 

First of all, it is important to make clear that our work fits into the 

framework of a need, currently supported by many scientists, for 

using model organisms to progress in our understanding of the coral 

biology [396]. Except for its lack of skeleton, the sea anemone model 

chosen for this study is unanimously recognized to be very similar to 

corals, to which we can therefore extrapolate our experimental 

results. This general introduction will thus focus mainly on corals, 

detailing their biology and the threat they are facing, while the 

characteristics and advantages of our anemone model in the study of 

such organisms will be described later in chapter 2. 

Coral Reefs 

Since Darwin and his description of these shallow water 

structures as "oases in the desert of the ocean", coral reefs have kept 

raising curiosity amongst people. This could be due to what struck 

Darwin the most, something he described as a paradox: the richness 

and diversity of such structure even so surrounded by water that 

contains hardly any nutrient. How can such richness and biodiversity 

sustain in such depleted waters? 

Origins 

This assertion whets even more ones curiosity considering the 

fact that, according to fossil records, coral reefs have a long successful 

story: being with other kind of reefs a major source of evolution and 

diversity throughout geologic times [199]. Apparition of “modern” 
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coral reefs as we can admire them today was however a long process 

marked by distinct steps. 

While the fall of atmospheric level of carbon dioxide and the 

consequent saturation of calcium carbonate in the oceans have early 

led some marine species to build hard skeleton and premises of reefs, 

the first bioconstructed structures that can be seen as coral reefs 

came a few million years later. In fact, ancestors of reef building corals 

made their first appearance in oceans during the Ordovician (488M 

years ago) while terrestrial plants were only taking their faltering 

steps. They were then erected by representatives of the orders 

Tetracoralla (or Rugosa) and Tabulata, which are now extinct, most 

probably due to the Permian Crisis [353]. It's not until the late Middle 

Triassic (about 237M years ago) that today's “modern” corals, known 

as scleractinians, can be found in fossils records. They have 

supposedly evolved from an anemone-like soft-bodied ancestor and 

developed calcification under the pressure of changing environmental 

geochemical conditions, especially carbonate balance and CO2 

concentration. Such corals, however, were not yet the prolific builders 

that populate today’s oceans as they were still lacking their most 

intriguing and important characteristic: their symbiosis with the 

Symbiodinium algae. On the basis of multiple factors such as their size 

and shape, their corallite integration, their annual growth bands or 

their isotopic composition, some scientists concluded that this 

symbiosis appeared relatively quickly. Indeed, many coral seem to 

already fulfill symbiotic traits during the Late Triassic. Scleractinians 

subsequently survived many environmental perturbations and major 

extinction events that shaped their diversity, such as the K/T mass 

extinction, and started to progressively colonize the oceans around 

the globe during the whole Phanerozoic [353]. Today’s oldest coral 

reefs however rarely exceed 10000 years old. 
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Repartition 

The peculiar nature of coral reefs rapidly gathered attention 

among the scientific community and the aforementioned reef paradox 

didn't remain a mystery for long. Observations made during pioneer 

studies quickly revealed their symbiotic nature, determining in the 

same manner their ecological needs and geographic repartition. 

Indeed, as we will see later, the symbiotic algae, although not the only 

symbiotic partners of corals [126, 204, 289], are the main factor 

involved in coral reefs unbounded growth and are therefore the key of 

their localization. The vast majority of algae-bearing corals, qualified 

for the first time of “hermatypic corals” by Wells in 1933 [399], can 

only be found in warm waters in which the temperature averages near 

the calcification optimum of 25°C to 27°C. They are therefore mostly 

restricted between the tropic lines but their repartition can be even 

more accurately defined by the 20°C isocrymes (imaginary lines 

connecting the same mean coldest temperature). Hermatypic corals 

also need clear oligotrophic waters (N < 2 μmol/l, P < 0,2 μmol/l), 

which, as well as for their depth limit of about 50 meters, is a 

consequence of the algae imperious need for sunlight. This excludes 

the presence of coral reefs in the vicinity of major river mouth 

carrying lots of sediments and decreasing drastically water clarity. 

Upwellings with their cold and nutrient-rich water brought from the 

depth also make nearby water unsuitable for coral growth. Coral reefs 

are consequently absent from area such as the West coasts of Africa 

and South America. Their vast majority is in fact found in the Atlantic 

(mostly Caribbean) and the Indo-Pacific region, which includes the Red 

Sea, the Indian Ocean, the South-East Asia and the Pacific Ocean. 

While the most famous reef is arguably the Great Barrier Reef off of 

the coast of Queensland in Australia, hotspots for coral diversity are 

located a bit northern, in South-East Asia, mostly in waters bathing the 

coast of Malaysia, Indonesia and Philippines (Fig. 1). Structures 
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adopted by coral reefs in these regions are variables but are 

commonly divided in three main categories: the fringing reef, the 

barrier reef and the atoll. These three reef types are in fact different 

evolution steps of the same reef over geological times: The fringing 

reef receding seaward to form a barrier as the island subsides and 

finally disappears in the water only leaving the ring of the atoll. Every 

other kind of reef that does not fit those three may be referred to as 

patch reef but can also be classified into other occasional categories 

such as apron reef, bank reef, ribbon reef, table reef, habili, 

microatoll, cays or seamount. 

 

Figure 1 | Coral reef distribution and number of species. (from Veron, Corals of the 
World, 2000) 

Value 

As mentioned above, coral reefs have always been a major 

source of biodiversity. They are still living up to this reputation as they 

are shelter to a number of identified species reaching between 100 

000 and 150 000. The total number of species is however estimated to 

be between 500 000 and 2 millions. This means that we still only have 

an overview of coral reef diversity and that the number of species, 

which are yet to be identified, could be as high as 80% of the total. 

Nevertheless, coral reef value is not limited to this naturalist romantic 

view, seeing them for what they represent as natural heritage. They 

also have a more tangible and economical value that may be their 
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main asset into our economy-governed world. To the countries they 

border the coasts, coral reefs give many services like coastal 

protection during storms, touristic attraction or direct valuable 

resources. The number of people living in less than 100 km of a reef is 

estimated to be as high as 500 000 000. Their economical function 

goes even way beyond as they are also shelter to larvae and juveniles 

of over one quarter of all marine species. Therefore, they are not only 

an important resource for the 101 countries harboring reefs near their 

coastlines but an essential basis for every people and country relying 

on the fishing industry. Even though the difficulties of attributing a 

financial value to the “goods and services” given by coral reefs, an 

estimation made in 1997 by Costanza and colleagues ranged it to over 

6000 USD hectare-1 per year [65]. This value becomes head-spinning 

once summed by their estimation of the total area covered over the 

world, coral reefs being then worth 375 billions USD annually to 

mankind. 

Those facts talk for themselves, coral reefs deserve and need to 

be protected. Today, as global warming scenarios get more and more 

precise, the threat on them is getting inevitable, leading some 

specialists to unfortunately consider their upcoming extinction [163, 

164, 167]. The urge on scientists to help preserving this natural 

heritage against human impact has never been so high. Every effort 

grasping pieces of knowledge about the functioning of this ecosystem 

is worth being made. Especially regarding a better comprehension of 

the mechanisms involved in the balance of the coral symbiosis with, in 

line of sight, the elucidation of the symbiosis breakdown known as 

coral bleaching. This thesis takes interest on the often-unheeded 

events that happen following the said bleaching, especially on the 

histological level. Questions such as “Are there any modifications 

within the host after the loss of its symbiotic algae?” or “What is the 

dynamic of symbiosis recovery?” were guidelines during the whole 
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course of this study. In order to ease the comprehension of themes 

that will be discussed in the following chapters, the rest of this 

introduction will focus on the cnidarian biology, with a particular 

emphasis on their histology. We will then review the current 

knowledge concerning the symbiosis establishment, its regulation 

and, most of all, its breakdown leading to coral bleaching as well as its 

eventual recovery. 
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Cnidarians 

Phylogeny 

                                  

Figure 2 | Classification of cnidarians. (From http://biophysics.sbg.ac.at) 
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As said before, coral reef builders, which we commonly call stony 

coral due to their hard external skeleton, are members of the order 

Scleractinia, sometime called Madreporia. They are, along with 

anemones, which belong to the Actinaria order, members of the 

Zoantharia class, which is further included into the Anthozoa 

subphylum. Anthozoa, together with Medusozoa to which belong 

jellyfishes, compose the phylum Cnidaria (Fig. 2). Scleractinians most 

probably evolved from soft-bodied anemone-like ancestor. Phylogenic 

reconstructions based on their microstructures as well as those based 

on fossil records tend to give scleractinians a polyphyletic origin [353]. 

However, modern genetic analyses tend to classify them into a 

monophyletic group further subdivided into two main branches 

separating “robust” or massive corals and “complex” or branched 

corals [198]. 

Ontogeny 

Of the 1400 known extant species, 60% are colonials and 

composed of a high number of polyps, connected to each other and 

tightly attached to their underlying skeleton [15]. They can reproduce 

either by clonal ways, budding new polyps and therefore extending 

the colony, or by sexual means. Corals can be organized into four 

groups depending on their way of reproduction. They can either have 

two distinct sexes and be gonochoric or be both male and female and 

therefore hermaphrodite. Both those types can also be further 

subdivided into two modes of fertilization. Fertilization and formation 

of the larvae can either occur in the water column after release of 

gametes by species that will therefore be called “broadcast spawners” 

or into the gastric cavity of the polyp for fewer species called 

“brooders” [15, 367]. Broadcaster spawners tend to have a large 

colony and reproduce once a year during a short period while 

brooders are more likely to form small colonies producing larvae 
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multiple times each year [367]. Release occurs during the night for 

both types of fertilization with a higher settlement and survival rate of 

the larvae released by brooders before dawn. 

Following fecundation, the newly formed coral zygote follows the 

classical stages of development. After the blastula stage and a stage 

similar to the nutritive stage of metathozoans in which it segregates 

nutrients in an inner nutritive layer, the embryo starts its gastrulation. 

This phenomenon, leading to the formation of the endoderm, is 

mainly provoked by tissue invagination but also by the action of 

individual epithelial cells that lose their morphology and migrate into 

the blastocoel. This process ultimately leads to the formation of a 

larva called planula. A recent study demonstrated that, during 

embryonic development, a part of cnidarian nervous system takes 

shape following an axial way and a serially repeated pattern [147]. 

This trait is similar to bilateralians and was probably inherited from a 

common ancestor to which the phylogenetic relation is still detectable 

during ontogeny. The separation between cnidarians and bilateralians 

becomes even more tenuous in the light of recent findings 

undermining the long-lasting concept of cnidarians constituted of only 

two tissue layers. These findings show that they may in fact harbor a 

third more discrete layer that can be seen as a mesodermal 

component [347]. 

Anatomy 

Once completely formed, the planula develops numerous 

adhesion-committed cells, called spirocytes, to its aboral region and 

attaches itself to the substrate before undergoing its metamorphosis 

into a fully functional polyp [282]. The polyp is radially symmetrical 

and is composed of a column, usually ranging a few millimeters in 

diameter, topped by various numbers of tentacles surrounding the 

oral disc which opens in its middle by the mouth. The mouth, which 
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also serves as anus, is followed by the pharynx and leads to a cavity 

called the coelenteron or gastric cavity where the extracellular 

digestion occurs. This cavity extends into the tentacles as well as in 

the layer of tissue connecting the polyps of the colony (coenosarc). 

The water in the coelenteron shows specific physicochemical 

proprieties that differ greatly from the surrounding water. Those 

parameters may vary following a diel pattern and include O2 and 

nutrients concentration, pH and alkalinity [5]. The coelenteron is 

divided by mesenteries which are only six in smallest polyps but are 

further separated by secondary, tertiary mesenteries, etc, in larger 

ones. Mesenteries can reach the pharynx and be complete or have 

their edges free in the coelenteron. This edge expends into a trilobed 

structure called the mesenterial filament which serves in digestion 

and water circulation. Those filaments extend at their basal 

extremities into threadlike appendices called acontial filaments which 

serve in defense mechanisms as well as in prey capture and extra-oral 

digestion processes. Both filaments harbor specialized cells such as 

nematocytes, mucocytes or other gland cells that we will describe 

later. While the colony grows, a thin layer of tissues called the 

coenosarc appears to connect the polyps’ coelenterons to each other, 

allowing exchange of nutrients and their homogenous repartition 

thanks to a current produced by ciliated cells [290]. 

Once settled, the young coral quickly starts building its 

exoskeleton called corallum. This skeleton is made of aragonite 

(CaCO3), a carbonate mineral of the same composition as calcite but 

differing in its crystalline structure. The skeleton is composed of two 

major parts: the corallites and the coenosteum (Fig. 3). The 

coenosteum is the porous heap of aragonite that can be seen as the 

body of the skeleton while the corallites house the polyps and present 

a more specific structure. Corallites are composed of a basal plate 

called sole and a cylindrical wall called theca which protrudes septa 
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within the mesenteries. As the colony extends, the polyps build higher 

floors to their corallites and the coral skeleton thickens and grows in 

its wide and characteristic variety of shapes. Skeletal differences 

between species range from different levels, from the corallites itself 

with some species showing fused polyps, to the whole colony which 

can be encrusting, massive, branched or table-like. Individuals of the 

same species can even show major structural differences depending 

environmental conditions such as current, turbidity or bathymetry 

[277]. 

 

Figure 3 | Anatomy of the coral polyp and its skeleton. (modified from Veron, 1986) 

Histology 

As said earlier, corals, as for every cnidarians, are essentially 

composed of two tissues, the ectodermis and the gastrodermis. The 

mesoglea, a gelatinous matrix populated by only a few cells, separates 

these two tissues. 



 

12 | General Introduction 

Ectodermis 

The ectodermis covers the external surface of the polyp and the 

colony as well as the surface in contact with the aragonite skeleton. It 

is composed of four principal types of cells: the epitheliomuscular 

cells, the neuronal cells, the cnidocytes and the mucocytes. 

Most of the surface of the ectodermis is composed of 

epitheliomuscular cells that rest against the mesoglea and form a 

prismatic epithelium. Unlike in traditional prismatic epithelium, 

epitheliomuscular cells extend into two, three or more basal 

extensions. Every successive extension in the column and the 

tentacles is connected to each other and contains smooth myofibrils 

that form a muscular longitudinal layer [24]. This layer allows 

contraction of the polyp and retraction in its corallite to take shelter 

and avoid predators or harsh environmental conditions. It also 

participates in the movements of the tentacles to the mouth during 

feeding [174]. These cells can also harbor cilia that create movement 

of the mucus layer covering the animal, either to bring food particles 

to the mouth or to clean the ectodermis from sediments. 

Epitheliomuscular cells are also believed to be the source of the other 

types of cells found in the ectodermis, whether during growth or 

regeneration processes. Recent observations made on the sea 

anemone Nematostela vectensis highlighted the plasticity of these 

cells and their ability to dedifferentiate and produce the other cell 

phenotypes [134]. Epitheliomuscular cells cannot be seen as stem 

cells per-se but are believed to give birth to all other cell lineages 

composing the ectodermis [134]. They are therefore supposed to 

underlie the regeneration processes occurring in the ectodermis 

observed during experimental lesions on N. vectensis [291] or during 

regeneration in the solitary Fungiid corals [207]. 
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Figure 4 | Structure and functioning of the cnidocyte. (Copyright B. Cummings, 
Pearson Education, 2006) 

Neuronal cells are represented in the ectodermis by two 

different cell types: the sensory cells and the nerve cells. Sensory cells 

are especially abundant in tentacles, conferring them their tactile 

faculty. Their apical region is elongated and forms either a bristle or a 

sphere while their basal pole connects to nerve cells through a 

variable number of neuronal processes. Some sensory cells can be 

found invaginated within epitheliomuscular cells. Nerve cells run at 

the base of the ectodermis, next to the mesoglea. They are similar to 

multipolar neurons found in other metazoans. Nerve cells also make 

neuroglandular synapses with mucous cells or zymogenic cells 

sometimes found in the pharynx and allow a nervous control over 

their secretions [402]. Nerve cells also make multiple connections with 

different kind of cnidocytes therefore modulating their discharge [400, 

401]. 

Cnidocytes are the most characteristic and exclusive feature of 

cnidarians. Those even inherited their evocative name from it, cnide 

(κνιδη) meaning nettle in ancient Greek. They are very specialized 
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cells that can be found throughout the ectodermis and especially in 

the tentacles where they can be grouped in batteries. They are either 

lodged between epitheliomuscular cells or invaginated within them. 

They are round cells with the nucleus occupying a basal position while 

the rest of the space is taken by the cnidae or cnidocyst. The cnidae is 

a single-use everting organelle having the form of a tube. It is coiled 

within a capsule derived from a large post-Golgi vesicle that has 

undergone very specific maturation processes [286] (Fig. 4). In 

Anthozoans, a ciliary cone complex present on the apical pole of the 

cnidocytes triggers the discharge of the cnidae following chemical and 

mechanical stimuli [197]. This discharge can also be triggered by a 

nerve impulse in order to coordinate multiple cnidocytes. Ensues a 

rapid change in the capsule permeability with the opening the apical 

flaps and an explosive eversion of the tube thanks to osmotic 

movements. This osmotic pressure can then reach as much as 150 

bars releasing the cnidae in only 700 nanoseconds; producing an 

acceleration of 5 400 000 x g and a pressure on impact of 7,7 GPa. 

Cnidocytes present a very complex structure and have been the 

subject of many studies. They are composed of strong assemblages of 

specific proteins in order to sustain the titanic constrains they are 

exposed to [3, 9, 74, 414]. Variations in ornamentation of the cnidae 

lead to the distinction of approximately 30 different types of 

cnidocytes among cnidarians [197] .Those can be regrouped into three 

main categories. The first category, the most diverse and the most 

widely represented, includes cnidae involved in the hunting of live 

prey. Those are called nematocytes and are armed with a spike that 

can pierce their prey before injecting it with venom. This venom has 

variable proprieties such as neurotoxic, myotoxic, hemolytic or 

necrotic. The second category, called spirocytes, is characteristic of 

Zoantharia and is used either to entangle preys or to adhere to 

substrates. Their thread bears fine tubules that solubilize and form an 

adhesive net. Instead of the usual cilia complex, spirocyst-containing 
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cnidocytes bear circlets of microvilli receptors on their apical surface. 

The last category called ptychocytes regroups cnidocytes which cnidae 

contain simple, spineless, adhesive threads. They are exclusively 

present in Ceriantharia, solitary anemones of the Zoantharia class that 

use them to build the tube in which they are encased. 

Mucocytes represent the fourth type of ectodermal cells. They 

are club-shaped cells that can present contractile basal extensions 

similarly to the epitheliomuscular cells. They can occupy a major 

proportion of the ectodermis, especially on its oral portion, with some 

species having mucocytes accounting for as much as 90% of their areal 

extent in some areas of tissue [42]. Their size, which ranges from 5 to 

10 micrometers wide and up to 30 micrometers high, as well as their 

abundance, depends on the species considered and the localization 

within the animal [42, 138]. Their nucleus is situated in a basal 

position while most of their cytoplasm contains large granular 

inclusions that will ultimately be secreted into the water from a 

circular aperture situated the apical pole. 

Mucus 

The observed composition of mucus seems to be very variable. 

This could be due in part to the different methods of collection and 

analyze, the mucus undergoing quick modification upon release into 

the water. Furthermore the mucus could vary in its composition 

depending on the stress applied to induce its production [42] or the 

species studied [257]. Besides water, which accounts for an important 

fraction of mucus weight, the main organic component of the mucus, 

is however constant among all species and regardless the conditions. 

This component is the mucine, a highly heterogeneous glycoprotein of 

which the shape, size and charge determine the mucus viscoelastic 

properties (Fig. 5). The mucine is composed of two parts. The core 

first, which accounts for 20% the molecule weight (200-500 kDa), is 
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made of a variable number of tandem repeats of proline, threonine 

and serine (PTS-repeats). Variable numbers of PTS-repeats are linked 

together by cystein-rich domains and are flanked by multiple “von 

Willebrand factor” domains and “cystein knot” domains, thus 

completing the molecule core. The remaining 80% of the molecule 

consist of carbohydrates either O-linked to the serine and threonine 

residues or N-linked to flanking domains. Those sugar side chains are 

composed of 2 to 20 monosaccharides and can be linear or branched. 

They can be constituted of sugar such as mannose, fucose, arabinose, 

galactose, N-acetylgalactosamine and N-acetylglucosamine. The 

extremities of the side chains can be sulfated and/or contain sialic acid 

terminals. This confers the mucus its characteristic polyionic 

proprieties, which are crucial for its hydration. Another major 

characteristic of the mucine molecule is the ability of its cystein 

residues to form disulfide bonds thus enabling formation of dimers 

and subsequent polymerisation [42, 52, 257]. The release of the 

mucus on the surface of the coral seems to be under nervous control 

[402], corresponds to the holocrine mode of secretion and therefore 

leads to the death of the mucocyte. Nevertheless, the dynamic of 

their development and their turnover rate is still unclear [42]. This is 

contrasting considering the numerous and important roles they play 

not only for the coral but also for the whole reef ecosystem. 

 

Figure 5 | Structure and components of the mucine monomer. (modified from [52]) 



 

General Introduction | 17 

The layer of mucus secreted on its ectodermal surface has 

multiple functions for the coral. The most evident one is, as 

mentioned earlier, the ability of mucus to trap food particles and bring 

them to the mouth thanks to ciliary movement [42]. This function is 

especially important for corals devoid of tentacles [342]. The mucus 

layer covering the coral also confers it protection against UV 

radiations thanks to a variety of UV-absorbing compounds regrouped 

as mycosporine-like amino acids (MAA’s) [42]. This is of major 

importance in their resistance to light-induced bleaching, a threat of 

great concerns as we will see later. 

UV protection can also be achieved thanks to UV-absorbing 

bacteria living in the mucus layer [309]. In fact, a very diverse bacterial 

flora lives within the mucus. Its composition may vary depending 

environmental conditions [202] but the major representatives are α- 

and γ-proteobacteria [126, 202]. Many of them play crucial roles in 

the coral biology and can be seen as symbiotic partners. Coral health 

can indeed be tributary to this probiotic bacterial flora as it can 

control colonization by opportunistic pathogens implicated in disease 

or bleaching event. Recent studies even suggested that this bacterial 

flora could stimulate coral immunity [126, 208, 311, 313, 321]. 

Bacteria in the mucus layer can also be seen as a supplementary 

heterotrophic food source accompanying food particles into the 

mouth of the coral. 

The list of mucus benefices to the coral goes on as it also plays 

essential roles in its protections against desiccation during spring 

tides, against sediment smothering thanks to ciliary movements, 

against pollutant poisoning by limiting their penetration or against 

wave damage thanks to its surfactant and lubricant proprieties [42]. 
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Once released into the water the coral mucus keeps playing 

important functions on the ecosystem level. Its dispersion from the 

mucocytes relies on the current as well as its intrinsic rheological 

proprieties, which also controls its exudation, hydration and swelling 

[42]. Upon release from the mucocytes, more than half of the mucus 

(56% to 80%) immediately dissolves into the water and feeds 

planktonic bacteria [404]. The threads and particles released from the 

mucus layer into the water carry with them particles of once 

suspended organic matter that accumulated onto them while still 

attached to the coral. While in the water column, mucus aggregates 

keep trapping suspended particles and triple their organic carbon and 

nitrogen content [404]. This makes the coral mucus a formidable 

energy carrier and a major input source into the trophic system of 

coral reefs. This particulate organic matter (POM) released by corals 

has already been documented for multiple species and seems to be 

constant throughout the year [272, 404]. If macroscopic animals can 

ingest some part of this POM, most of it reaches the sediment rather 

quickly and therefore relatively closely to its coral source (less than 5 

meters)[52]. Once on the permeable calcareous reef sand, aggregates 

can either be directly eaten by benthic animals or be degraded by the 

microbial fauna living in the sediments providing 10% to 20% of the 

total carbon provided to the sedimentary community [404]. The 

turnover into nutrients is relatively fast, 7% of the carbon being 

transformed in one hour. Those nutrients can then enhance the 

primary production of planktonic autotrophic organisms on which can 

rely the food chain of the coral reef [52, 105, 404]. Considering these 

facts, it appears that any event inducing modifications into mucocyte 

number or mucus production by coral would have a strong impact not 

only on the coral itself but on the whole reef ecology. 
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Calicodermis 

The description of cells given above concerns the ectodermal 

layer of the coral that is in contact with the water column. The 

ectodermal layer adjacent to the skeleton and responsible for the 

production of its aragonite component is however much different. 

This specialized tissue is called calicodermis or calicoblastic 

epithelium. It is devoid of cnidocytes and mucocytes and its sole 

function resides in the deposition of aragonite crystals through 

processes regulated by its dedicated calicoblastic cells. Its surface is 

also punctuated by anchoring cells or desmocytes that were formed 

on the aboral pole of the planula larvae during its settlement. They 

are tightly attached to the coral skeleton by desmosome-like 

extensions [71, 137]. 

The mechanisms by which the calicoblastic cells progressively 

construct the mineral skeleton are multifaceted. First of all they 

secrete a colloidal gel matrix called organic matrix into the medium 

between their apical membrane and the skeleton. This extracellular 

calcifying medium (ECM) is therefore filled by an organic framework 

that greatly enhances the deposition of calcium carbonate crystals 

[71, 136]. The calicoblastic cells also harbor many mitochondria that 

not only produce energy but also carbon dioxide which is a source of 

carbon for calcification. The important amount of energy produced is 

required for the functioning of the multiple pumps and transporters 

situated on the apical membrane of calicoblastic cells. They allow the 

cells to precisely control the ionic composition and pH of the ECM. 

This control is crucial to the growth of the skeleton as the more 

alkaline pH measured in the ECM (often 0.2 to 0.5 unit above 

surrounding seawater pH) helps producing bicarbonate anions by 

shifting the equation of dissociation of carbonate anions to the right 

(HCO3
- ⇄ CO3

2- + H+). This has the effect of increasing the saturation 
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state of aragonite (Ωarag) and allows the spontaneous precipitation of 

calcium carbonate (CaCO3)[71]. Finally, the calicoblastic cells also 

produce carbonic anhydrases, specific enzymes that once liberated 

into the ECM play an important role in the interconversion of 

inorganic carbon species [395]. 

As mentioned earlier, the symbiotic algae also play a major if not 

essential role in the high rate of calcification observed in reef-building 

corals. This was confirmed by studies showing a drastic reduction of 

the calcification rate following inhibition of photosynthesis within 

these algae [384]. This phenomenon of algal stimulation, known as 

light enhanced calcification, boosts CaCO3 production up to tenfold; a 

production that therefore outweighs degradation processes such as 

wave erosion and allows the reef to expand. This increased 

calcification can even produce some sort of positive feedback for the 

algae, the structure of the skeleton produced by some corals being 

able to increase their light absorption [96]. The way by which 

symbiotic algae enhance calcification is however still poorly 

understood as both photosynthesis and calcification compete for 

available inorganic carbon. A recent hypothesis proposes that such 

high rates of calcification and photosynthesis are achievable thanks to 

the coral morphology which allows the compartmentalization of these 

two processes [185]. Translocation of energetically rich 

photosynthates from the algae located in the gastrodermis, as we will 

see later, could also fuel mitochondria within the separated 

calicoblastic epithelium and enhance their performance. However, 

questions still remain concerning the complex movement of ions such 

as protons and carbonates which may either diffuse or be actively 

transported. Many studies have recently proposed complex ion fluxes 

and pathways, especially in the coelenteron and the coenosarc where 

the lumen between the two tissue bilayers may play an important 

function [8, 41, 185, 270]. There is however still much to understand 
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before getting a full picture of the mechanisms involved in the 

amazing calcifying capacity of corals. 

Mesoglea 

Beneath the ectodermis lies the mesoglea, an extracellular matrix 

mainly composed of collagen and proteoglycans [339]. While it has 

always been considered to be barely anhistic and almost deprived of 

cells, hence not representing a third type of tissue to the organism, 

more and more studies have pointed out the fact that it may be an old 

archaic form of mesoderm [347]. Indeed, in most cnidarians, 

anthozoans included, muscle cells clearly separated from both 

epithelia as well as wandering isolated cells can be observed within 

the mesoglea. While muscle cells are organized into bundles and have 

obvious contractile functions used for motility, lone cell functions are 

much more debated. These cells, called amoebocytes, are often 

compared to interstitial cells found in hydrozoans and extensively 

studied in Hydra. Whereas interstitial cells stem-like role in growth 

and regeneration processes has been clearly indentified [36, 39, 349], 

the function or precise identity of amoebocytes is much more vague. 

Their most arguable function is their role in immunity and 

inflammation following wounding or pathogen infection. In these 

cases, amoebocytes may show phagocytic capacity or secrete 

connective mesogleal fibers [134, 259]. However, as no unambiguous 

description and characterization of amoebocytes has been done to 

date, it is impossible to elude the possibility that the term 

“amoebocytes” is in fact a catch-all term, referring to wandering cells 

from different origins and different degrees of specialization that are 

temporarily found within mesoglea. This could include migrating cells 

participating in growth and regeneration as well as innate immunity 

cells such as granulocytes [287]. This is an even more plausible 
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explanation considering the fact that amoebocytes have also recently 

been observed in both epithelia [134, 380]. 

Gastrodermis 

The gastrodermis is the second tissue layer composing the body 

of all cnidarians. Its cellular composition is fairly similar to the 

ectodermis but lacks cnidocytes and sensory neuronal cells. The main 

cellular components of the gastrodermis are the nutritive-muscle 

cells. They are the pendants of the epitheliomuscular cells found in 

the ectodermis but differ in some aspects. They are usually ciliated 

and their contractile extensions, which are less developed, harbor 

contractile fibers orientated perpendicularly to those of the 

ectodermis and the axis of the body column. They thus form a circular 

muscle that allows sphincter-like movements, especially in the mouth 

region to allow its closing. Contraction of those fibers is controlled by 

nerve cells underlying the tissue in the same way as in ectodermis but 

in a fewer number [24]. Similarly to epitheliomuscular cells, nutritive-

muscle cells show an important plasticity and are therefore believed 

to ensure growth and regeneration. They are able to dedifferentiate 

and give birth to the other phenotypes present in the gastrodermis 

but are also the putative progenitors of cells observed in the 

mesoglea. More importantly, they are at the origin of the germ line 

precursor cells that will mature into gametes [134]. The last function 

of the nutritive-muscle cells is, as their name suggests, to phagocyte 

nutritive particles in order to complete their assimilation after their 

initial degradation in the coelenteron. 

Enzymes liberated by zymogenic glandular cells operate this 

extracellular digestion. These cells have a similar appearance to the 

mucocytes, also present in the gastrodermis. Their nuclei occupy a 

basal position while the apical region of their cytoplasm is filled with 

vacuoles containing the zymogen molecules. Both mucocytes and 
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zymogenic cells harbor an apical cilium surrounded by microvilli [402]. 

While the secretion mode of gastrodermal mucocytes is likely the 

same as in the ectodermis, zymogen liberation has not been clearly 

documented yet but could be operated through exocytosis and hence 

correspond to the merocrine mode of secretion. 

Last but not least, the most characteristic and by far the most 

studied cells of scleractinian gastrodermis are the symbiotic host-cells 

containing the Symbiodinium algae. These cells are specifically 

simplified and harbor usual cytoplasmic components except for one 

large symbiotic vacuole called symbiosome. This algae-containing 

symbiosome occupies most of the cytoplasm, squeezing the nucleus in 

a basal position and giving the cell a round shape that protrudes into 

de coelenteron. Whether symbiotic host-cells are readily competent 

before algae acquisition has not been established yet but is quite 

unlikely. The most plausible explanation is that gastrodermal nutritive-

muscle cells undergo transdifferentiation into symbiotic host-cells 

following algae phagocytosis [71]. Not every scleractinian is symbiotic 

and therefore possesses this kind of cell. This character has been lost 

and/or gained multiple times during the phylogenic history of 

scleractinians and is therefore polyphyletic [22]. Today, for the 1314 

known species only 48,2% of the genera and 49% of the species 

harbor Symbiodinium within their gastrodermis [353]. 
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Symbiodinium 

Phylogeny 

To understand the mechanisms underlying any symbiosis 

establishment and breakdown, it is first necessary to have a good 

knowledge of each partner involved. The cnidarian host being amply 

described, we shall now bear our attention to the Symbiodinium 

algae. Symbiodinium, commonly referred to as zooxanthellae, are 

unicellular algae, members of the Dinoflagellata phylum wherein they 

belong to the Dinophyceae Class and to the Suessiales Order. 

Although zooxanthellae were once all considered as members of a 

single pandemic specie, Symbiodinium microadriaticum Freudenthal 

(1962), precursor work of Rowan and coworkers using molecular 

techniques revealed a much more complex phylogenetic organization 

[331, 332]. Recent molecular and genetic analyses, based upon 

variation of nuclear ribosomal DNA (18s, ITS and 28s rDNA), 

chloroplast 23s rDNA and other specific sequences such as HSP90 or 

psbA non-coding region, have revealed that the genus Symbiodinium 

is in fact divided into nine large clades (A to I), each comprising 

multiple strains or species [60, 173, 216, 220, 303, 322]. Curiously, this 

evolutionary radiation seems to be relatively recent compared to the 

acquisition of symbiosis by scleractinians. Phylogenetic 

reconstructions showed however that their first diversification from a 

common ancestor happened only about 50 million years ago during 

the Eocene [218, 304]. 

Habitats 

Today, the ability for Symbiodinium to establish symbioses is not 

restricted to reef-building corals but also involves a variety of other 

cnidarians (octocorals, soft corals, sea anemones and jellyfish) and 

some representatives of the Platyhelminthes, Mollusca, Porifera, 
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Foraminifera and ciliates [53, 354]. Several studies also report the 

presence of free-living Symbiodinium in the water column, within 

sediments [4, 53, 59, 142, 159, 246, 248, 305, 368, 409] and in 

association with macroalgae beds in the vicinity of coral reefs [306]. 

Nevertheless, the density distribution of free-living Symbiodinium 

seems to be highly heterogeneous between and within reefs [246]. 

While every clade could theoretically be found in the water column 

upon release by its host, not all of them seem in fact suited for this 

environment. Symbiodinium belonging to clades A and B are the most 

commonly found in free-living state while analyzing samples of the 

water column and sediments [60, 159, 368] but specimens belonging 

to clade C, D, E, F, G and H have also been detected and often reflect 

the dominant type found in symbiosis within areas of collection [142, 

248, 368, 409]. For some of them the water column would then 

represent a transitory niche upon release by its host and before 

establishment of a new symbiosis. 

Lifecycle 

While in its free-living state, Symbiodinium adopts the lifecycle 

common to most of the dinoflagellates. It alternates between two 

haploid stages [337]: a spherical stage or coccoid and a smaller 

flagellated and mobile stage called mastigote (Fig. 6). So far, 

Symbiodinium have only been reported to multiply by asexual means, 

although sexual reproduction is supposed to occur. Its division rate in 

culture is about 1-3 days and follows a diel pattern, the mother cell 

releasing two mastigotes as the light period starts [115]. The cell 

structure of Symbiodinium is quite typical to the genus dinoflagellates 

with its motile form wearing two perpendicular flagella. One notable 

difference of this stage is the absence of cellulosic plates or armor. Its 

larger coccoid form, which is not to be confounded with a vegetative 

cyst, ranges from 6 to 13 micrometers and is enclosed within a thick 
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cellulosic cell wall. In this stage, Symbiodinium is also characterized by 

a large single, peripheral, reticulated chloroplast bounded by three 

membranes [79, 119]. Although Symbiodinium are mixotrophe and 

therefore able to feed heterotrophically [180], they rely essentially on 

the chloroplast and photosynthesis for their energy incomes. 

                    

Figure 6 | Symbiodinium life cycle. Mitosis (1) produces two mastigotes (2) that can 
return to the coccoid form (3). Tetrads result from meiosis (4) or two successive 
mitosis (6) and produce four mastigotes. Sexual reproduction is believed to occur 
during the mastigote stage (5). 

Photosynthesis 

A brief reminder of the photosynthesis basics seems therefore 

adequate. Photosynthesis is divided into two main processes, the light 

and dark reactions. In the light dependent reaction, photons are 

absorbed by chlorophyll pigments of the antenna to which they 

transfer their excitation energy. This energy is transmitted to the 

reaction center where it either induces charge separation and 

produces an electron or returns to the antenna to be lost as heat or 

fluorescence. Thanks to pheophytin and quinone molecules, the newly 
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produced electron enters then the electron transport chain where it 

will ultimately produce NADP+ and NADPH. The chlorophyll molecule 

regains its lost electron through the lysis of water molecules which 

also produces dioxygen and a proton. This proton, together with 

another one produced by the electron transport chain creates a 

gradient across the chloroplast membrane that enables production of 

ATP by an ATP-synthase enzyme. The dark reactions use the newly 

produced ATP and NADPH as well as CO2 to produce C3 sugars. This 

process involves the RuBisCO enzyme and a series of reaction called 

the Calvin-Benson Cycle. 

Clades 

Within the nine Symbiodinium clades listed today, all but the 

clades E, H and I have been identified within a scleractinian host [60, 

303]. Nevertheless, clades A, B, D and especially C are the most 

common ones within scleractinians while clades F and G are more 

anecdotic and are found only in modest numbers. Clades F, G, H and I 

are meanwhile mostly established within foraminifera [60, 354]. The 

four major clades living in symbiosis with scleractinians can be found 

all around the globe and can be present in different combinations 

within the same coral colony. Clade C, however, is the dominant one 

across the Indo-Pacific region while clade B is the most encountered in 

the Atlantic [217, 218]. The origin of this disparity could be found 

within the field of phylogeography with oceans separation and 

allopatric speciation events favoring different clades in different 

places. Today however, the dominance of some clades or subclades in 

some places and the niche partitioning within some habitats is most 

probably related to their competitive advantage over others given 

their ecological proprieties and environmental conditions [64, 217, 

218, 334]. Indeed, while some subtle morphological differences such 

as cell size can be observed within clades, those differ mostly by their 
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biochemical or physiological characteristics such as MAA production, 

thylakoids membrane composition or host infectivity [76, 77, 216, 

372]. 

Clade A for example is relatively different from others and has 

been described as an opportunistic or even parasitic clade [234, 260, 

357, 377]. This can be in some ways related to the ancestral position 

of the clade A in Symbiodinium phylogenic tree and its close proximity 

with its sister group apicomplexans, well known for their parasitic 

lifestyle [234]. Symbiodinium of the clade A rather infect host in 

suboptimal health state, releasing less fixed carbon and hence being 

less beneficial to them. This ancestral clade has seemingly followed a 

different evolutionary trajectory and is probably better adapted to the 

free-living state as suggests its ability to outcompete other clades in 

cultures [304, 357]. On the other hand, members of the clade A have 

been reported to possess an enhanced capacity to use alternative 

photosynthetic electron-transport pathways as well as pronounced 

ability to dissociate its antenna complex of the photosystem II. They 

are therefore less subjected to damages in environment characterized 

by high light intensities and could then be beneficial for their hosts in 

such environments [314]. 

In fact, most of the differences between clades rely on their 

ability to cope with diverse environmental conditions and abiotic 

factors [357]. While some studies have used in vitro cultures of 

Symbiodinium to analyze the physiological variations between clades, 

especially concerning their photosynthetic apparatus [76, 314, 371], 

most observations have been made on symbiotic hosts and 

extrapolated to the clades they contain. Early observations of 

differential clade distribution among a same colony [329, 330, 381], or 

along the depth gradient for example [178, 378], revealed their 

discrepancies regarding light tolerance. Most of the recent studies, 
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however, focus the tolerance of some clades against elevated 

temperature and therefore against bleaching. Some pointed out 

differences regarding heat resistance between different subclades 

within clade C [108, 335] but the majority of the publications are 

related to the clade D. Symbiodinium belonging to this clade seems 

indeed to have an increased capacity to cope with elevated 

temperatures [328]. Studies already highlighted the outcompeting 

capacity and the opportunist behavior of these algae, which 

sometimes gain prevalence within host that previously suffered from 

heat-induced bleaching [219, 375]. They seem also able to confer their 

host with an increased resistance to such noxious events [26, 260, 

284, 355] or infect aposymbiotic juveniles with greater success when 

exposed to high temperature [2]. There are however some drawbacks 

with clade D members being almost always suboptimal for their hosts, 

causing a decrease in their growth rate and reproductive capacity 

compared to conspecific specimen bearing algae of the clade C under 

normal conditions [187, 188, 245, 355, 357]. This decrease seems to 

be linked to a lower photosynthetic efficiency and a lower lipid store 

of Symbiodinium belonging to the clade D. Their tolerance to heat is 

indeed likely to be related to a lower maximum relative electron 

transport rate as well as a lower chlorophyll-a content [188]. This 

explains why the clade D is able to outcompete the clade C during 

water temperature anomalies and bleaching events but never achieve 

to establish its predominance once environmental conditions returned 

to normal. 

Clade C and clade B Symbiodinium are, as said earlier, the most 

commonly found within scleractinian corals. This could be due to their 

relative flexibility regarding to environmental conditions [196] but 

more simply, and especially concerning clade C, because they are the 

most beneficial for their host’s fitness, releasing the highest amount 

of photosynthesis derived carbon [234, 357]. Clade C is particular in 
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the sense that it seems almost strictly restricted to its symbiotic way 

of life with scleractinians. This restriction to a specialized environment 

is even more accentuated by the large number of hosts transmitting 

clade C Symbiodinium in a vertical manner, directly from the mother 

colony to the larvae. This promoted evolution within clade C, that 

harbors now a subcladal diversity equivalent to the diversity observed 

within other genus of dinoflagelates [354, 357]. 
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Symbiosis1 

As we can see, every clade has its specific characteristics and 

confers its host with variable fitness. Observations like these, 

underlying different outcomes for the host depending on the clade 

and the environmental conditions, lead some researchers to propose 

the existence of a continuum of relation status between both 

partners. This continuum would extend from pure mutualism to plain 

parasitism by the algae with a relative position depending on the 

environment and the clade but also on the host [234]. Vertical 

transmission and obligate symbiosis, as observed with many 

representatives of the clade C, favoring mutualism and symbiont 

effectiveness for its host while horizontal transmission and facultative 

association, as mainly observed for clade A, favoring parasitism. Still, 

none of the clades or subclades can be seen as pure mutualists or 

parasites but as occupying a subtle position between those two 

extremes. Understanding of the relation between coral hosts and algal 

symbionts gets even more convoluted as recent studies have even 

hypothesized that the host could be itself a parasite. Corals could 

indeed be actively farming Symbiodinium and would then choose with 

which to establish the most advantageous symbiosis [407]. Such an 

active or even exclusive participation of the host in the symbiosis is 

supported by studies showing that symbiosis fitness not only relies on 

the symbiont and environmental conditions but also on the host itself 

[145]. This leads to the idea that the host can operate, at least in part, 

a choice over its dominant symbiont composition, relegating other 

algal populations, which are almost always present [19, 261, 356], to a 

minority fraction. This choice may obviously depend on Symbiodinium 

availability but also on the host physiological characteristics in 

                                                           
1
 Parts of the following section have been published as a review article in 

Journal of Experiment Marine Biology and Ecology. (cf. [118]) 
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response to environmental conditions. This multitude of factors to be 

taken into account makes it very tricky to understand the reason why 

some clades or subclades are present in some corals within some 

locations. Cladal composition could indeed vary between different 

geographic sites at global but also local scales, sometimes even 

showing some form of endemism [123, 374, 383]. Monitoring showed 

that, within these particular locations, the symbiont composition 

inside different coral taxa or even colonies seems however to be 

stable as long as environmental conditions stay steady [144, 301, 323]. 

Yet, its reaction to environmental stress and its eventual switch to a 

composition dominated by another clade are not unanimously 

recognized and may be species specific [18, 143, 374, 375]. This 

hypothesis will be addressed later, when we discuss the subject of 

coral bleaching. 

Transmission 

Various degrees of cladal composition specificity exist among 

coral species [17]. Such specificity can be observed early during the 

life of corals. This is especially true for species that acquire their 

symbionts through vertical transmission. In this case, algae are 

transmitted from the mother colony to its egg or brooded planula 

larvae prior to release [28, 29]. Interestingly, during early stages of 

development, algae can be found within both ectodermis and 

endodermis [175, 416]. This suggests an initial, and later lost, 

competence of ectodermal cells to host algae. The developing larvae 

perpetuate then the association present within its species local 

population. This mechanism is however a minority, representing only 

15% to 20% of hermatypic scleractinian coral species with particular 

occurrence within brooding species. The vast majority of corals rely on 

horizontal transmission where aposymbiotic larvae recruit new algae 

from the surrounding water [15, 99, 318, 326, 345, 367]. Larvae or 
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juveniles of these coral species are able to initially associate with 

either homologous (same as adult colony) or heterologous clades of 

Symbiodinium [1, 51, 67, 153, 245, 325, 345, 398]. Such early 

association has also been reported in cultured gorgonians and sea 

anemones [61, 73]. However during the following months, the initial 

distribution of symbionts progressively adjusts to the most common 

distribution found in adjacent adult colonies [1, 61, 140, 245]. The 

host seems indeed able to finely tune its symbiont composition thanks 

to alternative discharge mechanisms [410]. This corroborates results 

showing that the pattern of transmission has only little effect on the 

Symbiodinium composition of some coral species [382] and suggests 

the presence of specific mechanisms to favor the development of an 

optimal relationship between the coral and a specific symbiont type. 

Acquisition 

During this so-called horizontal transmission, many studies 

showed that larvae acquire their symbiont during a nutritional process 

[153, 160, 325, 326, 345, 346, 398]. Although symbiont infection 

through feeding is probably the major acquisition mechanism, it could 

also be facilitated by active mechanisms deployed by Symbiodinium. 

Indeed, as described earlier, Symbiodinium cells interchange between 

a coccoid form, which is always the one encountered when 

endosymbiotic, and a motile zoospore. The motility of the flagellated 

Symbiodinium is regulated in a diel-cycle and cells are active under 

illumination [66, 111, 115, 228, 408]. During that period, 

Symbiodinium seems able to swim in an oriented manner, thus 

showing phototaxis [169] and/or chemotaxis [110, 292]. However, a 

potential host-seeking behavior remains limited by the flow velocity 

and the proximity of a host [293]. Finally, the success of Symbiodinium 

acquisition strongly depends on environmental conditions. In the 

same manner as during bleaching, which will be extensively discussed 
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later, high temperatures accompanied by elevated light irradiance 

have been demonstrated to drastically impair algae uptake. 

Symbiodinium concentration in juvenile corals falls from 87% at 28°C 

and high light to 8% at 31°C [2]. 

  

Figure 7 | Schematic illustration of Symbiodinium infection of a cnidarian host cell. 
Motile or non-motile (cyst) Symbiodinium enter the gastrodermal cavity of the host. 
(1) Lectins secreted by the host cell induce motile algae to progress to the cyst stage. 
(2) Contact and recognition are mediated by other lectins present on the host cell 
surface and glycoproteins on the surface of the non-motile Symbiodinium. (3) 
Symbiodinium are phagocyted and oriented to the early endocytic compartment. (4) 
Healthy Symbiodinium end in a functional symbiosome while damaged Symbiodinium 
are digested by fusion with lysosome after transiting through late endocytic 
compartment. Rab5, Rab7 and Rab11 are respectively involved in the early endocytic 
compartment, late endocytic compartment and endosome recycling. G: Golgi 
apparatus, L: Lysosome, S: Symbiodinium. 

In order to establish the symbiosis, both partners first have to 

recognize each other. Recognition mechanisms could be similar to the 

winnowing mechanism, which consists in a multi-step process 

involving both partners, that was first described by Nyholm and 
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McFall-Ngai [278] for the symbiotic relationship between the bobtail 

squid, Euprymna scolopes, and its bioluminescent bacterium, Vibrio 

fischeri. These mechanisms necessarily take place before, during, and 

after contact with Symbiodinium and its internalization, leading 

ultimately to the formation of a stable mutualistic relationship [71]. 

Recognition mechanisms between host cells and algae seem to be 

necessary, at least at some point, during vertical or horizontal 

transmission. Indeed, while it is quite obvious for horizontal 

transmission, Marlow and Martindale [251] showed that recognition 

events could also be involved during vertical transmission in 

Pocillopora meandrina. 

According to Weis [394], among others, the onset of the infection 

by Symbiodinium involves the same mechanisms as those acting in the 

recognition of pathogenic organisms (Fig. 7). For many eukaryotes, the 

innate immune system implies the production of pattern recognition 

receptors (PRRs) able to recognize and bind to specific conserved 

components of microbe cell walls (carbohydrates, proteins, lipids; 

[200]). Among those PRRs, lectins (carbohydrate-binding proteins; 

[139]) are widely distributed in most classes of living organisms and 

are thought to play an important role in various symbiotic associations 

(e.g.: [50, 161, 264]). To date, lectins have been described in, at least, 

two cnidarians classes (Hydrozoa and Anthozoa) and have been 

reported in five scleractinians, including Acropora millepora [213], 

Montastrea faveolata, Oculina patagonica [155], Pocillopora 

damicornis [385] and Ctenactis echinata [183]. Several studies have 

thus examined the implication of lectin/glycan interactions in the 

recognition process between cnidarians and Symbiodinium.  

Lin et al. [243] identified ten different proteins on the cell surface 

of symbiotic dinoflagellates. Among those figured five glycoproteins 

with two kinds of terminal sugar residues: mannose-mannose and 
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galactose-β(1-4)-N-acetylglycosamine. Moreover, cell surface glycan 

profiles of cultured Symbiodinium seem to be stable throughout their 

life history, indicating that Symbiodinium may maximize the potential 

for host recognition by retaining recognition molecules throughout 

their vegetative growth [247]. The importance of these membrane-

bound glycoproteins during the infection of the sea anemone Aiptasia 

pulchella with Symbiodinium has been demonstrated by masking or 

removing cell surface glycans of the dinoflagellate. Indeed, 

Symbiodinium incubated with either trypsin, α-amylase, N-

glycosidase, O-glycosidase or with different kinds of lectins, in order to 

remove or mask carbohydrate groups, showed a significant decline in 

the infection rate of an aposymbiotic host [243]. Similarly, 

Symbiodinium treated to digest or mask α-mannose/α-glucose and α-

galactose residues failed to efficiently infect larvae of the fungiid coral 

Fungia scutaria [405].  

These membrane-bound glycoproteins could play a role in 

Symbiodinium recognition by acting as “markers” that could be bound 

by various types of lectins. SLL-2 is one of these lectin-type proteins. 

This (N-glycosylated) galactose-binding lectin, isolated from the 

octocoral Sinularia lochmodes, is preferentially localized not only in 

nematocysts but also on the cell surface of Symbiodinium, whether 

they are present within a host cell or in the coelenteron [181, 184]. 

The most surprising propriety of SLL-2 is its ability to induce the switch 

of flagellated and motile Symbiodinium cells to a non-motile coccoid 

form still able to divide [205]. Such physiological transformations may 

favor a condition more suited for the establishment of symbiosis. SLL-

2 action on Symbiodinium seems to present more than a simple 

carbohydrate binding property as shown by the lack of algal 

modification in the presence of proteins showing similar properties as 

SLL-2. Koike et al. [205] suggested that SLL-2 could be stored within 

nematocysts and released into the gastrodermal cavity in the 
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presence of micro-algae. It would then bind to glycolipidic residues 

present on their surface [182]. Response of these algae to SLL-2 could 

therefore act as a first screening process, modifying algal physiology 

to favor further interactions with the host or causing damages to 

micro-algae unsuitable for symbiosis. Recently, CecL discovered in 

Ctenactis echinata showed effects on cell transformation highly 

analogous to those of SLL-2. It seems that CecL lectin also has the 

ability to temporarily suppress the rate of cell division without 

affecting cell viability and thus, can regulate Symbiodinium density in 

the coral gastrodermis, where only a limited number of algae can be 

accommodated [183].  

Another lectin has been identified in Acropora millepora [213]. 

Named millectin, this lectin possesses a Ca2+-dependent 

carbohydrate-binding site that preferentially binds to mannose and 

similar sugars. According to immunohistochemical analysis, millectin is 

localized in nematocysts present in the epidermal tissue [214]. This 

protein is phylogenetically close to collectins, which play a key role in 

vertebrate innate and adaptive immune responses. Millectin 

expression is up-regulated in response to lipopolysaccharides and 

peptidoglycans. Moreover, it has the ability to bind to both gram + 

and gram – bacteria (including Vibrio coralliilyticus, a coral pathogen) 

and to various clades of Symbiodinium (C1, C2 and A2) in vitro and in 

vivo [213, 214]. When bound to pathogens, millectin prevents their 

dispersion into the host and induces opsonisation for phagocytosis 

and destruction. Finally, numerous millectin isoforms showing amino 

acid substitution sites in close proximity to the binding site have been 

identified. This vast diversity of millectins suggests a probable 

appearance of some recognition specificity and a role of millectins in 

the winnowing process [213]. 
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Recently, the sequence variation of a putative coral immunity 

gene, tachylectin-2, has been investigated in the coral Oculina 

patagonica [155]. Tachylectin-2 was originally isolated from the 

Japanese horseshoe crab (Tachypleus tridentatus) and has been 

demonstrated to possess anti-microbial activity [281]. Nevertheless, a 

role for Tachylectin-2 in the symbiosis of coral species has not been 

confirmed yet. 

Lectins also appear to play an important role under stress 

conditions. Indeed, the downregulation of the transcriptional 

expression levels of two C-type lectins has been observed in 

aposymbiotic larvae of A. millepora [324] and nubbins of Pocillopora 

damicornis exposed to thermal stress (PdC-lectin; [385]). Conversely, 

the same gene has been shown to be up-regulated when exposed to 

the pathogen Vibrio coralliilyticus under virulent conditions [386]. 

These contrasting results underline the complexity of these 

lectin/glycan interactions and the tenuous link between the coral 

physiological response and the establishment of the symbiosis. 

Lectin-type proteins are not the only molecules involved in 

mutual recognition between host and symbiont; other proteins have 

also been reported to be over-expressed in the presence of 

symbionts. These include AtSym-02, a glycosylated membrane protein 

identified in Acropora tenuis [412], and Sym32 identified in 

Anthopleura elegantissima [315]. AtSym-02 may belong to the 

fasciclin-I (fasI) gene family, also known to be involved in cell-cell 

recognition mechanisms [412]. Sym32 can be found both in anemone 

protein homogenates and bound to membranes. Sym32 is also 

expressed more in anemones infected by Symbiodinium than in those 

hosting green algae (Zoochlorellae), leading the authors to 

hypothesize that the symbiont has the ability to control the 

expression of some host genes [315]. 
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Establishment 

After the recognition step, symbionts are internalized by a 

phagocytic process conducted by host cells, probably through the 

formation of a lectin-binding complex. Then, a wide range of other 

cellular processes are necessary for the maturation of Symbiodinium-

containing phagosomes into functional symbiosomes able to avoid 

fusion with the host endolysosomal system during endosymbiosis [55, 

114]. Indeed, while normal phagosomes mature by fusing with 

lysosomes, early observations showed that healthy Symbiodinium-

containing symbiosomes did not reach that stage [114], suggesting the 

existence of host and/or symbiont-specific molecules involved in 

mechanisms maintaining the symbiosis once established. Parts of 

these mechanisms, such as modulation of TGFβ synthesis, could be 

similar to those employed by some parasites to promote host 

tolerance [75, 344], while others could be specific to this symbiosis. 

Although the mechanisms of symbiosome membrane formation 

are still poorly understood, some evidence in Aiptasia pulchella 

indicates that ApARF1 and ApRab genes could be involved in this 

particular process. ApARF1 is homologous to ARF1, a member of a 

family that regulates intracellular vesicle transport and its gene 

expression appeared reduced in symbiotic anemones [56]. However, 

further investigation is needed to clarify apARF1 function in the 

establishment of symbiosis. The role of ApRab seems more 

convincing. ApRab shows similarities with Rab family members, coding 

for small GTP binding proteins found in many vertebrates, where they 

assume the regulation of vesicular trafficking, membrane fusion and 

also the biogenesis and the function of membrane-bound organelles 

[171]. To date, four of these ApRab proteins have been shown to play 

a role in the establishment of symbiosis. 
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ApRab7 usually participates in late acidic endocytic and 

phagocytic pathways [387]. However, in A. pulchella, ApRab7 is 

excluded from symbiosomes containing either resident or newly 

internalized Symbiodinium. ApRab7 can also be found on phagosomes 

containing heat-killed or PSII-impaired (DCMU-treated) Symbiodinium, 

where it probably promotes their maturation and fusion with 

lysosomes [55]. 

ApRab5 appears before ApRab7 and is present in the early 

endocytic and phagocytic compartments where it can promote their 

fusion [23]. In A. pulchella, ApRab5 localizes on symbiosomes 

containing healthy algae and is absent from symbiosomes in which 

algae have been damaged by heat or DCMU treatment. These 

observations suggest that active retention of ApRab5 by 

Symbiodinium participates in their persistence in the host, possibly by 

preventing ApRab7 binding. Indeed, these two proteins never co-

localize in A. pulchella vesicles [54]. 

ApRab11 acts during endosome recycling processes, a necessary 

step towards maturation [415]. In A. pulchella ApRab11 can be located 

on phagosomes containing damaged symbionts but is absent from 

those containing healthy ones [57]. By actively excluding ApRab11, the 

authors observed that Symbiodinium interferes with the vesicular 

recycling process and thus prevents the maturation of their 

symbiosome and its fusion with lysosomes. 

ApRab3 is the last of the ApRab family members identified in 

cnidarians. It appears to be preferentially localized in the 

compartments of the biosynthetic pathway including both the Trans 

Golgi Network and a subpopulation of secretory vesicles. In A. 

pulchella, symbiosome formation seems to involve interactions with 

ApRab3-positive vesicles. However its function in the symbiosis 
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establishment remains to be determined, as phagosomes containing 

either healthy or damaged Symbiodinium or even latex beads 

progressively accumulate ApRab3-specific labeling [171].  

The differentiation of phagosomes into functional symbiosomes 

obviously requires some particular cellular developments in order to 

maintain the endosymbiosis and to optimize mutual exchanges. 

Indeed, the analysis of symbiosome structure conducted on Aiptasia 

pallida, using transmission electron microscopy and immunological 

techniques, revealed a membrane complex composed of a single host-

derived outer membrane and a multilayered inner membrane 

originating from the algal symbiont [388, 389]. The presence of 

symbiont thecal vesicles in situ suggests that this multilayered 

membrane could be the result of a continuing delayed in situ ecdysis 

cycle [388]. Anyway, the formation of this kind of structure requires 

some regulation by the cytoskeleton of the host cell and its symbionts, 

allowing normal host cell physiology [295]. Moreover, proteomic 

analyses of isolated symbiosome membranes conducted on A. pallida, 

highlighted the presence of proteins highly similar to GPCR family 

proteins. These receptor-like proteins are distributed to symbiosome 

surface and should be involved in various cellular responses and 

modulation of host gene expression [295]. The presence of ATP 

synthase complexes and ABC transporters on this structure 

demonstrates the pivotal process of molecular transport during the 

mutualistic association [295]. 

Exchanges 

Indeed, the symbiosis is considered to be optimally functional 

when a significant amount of photosynthates generated by 

Symbiodinium is transferred to the host cells. Once in symbiosis, the 

symbiont provides up to 95% of its photosynthetic products (glycerol, 

glucose, amino acids or lipids) to the host [250, 265, 267], thus 
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contributing massively to its energy demands [128]. In many species, 

half of this translocated carbon is used for mucus production [404]. 

Lipid droplets could play an important role in these transfers as shown 

by the light induced rhythmicity observed in their formation and 

localization [58, 294]. A significant part of the photosynthetically fixed 

carbon is translocated through processes controlled by host release 

factors (HRFs) which are yet to be clearly identified [411]. HRFs are 

believed to divert surplus of assimilated carbon from the synthesis of 

storage compounds to translocated compounds. Interestingly, if the 

heterotrophic incomes of a coral host become scarce, this leads its 

nitrogen-limited symbionts to allocate more carbon to storage and 

therefore to its starving host [72]. Contrastingly, translocation of 

photosynthates could also be induced by the symbiont. This 

hypothesis, known as phagosome arrested hypothesis (PAH) states 

that Symbiodinium stays hidden in its host cell by mimicking a 

constant prey digestion by the endosomal machinery through 

perpetual release of carbon based nutrients [157]. Regarding the 

amount of transferred molecules, especially glycerol, osmolarity 

within the host cell is susceptible to many changes; its fine regulation 

has recently been pointed out as a key factor in symbiosis regulation. 

While increase in osmolarity has been shown to enhance release of 

photosynthates from algae [364], its decrease, due to photosynthesis 

failure for example, could lead to hyperosmotic stress and ultimately 

to symbiosis breakdown [253]. Finally, as said earlier, high O2 

concentration due to Symbiodinium photosynthesis also helps in 

maintaining the high ATP level needed for the calcification process 

[185]. 

In return for these services, the host ensures protection to 

Symbiodinium and provides a source of inorganic nutrients (CO2, NH3 

and PO4³
-)[411]. Carbon dioxide transfer to the algae seems 

particularly crucial considering its low concentration in seawater and 
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the poor discrimination of dinoflagelates RuBisCO II between O2 and 

CO2. The host addresses this issue not only with CO2 production by 

respiration processes but also thanks to mechanisms concentrating it 

from the surrounding water. These mechanisms mostly involve 

various isoforms of the carbonic anhydrase (CA), an enzyme operating 

conversions between HCO3
- and CO2, which is upregulated in 

symbiotic cnidarians [120, 397]. 

Regulation 

Under normal conditions, Symbiodinium densities in symbiotic 

corals reach a steady state wherein neither partner outgrows the 

other [266]. The maintenance of this dynamic equilibrium suggests 

the existence of intrinsic and environmental factors that can 

potentially regulate algal density pre- or post-mitotically [168, 269]. 

This regulation involves a variety of mechanisms, like the limitation of 

algal nutrient supply [101], the digestion of algae [195, 269, 376], the 

expulsion of excess or dividing Symbiodinium [13, 168, 195], the 

accommodation of excess algae by division of host cells [376] and 

possibly the production of growth inhibiting factors [352]. This fine 

regulation of algal density also occurs on daily [109, 166, 195, 361] 

and yearly bases showing, for example, seasonal variations [43, 100, 

109, 360]. Expelled algae can then be recruited by gastrodermal cells 

or released to the ambient environment. Symbiotic algae that are 

released every day to the external environment, either through 

density regulation mechanisms [166, 361] or through survival of 

corallivorous species digestion [12, 262], may contribute to the 

maintenance of a free-living Symbiodinium population. 
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Bleaching 

Under atypical or extreme conditions however, this seemingly 

stable equilibrium often suffers severe impairments that ultimately 

lead to its collapse. This phenomenon, revealing the coral white 

skeleton beneath its algae-depleted tissues, is known as coral 

bleaching (Fig. 8). This sadly famous incident is the central element of 

a majority of recent coral-related studies, including this one. The main 

reason of this infatuation is, as said earlier, the upsurge of scenarios 

based on climate change predictions considering a baneful destiny for 

coral reefs. The urge for a better understanding of coral bleaching is 

even more strengthened by the increased number of field 

observations witnessing its occurrence all around the world. The 

change is underway and the threat needs to be taken seriously. Since 

the first alarming observations of coral bleaching, their subsequent 

death and the species disappearance in Panama following a warming 

event in the early 80’s [132, 133, 223, 236], reports of bleaching keep 

accumulating. Whether they come from the Caribbean region [81, 84, 

122, 125, 327], the Pacific Ocean and the neighboring South-East Asia 

[30, 47, 130, 186, 279] or the coasts of the Indian Ocean [44, 221, 237, 

255, 256], they all give the same feeling of anxiety and alarmism 

reporting reduction of coral health, cover and architectural complexity 

accompanied by modifications of the benthic community. 
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Figure 8 | Illustration of a bleached Acropora sp. (From en.wikipedia.org) 

Causes 

Coral bleaching has been rapidly linked to elevated sea surface 

temperatures [141] but the concomitant cellular responses to this 

abiotic stress have been slow to be elucidated and are still not totally 

understood. Scientists particularly struggle to understand the 

respective responsibilities of each partner (coral, algae and bacteria) 

in the collapse of the symbiosis. Many fingers are however pointed 

toward Symbiodinium and its photosynthetic apparatus. This is 

legitimate considering studies demonstrating a link between algal 

density and symbiosis susceptibility to light and/or thermal stress in 

cultured cell aggregates [275], planula larvae [274] or adult colonies 

[68]. Every investigation undertaken to identify these intimate links 

between Symbiodinium and bleaching leads to the same culprits: 

photosynthesis dysfunction and reactive oxygen species (ROS) 

production [83, 179, 298, 351]. Subtle distinction can then be made 

concerning the different effects and relative responsibilities of light 

and high temperatures here. Sunlight could be considered, with the 
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energy it carries, as the source of the ROS, the toxic compounds that 

lead to bleaching, while elevated temperature is the cause of 

impairment within the photosynthesis apparatus that ultimately leads 

to this production of ROS. High UV radiations could also induce some 

deterioration of photosynthesis components and have been subject of 

a few studies in the past [21, 230, 233, 235]. UV could especially 

induce reduction in chlorophyll synthesis and exacerbate effects of 

visible light and heat on photosynthetic apparatus. This abiotic factor 

is however barely affected by climate change, thus relegating its 

implication in increasing coral bleaching events as a facilitating factor 

but not a main cause such as elevated temperature. 

Within chloroplasts machinery of Symbiodinium, photosystem II 

(PSII) is the most sensitive component to light and therefore the main 

siege of the degradations leading to ROS production. It can suffer from 

multiple sorts of damages that often result in a process called 

photoinhibition, a drastic reduction of photosynthetic capacity. 

Several studies have pointed out the role of the D1 protein during 

heat related photoinhibition in Symbiodinium. The D1 protein plays a 

central role in PSII functioning but is also its most vulnerable 

component: it is very sensible to heat and can be easy destabilized. An 

active reparation mechanism fortunately exists but often fails to cope 

with the high rate of D1 degradation occurring during high water 

temperature events. Some experiments even showed that D1 

reparation mechanism could itself suffer from heat. Following D1 

degradation, excitation energy starts backing up and finally leads to 

photoinhibition. This is usually translated by a drastic reduction of 

photosynthesis efficiency, measured by its maximum potential 

quantum yield (Fv/Fm) [369, 392, 394]. Similar effects can be 

observed with chemicals such as DCMU, an herbicide blocking the PSII 

electron transport chain [190]. Elevated temperatures seem also able 

to impair the dark reactions of the photosynthesis, altering CO2 
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fixation mechanisms through degradation of the Rubisco [192, 230, 

351, 394]. Similar results have been observed in the symbiosis 

between Symbiodinium and giant clam (Tridacna gigas) [227]. The 

consequent limitation of ATP and NADPH consumption leads once 

again to a backup of excitation energy within the PSII and its 

photoinhibition. Finally, the lipidic structure of the thylakoid 

membranes represents a third site of damages from heat within 

Symbiodinium chloroplasts. This results in an energy uncoupling of 

electron transport in both photosystems and prevents electrons 

generated from taking part in ATP and NADPH production [351, 372, 

394]. 

                        

Figure 9 | Oxidative stress mechanisms responsible for bleaching. (from [394]) 

Mechanisms 

All these deleterious mechanisms lead to the same thing: an 

accumulation of electrons within the chloroplast of Symbiodinium. 

Instead of reducing NADP+, these electrons react with O2 and 

pigments to form two ROS species: respectively the superoxide anion 

(O2
–) and the highly reactive singlet oxygen (1O2). At first, the algal cell 
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tries to cope with this ROS production, alleviating their effect with the 

help of detoxification enzymes such as the superoxide dismutase 

(SOD) and ascorbate peroxidase (APX). It is then important to note 

that the less damaging H2O2 produced by SOD is likely, in presence of 

Fe2+, to transform into the hydroxyl radical (·OH), the most reactive 

ROS. These detoxification mechanisms set in place by the algae will 

however be eventually exceeded. Accumulation of ROS will then 

engage a positive feedback loop, degrading pigments and reacting 

with D1 proteins and photosynthetic membranes to further damage 

the photosynthetic machinery [192, 231, 372, 394]. 

ROS produced by the algae eventually diffuse into the cytoplasm 

of the gastrodermal host cell. From there, things get a bit more 

complicated (Fig. 9). A direct response to the stress from the host cell 

itself becomes indeed difficult to discern from its reaction to the 

diffusion of ROS from its symbiont. This is particularly true regarding 

the ROS produced by the host and their addition to those coming from 

the algae. These come from the host mitochondria, which are also 

susceptible to damages from the heat [89]. All these ROS elicit the 

establishment of an antioxidant response by the host cell. This 

consists in the production of different types of SOD, as well as catalase 

(CAT), ascorbic acid, carotenoids and mycosporine glycine [14, 238, 

258, 317]. Similarly to the algae, this response quickly becomes 

overwhelmed by the amount of ROS, still accumulating in the 

cytoplasm, and fails to prevent their oxidizing nature to cause 

damages to the DNA, membranes and proteins of the host [231, 232, 

316]. A recent study even suggests that the impact of ROS could even 

go beyond the collapsing cell membrane and diffuse into its 

extracellular environment to affect surrounding cells [338]. 

ROS may however not be the only molecules involved in the 

cellular bleaching cascade. Many studies have demonstrated that 
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nitric oxide (NO) also plays an important role in the induction of the 

symbiosis collapse. Origins of this molecule could be multiple. It could, 

in part, diffuse from the algae where high temperatures have been 

demonstrated to induce its production [40]. NO is also believed to be 

synthesized in high concentrations within the host cell in response to 

heat stress. This production involves the activation of the transcription 

by NF-κB of the gene coding for the inducible nitric oxide synthase 

(iNOS)[296, 394]. Nitric oxide would then activate apoptosis pathways 

either by direct action over p53 or through damages made to the 

mitochondrial membrane by its derivate peroxynitrite (ONOO-), which 

forms in reaction with superoxide [154, 231, 296, 394]. Finally, some 

studies demonstrated that calcium concentration seems to play a 

significant role in bleaching. They showed that heat stress increases its 

cytoplasmic concentration and that bleaching could be inhibited using 

calcium chelator or ionophore to reduce its extra- and intra-cellular 

concentration [102, 176]. 

Countermeasures 

This list of mechanisms, although trying to be as exhaustive as 

possible, probably does not represent what exactly happens within 

every coral gastrodermal cells during bleaching. Not all of these 

mechanisms may occur but different combinations may or may not 

cross the threshold that will elicit breakdown of symbiosis. Moreover, 

multiple studies have shown that coral response to a defined abiotic 

stress may vary depending on the host species [33, 112]. This could be 

related to their different intrinsic abilities to cope with cellular stress. 

Indeed, the host cells often deploy a large panel of molecules trying to 

overcome or alleviate the perturbations happening in its cytoplasm. 

The type and concentration of these molecules may vary between 

different species, explaining their different susceptibility [14, 112]. 

Aside from the antioxidant system, another main strategy consists in 
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the production of fluorescent pigments (FP’s) that dissipate high-

energy light radiations. The different production capacities of these 

pigments between coral species are very likely to define, in part, their 

variable susceptibilities to bleaching [14, 287]. The aforementioned 

MAA’s are also found within the host cytoplasm where they play a 

crucial role absorbing UV radiation and dissipating their energy 

without formation of ROS. The shikimic acid pathway that leads to the 

formation of such molecules excludes their possible production by the 

host cell. MAA have thus either to come from heterotrophic feeding 

or from translocation from the algae. Even if the algae also benefit 

from the highest MAA concentration found in its host cytoplasm, 

which partner of the symbiosis control their complement and 

distribution is still largely unknown [14, 120]. Finally, a last known 

strategy of the host to alleviate the cellular stress and escape 

bleaching consists in the upregulation of heat-shock proteins (HSP’s). 

These are molecular chaperones that help maintaining proteins 

tertiary structures and functions during stressful conditions. Their 

increased production seems to be related to the heat-related buildup 

of calcium concentration within the host cell [14, 102].  

Algal loss 

All these procedures may however not be sufficient to prevent 

the host cell from crossing the threshold that will engage it into 

bleaching. Defining this tipping point and the succession of events that 

follows therefore represents important steps in the understanding of 

the coral-bleaching phenomenon. Such is not an easy task as many 

mechanisms are evoked to explain the disappearance of algal 

coloration. While some studies have shown that visual bleaching of 

coral can be sometimes related to a diminution in chlorophyll 

concentration [370, 394], scientists agree that disappearance of 

Symbiodinium from the host gastrodermis is the main cause of coral 
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bleaching. How this happens has been largely debated and the 

mechanisms proposed in the literature can be organized in two 

categories: those that do not imply the loss of the host cells and those 

that do (Fig. 10). 

Host-cell persistence 

Mechanisms involving persistence of the host cell might only take 

place during mild environmental stress or before damages provoked 

by ROS production become too severe. Such mechanisms are most 

often related to in situ degradation of the algae as reported by 

microscopic examination performed on corals [6, 45] and sea 

anemones [88, 93, 116, 362]. This degradation is believed to result 

from two possible mechanisms. The first mechanism involves 

damages caused by ROS, such that they induce the death of the algae. 

This death can occur by means of programmed cell death (PCD) or 

apoptosis with the algae showing typical cellular patterns such as a 

condensed nucleus, crenated membrane and condensation of 

organelles and cytoplasm [88, 93, 116, 362]. ROS damages to the 

algae cellular components can be so harsh that the PCD cannot be 

established and the death occurs in an uncontrolled manner. The 

algae therefore die showing classic necrosis features that are pyknotic 

chromatin, vacuolization, breakdown of cellular structures and 

rupture of the membranes [88, 92, 93, 116, 362]. The second 

mechanism of algal degradation implies active degradation by the 

host cell and digestion of the remains. This mechanism could be 

spontaneously initiated following the impairment of the ApRab 

pathway manipulation by the algae. This one can therefore no longer 

prevent maturation of its symbiosome into a phagosome and lysis of 

its component by enzymes contained in lysosomes. It could also 

involve autophagy, a catabolic pathway responsible for the recycling 

of organelles as well as other cellular key functions. In this case, it is 
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sometimes called symbiophagy and actively participates in algal in situ 

degradation by promoting fusion of the phagosome with lysosomes 

[85, 91, 152]. Other scenarios sparing the host cell during algal 

expulsion have been proposed but are not unanimously accepted. 

Those were rarely described in the literature and include algae 

exocytosis [358] and the pinching off of a portion of the host cell 

cytoplasm [336]. 

  

Figure 10 |Host-controlled cellular processes involved in Symbiodinium loss. A. 
Schematic representation of the coral polyp with its tissular organization. B. 
Illustration of the mechanisms believed to be involved in the release of Symbiodinium 
from its host cell. S: Symbiodinium, H: Host cell. (Adapted from [127, 394]) 

Host-cell loss 

Although it could only concern severe cases of bleaching-related 

intense stress [363], many studies reported that loss of algae during 

bleaching is often accompanied by the loss of their host cells. Two 

scenarios are responsible for this loss, both happen consequently to 

major disruptions of the host cell homeostasis. Perturbation of the 
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calcium cytoplasmic equilibrium leads to the collapse of the 

cytoskeleton and perturbations of the cell adhesion. The host cell 

detachment that follows has often been described as a cause of 

Symbiodinium loss [45, 127, 341]. The vast majority of recent studies, 

however, agree to say that Symbiodinium loss during bleaching is 

largely caused by the death of their former host cells. Cellular swelling 

as well as other cellular characteristics of necrosis can sometimes be 

observed [223]. Nevertheless, necrosis is likely related to extreme 

stress conditions while apoptosis seems to be much more frequent 

and is described in recent studies [92, 93, 154]. As evoked earlier, 

environmental stresses experienced during bleaching are believed to 

induce apoptosis following multiple cascades of events. Heat as well 

as ONOO- and ROS can cause damages to host mitochondria and 

therefore induce activation of caspases and other pro-apoptotic 

factors. Nitric oxide also activates p53, a pro-apoptotic transcription 

factor that also activates caspases. Finally, NF-κB, which is 

upregulated due to ROS concentration, can have a direct action over 

apoptosis activation [317, 394]. The host seems however to operate 

some control over this caspase-induced apoptotic pathway. Some 

studies showed fine regulation of Bcl-2 protein family members 

following bleaching induction of apoptosis [215, 299]. Authors thus 

propose that, following caspase activation, coral quickly modulates 

this response in order to limit apoptosis and prevent its progression to 

other cells to limit the damages and optimize its survival. Happening 

prior to bleaching, the suppression of the cell death cascade within 

these cells will allow them to serve as basis for later tissue 

regeneration [7, 373]. Moreover, apoptosis and autophagy seem to be 

interconnected as demonstrated by experiment showing induction of 

one while the other is inhibited [91]. A similar “see-saw” mechanism 

has already been reported in vertebrates during immune response to 

pathogens and parasites.  
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Altogether, these information combine to form the following 

hypothesis of what is happening during bleaching. Exposed to 

environmental stressful conditions (high light and temperature), the 

cnidarian gastrodermic host cell will experience diverse degrees of 

perturbations depending the intensity of the stress, the algal clade it 

contains and its cellular equipment, which vary depending its species. 

Consequently, the host cell will identify algae, which are already 

suffering and could be dying, as the source of the stress and will try to 

get rid of it. Depending the scale of the perturbation it has suffered, it 

will favor “soft” mechanisms such as autophagy before using 

apoptosis. However, if the stress is too strong, the host cell will 

ultimately lose control of its homeostasis and either detach or 

undergo necrosis. 

Adaptative bleaching 

After release from their former host cells, Symbiodinium 

accumulate within the gastrodermal cavity before being expelled in 

the form of aggregates embedded in mucus pellets. It is then 

important to notice that multiple studies have observed that most of 

these algae are not always condemned and seem to be able to recover 

from the stress and multiply in the water column [34, 158, 307, 308]. 

The expulsion by the host of these stressed but seemingly viable algae 

corroborates the adaptative bleaching hypothesis (ABH). According to 

this hypothesis, the host could use aforementioned mechanisms such 

as apoptosis to eliminated algae unsuited to environmental condition 

in order to establish symbiosis with better ones. Such radical way of 

proceeding has even been documented in the winnowing mechanism 

during symbiosis establishment in coral larvae [94]. The ABH was 

initially proposed by Buddemeier and Fautin [49] who considered 

bleaching as an opportunity for the host to be repopulated by new, 

stress tolerant, algae [103]. Mathematical modelization [391] as well 
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as evaluation of its basic assumptions [82, 201] further strengthened 

this hypothesis. This shift between two dominating Symbiodinium 

populations, which usually favors the thermally tolerant clade D, has 

since been described on multiple occasions whether following natural 

bleaching events [20, 189, 375] or transplantation induced bleaching 

[16]. Such adaptative response is also supposed to occur during mild 

environmental changes and in absence of bleaching. This more 

progressive modification, called symbiont shuffling, would be similar 

to bleaching in the mechanisms involved but would operate more 

progressively and therefore in absence of visual whitening effect [31, 

280]. ABH is now accepted by numbers of scientists but some of them 

raise concerns about long terms effects of such new association and 

the need for more studies. As mentioned earlier, hosting of thermally 

tolerant symbionts lower the symbiosis fitness and therefore reduce 

the competitively of such corals if conditions return to normal [203].  

Recovery 

The ABH illustrates a specific case of algal density recovery from 

bleaching. Such recovery has been documented on cnidarians, 

whether in the field [113, 156, 377] or during laboratory experimental 

studies [32, 240], and can take from a few weeks to several months. 

The origin of the new Symbiodinium is however not clearly established 

as they could come from the environment or the multiplication of the 

remaining ones. Presence of new genotypes could then be explained 

by their new acquisition or by their initial low level that did not reach 

detection threshold [165]. 

Tissue regeneration 

Recovery from bleaching does however not only depend upon 

reinfection by new Symbiodinium. During the weeks or months 

leading up to complete reestablishment of the symbiosis, the host will 
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have to face other hardships in order to survive. First of all, the coral 

will have to mend its injured tissues. As we just described, expulsion 

of algae is mainly linked to the loss of their host cells and 

subsequently involves damages to the host gastrodermis. Moreover, 

some authors reported that, during prolonged exposure to high 

intensity stress even the ectodermis could suffer some slight damages 

[7, 93]. It seems therefore obvious that the host suffers wounds that 

need to be treated in order to ease recovery, especially if the 

bleached gastrodermis now lacks competent host cells able to engage 

symbiosis with new algae. Studies addressing this matter are however 

very scarce, with only some studies evaluating re-epithelization after 

UV-induced damages [25] or impact of bleaching in wound-healing 

processes [252]. The processes reported in these studies involve 

successive phases that are similar to those observed in other 

invertebrates or vertebrates [288]. Some of them, such as 

amoebocyte penetration, proliferation of newly formed cells and their 

maturation, could also be involved during bleaching-related healing 

and could be relevant in the understanding of this process. Yet of 

great interest, this is nevertheless speculative as the evaluation of the 

regeneration processes occurring after heat-induced bleaching has 

never been addressed so far. The source of the new cells in particular, 

although possibly originating from dedifferentiation of 

epitheliomuscular and nutritive-muscle cells [134], is still to be 

determined. 

Heterotrophy 

The second, but not least, danger that hermatypic corals have to 

face after bleaching is the drastic reduction of their autotrophy-based 

carbon incomes. Whereas Symbiodinium was initially providing almost 

all of its energy demand, the bleached coral is now threatened by 

starvation [149]. Survival to bleaching is therefore logically linked to 
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its energy reserves, as shown by longer survival rate predicted for 

individuals harboring large lipid stores [11], as well as its ability to find 

a new source for carbon acquisition. Numerical models of symbiosis 

exchanges also suggest that heterotrophy could be crucial for the 

survival of the host and could potentially delay the onset of coral 

mortality [11, 150]. 

Multiple studies have already addressed the importance of 

heterotrophy for corals as well as the mechanisms implied. Feeding in 

coral involves both passive and active mechanisms. Passive 

mechanisms refer to simple diffusion of dissolved organic matter 

(DOM) from the water column. This essentially concerns 

carbohydrates but also includes uptake of ammonium and urea, both 

byproducts of animal metabolism that contain nitrogen, a crucial 

element for the Symbiodinium [174]. Active feeding mechanisms are 

meanwhile used for the capture of food particles and live prey. They 

can be elicited by either chemical or tactile stimuli and involves 

capture by tentacles, entanglement with mucus net and filaments or 

both [242]. A large variety of carbon sources participate in active 

feeding by cnidarians. They range from suspended detritic particulate 

organic matter [241] to the microbial and macroscopic fractions of the 

zooplankton. Active feeding is therefore assumed to be occurring 

mainly during the night, when zooplankton density at the depth of the 

coral is the highest [174]. Recent studies also showed that coral could 

vary its diet and sometimes be herbivore and feed on planktonic 

microalgae [224] or neighboring algal turfs [249]. Many morphological 

factors affect coral heterotrophic feeding ability. In contrary to what 

was initially thought, the size of the polyp has only little importance. 

The shape of the colony, branched corals being more efficient, as well 

as the size of the tentacles and the type of nematocytes are more 

determining factors in prey capture [174]. Some corals even 

developed specific morphological features like the multifunctional 
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digestive filaments described in Mycetophyllia reesi, a species lacking 

tentacles [135]. Similar types of acontial filaments are often used to 

initiate digestion of large preys before their penetration into the 

gastrovascular cavity [403]. Depending the species and the type of 

prey, the complete digestion, measured by total disappearance of the 

prey DNA, can then take up to ten days [225]. 

While being essential in aposymbiotic cold-water corals [273], 

heterotrophy has furthermore been demonstrated to provide benefits 

to symbiotic corals. In addition to its essential nitrogen contribution to 

Symbiodinium survival, it can also boost colony growth [285], tissue 

thickness [95] and calcification rates [86, 95]. Heterotrophic carbon 

incomes have however been demonstrated to reduce the percentage 

of photosynthetic carbon translocation from Symbiodinium, reducing 

it from 70% to 53% [379]. There also seems to be an even stronger 

link between heterotrophy and autotrophy as variations of 

heterotrophic capacity in response to environmental conditions have 

often been described. Such variations can be observed in relation with 

fluctuation of abiotic factors that are within the range of normal 

conditions. Heterotrophic capacity has, for example, been 

demonstrated to vary in a seasonal manner, being more important 

during winter [106]. Nevertheless, variations in heterotrophic feeding 

are more pronounced when the coral is exposed to abnormal 

conditions. Studies evaluating this have mainly focused on 

heterotrophic response to light regime variations. Some showed that 

heterotrophy increases following darkness exposure and subsequent 

diminution of photosynthetic capacity [172]. Other experimental 

results showed that, when exposed to shaded and turbid conditions, 

corals could increase their heterotrophic feeding and compensate for 

the reduced photosynthesis [10]. Field study of stable isotopes of C 

and N supports this and shows that corals are able to switch to 

heterotrophy and support both its own and Symbiodinium energy 
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demands during rainy seasons and low turbidity [366]. This ability 

seems however to be very species-specific [174].  

Even though these findings suggest that heterotrophy can be a 

crucial element in the response of corals to bleaching [14], only few 

studies addressed this assumption so far. Most of them decided to 

focus on the role of heterotrophy on bleaching resistance and 

photosynthesis activity instead of the host energetics. They 

demonstrated involvement of heterotrophy in sustaining 

photosynthetic activity of PSII as shown by a lower decrease in 

maximum potential quantum yield, relative electron transport rate or 

oxygen production [37, 107]. This is further confirmed by study 

showing that food availability reduces pigmentation loss and increases 

coral survival during heat stress [62]. Although not completely 

understood yet, this alleviating effect could be related to the high 

amount of nitrogen needed for protein repair and synthesis of new 

PSII D1 protein [37]. Finally, only one study to date has assessed the 

variation in heterotrophic feeding following bleaching in terms of 

energetics. It however provides results of major importance [149]. In 

this study, multiple coral species were bleached by exposure to high 

temperatures. This has the effect of reducing the contribution of 

Symbiodinium-acquired carbon to animal respiration (CZAR) from over 

100% to approximately 50%. Following this reduction, one of the 

species (M. capitata) showed a fivefold increase in its feeding rate and 

a subsequent striking augmentation in its contribution of 

heterotrophically acquired carbon to daily animal respiration (CHAR). 

This capacity, which like other corals initially ranged around 20%, was 

then as high as 100% and therefore able to cover all energy demands 

of the coral. M. capitata was therefore able to maintain high energy 

reserves contrary to other species, which only owe their survival to 

the depletion of these reserves. This could allow production of 

gametes following bleaching but, above all, could make the difference 
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during prolonged bleaching events and allow survival of species 

capable of such plasticity. 

Whereas some coral species seem able to increase their 

heterotrophic capacity in response to bleaching, strategies involved in 

this process are yet to be identified. These could include 

augmentation of polyp preying activity, with a longer lasting 

protrusion time, or modification of histophysiological aspects like 

nematocyte number and mucus production. So far, information 

available on this matter is very limited and only concern mucocyte 

numbers and mucus production. Most of the studies evaluating this 

subject tend however to confirm the possible role played by mucus in 

heterotrophic shift. Generally speaking, they demonstrated an 

increase of mucus production [276, 406] or mucocyte number [223] 

during bleaching or seasonal elevation of sea surface temperatures 

[302]. This phenomenon seems however to be very variable and 

species-dependent with some corals showing opposite trends [132]. 

Despite these results, coral mucous response to bleaching is still 

largely debated and, though unlikely, can be seen as an uncontrolled 

reaction to stress. Nevertheless, could such a waste of carbon be 

possible in an already threatened host, especially considering the 

majority of mucus-allocated carbon initially came from Symbiodinium 

[42, 276, 379]? Aside heterotrophy, the multiplicity of the functions 

that mucus could play following bleaching events further legitimates 

the doubt on this eventuality and raises the importance of further 

investigations. 
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Objectives 

As we have just reviewed, cellular regeneration and mucocytes 

production, although believed to play an important role in coral 

recovery, have been poorly addressed so far. The aim of this thesis is 

to gather information that will partially complement the lacunar 

knowledge concerning the histological modification occurring 

subsequently to bleaching. To do so, we decided to use the sea 

anemone model A. pallida. The usefulness of this model has been 

recognized for a long time now and its utilization participated in many 

of the aforementioned results. 

The second chapter of this work will therefore explore the 

histological reaction of A. pallida to repetitive exposure to cold, a very 

potent bleaching inducer. It will also provide information on the 

validity of the histological staining methods used as well as first 

insights of the host response to algal loss. This chapter will finally 

address the circadian variations of DNA replication in healthy A. 

pallida in order to give an idea of the impact of light exposure on cell 

replication. 

Techniques and model utility being tried and tested, the third 

chapter will then focus on the histological effects of environmental 

bleaching conditions, namely elevated temperatures conjugated with 

high solar irradiance. Exposed to such conditions, anemones will be 

subjected to evaluations of their cellular proliferation rate and 

mucocyte number. These measures, applied on the course of days and 

weeks until recovery to normal Symbiodinium densities, will provide 

new information on the regenerative process occurring following algal 

loss as well as first evidence of a hypothetical mucocytes proliferation 

and heterotrophic shift. 
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In the fourth chapter we will try to further investigate this 

heterotrophic shift theory and the links with energetic dependence to 

the algae. Bleaching will therefore be induced using chemicals that are 

believed to only affect photosynthesis, thus minimizing the impact to 

the host. This will be confirmed by the comparison of the cellular 

death between treated and untreated anemones. The results 

gathered in this chapter will consequently further strengthen the link 

between the loss of autotrophic energy incomes and the rate of 

proliferation as well as the mucocyte number. 

The origin of the proliferating cells and the determination of their 

final phenotype will be the center element of the fifth chapter. 

Although origin and migration of newly formed cells have been 

extensively documented in Hydra, these elements have not yet been 

described in A. pallida. We will give first insights to this matter by 

evaluating the relative numbers of new cells in both tissues of the 

anemone after pulse incubation in proliferation marker and inhibition 

of mitosis. Some of the final phenotypes of these new cells as well as 

their putative increase following bleaching will then be identified by 

co-localization using different staining methods. 

The sixth and final chapter of this thesis will serve as a general 

discussion of the gathered results. Using these results we will try to 

expand the actual knowledge concerning tissue regeneration and 

modification following Symbiodinium expulsion. We will also try to 

include the newly found information into the heterotrophic shift 

hypothesis and highlight the importance of mucus production and 

mucocyte number in this framework. We will finally discuss the 

questions left unanswered and propose some perspectives for future 

research. 



 

Chapter 2 

Cold Shock Response and circadian 

rhythmicity of EdU incorporation in A. 

pallida. 

 

Introduction 

The actual threat posed by climate change on coral reefs is 

currently urging coral scientists to improve their knowledge on 

cnidarian-Symbiodinium symbiosis. Whereas many research fields 

deserve interest, there is especially much to learn about symbiosis 

and bleaching on the cellular scale. In order to do so, many experts 

argued that coral science should learn from the history of biological 

science and note that lots of major discoveries have been made 

thanks to model organisms [396].  

Some tropical sea anemones of the genus Aiptasia (usually A. 

pallida or sometimes A. pulchella) are unanimously recognized as ideal 

models for the study of the cellular processes involved during 

bleaching (Fig. 11). While the only drawbacks of using such models are 

due to their lack of skeleton, making them unsuited for studies of 

calcification or endoskeletal microbes, their advantages are multiple 

(Fig. 13). One of the most important advantages of Aiptasia is the ease 

with which it can be cultivated. Its ability to maintain rapid growth 

rate in standard aquarium conditions makes it a “pest-species” for 

some hobbyists but is essential for laboratory studies. Large clonal 

populations can then be quickly obtained [226] and used with multiple 

kinds of techniques as illustrated by the abundance of scientific 
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publications using Aiptasia. These techniques include genetic, 

molecular or biochemical analyses [124, 210, 297, 365] as well as 

different types of microscopic observations [89, 90]. The absence of 

skeleton, easing the use of such procedures, is therefore another 

major advantage of Aiptasia (Fig. 12). Yet, the main benefit of using 

Aiptasia as a model for the study of coral is to be seen in its relative 

tolerance to bleaching. Indeed, while many corals often die from 

bleaching, Aiptasia can be easily bleached and proves itself to be 

remarkably tolerant with a high survival rate of individuals deprived of 

their symbiotic algae. Such anemones can then be maintained 

bleached for months and be eventually reinfected in order to study 

the process occurring during this period [32, 396].  

 

Figure 11 |In toto illustrations of the model anemone Aiptasia pallida. (A) Overall 
view shows the general distribution of Symbiodinium. (B) Closer view of some 
tentacles revealing the patchy distribution of brown Symbiodinium within the 
gastrodermis. (C) The lack of chlorophyll autofluorescence in the ectodermis of a 
tentacle tip confirms the gastrodermal distribution of Symbiodinium (arrow). 
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Figure 12 | Histological illustration of the model anemone Aiptasia pallida (H&E 
staining). General view (A) and close-ups of tentacles (B) and symbiotic algae (C). 
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There is still however much to learn about the Aiptasia model. While 

many studies are working on deciphering its genome, other 

macroscopic traits are somewhat neglected. This particularly concerns 

histological aspects that, although being extensively studied in other 

cnidarians such as Hydra [39] or the non-symbiotic anemone 

Nematostella vectensis [134], are poorly described in Aiptasia with 

only some ultrastructural studies [401, 402].  

Figure 13 | Advantages of Aiptasia over corals as a model organism. (from [396]) 

One of the main elements of the histological characterization of 

Aiptasia would be the study of its cellular proliferation during normal 

and bleaching conditions. The use of 5-ethynyl-2′-deoxyuridine (EdU) 

incorporation, a recently developed technique, seems therefore to be 

ideal considering its ease of use, its novelty to this field and its proven 

effectiveness [48, 333]. EdU has been used as a marker of cell 

proliferation in multiple studies and in many different animals such as 

annelids [129], reptiles [300] and mammals [97]. This molecule and its 

use are very similar to those of BrdU but have some significant 

advantages. After incorporation within the cell DNA during the 

replication phase, this nucleoside analogue of thymidine can be 

detected thanks to a simple and quick “Click” reaction with a 

fluorescent azide (Fig. 14). The small size of this marker enables a 

good tissue penetration and allows in toto whole individuals staining. 

Moreover, the reaction involved (a copper(I)-catalyzed variant of the 
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Huisgen [3+2] cycloaddition between a terminal alkyne and an azide) 

allows the conservation of the DNA integrity. These are particularly 

appreciable compared to the BrdU revelation process, which involved 

antibodies recognition and acid catalyzed hydrolysis of the DNA.  

  

Figure 14 | Illustration of the "Click" reaction between the Alexa fluor 488 azide and 
the ethynyl group of the EdU molecule incorporated in the DNA. (from 
http://www.lifetechnologies.com/) 

In this chapter we conducted a primary approach of the use of 

EdU incorporation in measuring cell proliferation in A. pallida either 

during normal conditions or after bleaching. In normal conditions, 

particular interest has been given to the evaluation of EdU 

incorporation depending the time of the day. The autotrophic 

symbiotic nature of hermatypic cnidarians and the possible diel 

rhythmicity of photosynthates transfer [58] suggest that cell 

proliferation may present a circadian variation. For this preliminary 

assessment of the effect of bleaching on cell proliferation we opted 

for the use of a cold-shock protocol in order to trigger Symbiodinium 

expulsion. This protocol was chosen for its simplicity and its 

recognized efficacy [358]. In addition to the evaluation of cell 

proliferation, we also conducted mucocyte staining using a mucus-

specific fluorescent probe [302]. The subsequent results would give us 

a first insight in mucocyte density variation following loss of 
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Symbiodinium and would bring first clues about a hypothetical 

heterotrophic shift. 

Material and Methods 

Biological material 

A few dozen of Aiptasia pallida were initially sampled in the 

Dubuisson public aquarium of the University of Liège. Specimens were 

then kept during several weeks in artificial seawater (Reef Crystals, 

Aquatic systems, France) in order to multiply and form a multi-clonal 

population of anemones. During this period, they were exposed to 

light following a daily cycle of 12 hours/day (from 7h00 to 19h00) at 

an intensity of 30-50 μmol photons m-2 s-1. An electronic system 

(Dupla T-Control Delta, Dohse Aquaristik, Germany) was used to 

maintain the water at a constant temperature of 26 ± 0.2°C. Artemia 

shrimps were fed to the anemones on a weekly basis, except during 

experiments. 

Experimental treatment 

In order to assess cellular proliferation, anemones were 

incubated in a solution of the thymidine analogue 5-ethynyl-2´-

deoxyuridine (EdU; Invitrogen, Eugene, Oregon, USA) in artificial 

seawater. Preliminary tests were first conducted to assess the optimal 

concentration to be used. The ideal concentration having been fixed 

at 10 μM, this technique was then utilized for 2 different experiments, 

one evaluating the circadian variations of cell proliferation and the 

other measuring the effect of bleaching on this proliferation.  

To study the circadian variations, anemones were grouped by 5 in 

12 beakers and placed in an experimental tank reproducing the same 

conditions as in the stock aquarium. Each group was successively 
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incubated in EdU for 2 hours, thus covering a complete 24-hour cycle. 

After incubation each specimen was briefly anesthetized in a 1:1 

solution of seawater and 0.37 M MgCl2 before fixation in seawater 

containing 4% paraformaldehyde. 

                       

Figure 15 | Summary of the cold-induced bleaching experiment. 

For the bleaching experiment, algae expulsion was induced by a 

cold shock treatment [358]. This treatment implied two successive 

exposures of anemones to a water at 4°C in the dark. The 2 exposures 

were separated by an interval of 20 hours during which the anemones 

were incubated in the dark at room temperature (20°C). Following the 

second exposure, the anemones were again incubated in the dark at 

room temperature for 44 hours. Once returned to stock aquarium 

conditions, the anemones were separated into 3 groups and allowed 

to recover for 24 hours (see Fig. 15). Anemones of the first group (N = 

5) were fixed in a 30% formalin solution and used for evaluation of 

their Symbiodinium density. They were dried in absorbent paper and 

weighed using an analytical scale. They were then crushed in a glass 

potter with a precise quantity of filtered seawater. The solution was 

then subjected to several counts under the microscope using a 

haematocytometer. Using the weight of the anemones and the 

quantity of water used, we calculated the density of Symbiodinium per 

mg of fresh tissue. These results were compared with densities 

measured in healthy anemones collected from the stock aquarium on 

the same day (N = 5). Anemones of the 2 other groups were incubated 
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for 24 hours in EdU at different times after the recovery period. One 

group of these anemones (N = 13), together with control anemones 

freshly isolated from the stock aquarium (N = 10), was incubated 

directly after the recovery period. The remaining anemones (N = 15) 

were incubated 5 days after the end of the recovery. After incubation 

in EdU (48 hours and 7 days after the end of the stress treatment), all 

anemones were anesthetized with MgCl2 and fixed in 

paraformaldehyde. 

Tissue histology 

Histological techniques were used to evaluate EdU incorporation 

as well as to identify and count mucocytes. Following fixation, 

anemones were dehydrated through a series of alcohol bathes with 

increasing concentrations of ethanol followed by 2 bathes in 

Neoclear® (Merck, Millipore International). Samples were 

subsequently imbedded in paraffin (paraplast Xtra, Sigma), cut into 5 

μm-thick slices and mounted on silane-coated slides. After paraffin 

removal and re-hydration the slides were washed in Phosphate-

Buffered Saline (PBS; 3.82 g/L NaH2PO4.2H20; 10.48 g/L NaHPO4 in 

0.45 M NaCl). The slides were then incubated for 10 minutes in a 3% 

solution of bovine serum albumin in PBS and 20 minutes in a 0.5% 

solution of Triton x-100 in PBS. After 3 more PBS washes, the slides 

were incubated for 30 minutes in the “Click-iT” revealing solution 

(Click-iT EdU Alexa Fluor 488 Imaging Kit, Invitrogen, Eugene, Oregon, 

USA). The slides were then washed 3 more times in PBS prior to 

incubation of 15 minutes in a 5 μM WGA (wheat germ agglutinin + 

Alexa 594, Invitrogen, Eugene, Oregon, USA) in PBS to label 

mucocytes. Finally, the slides were washed 3 last times in PBS, dried 

and mounted for microscopy (Vectashield + DAPI, Vektor labs, 

Burlingame-California-USA). Slides were examined using a 

fluorescence microscope (Nikon TE2000-U). 
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Countings and statistical analyses 

Mean densities of EdU+ nuclei and mucocytes were evaluated 

using Nikon NIS software v3.1. Each value resulted from 5 counts 

made in transversal sections of tentacles randomly selected for each 

anemone. For the circadian experiment of EdU incorporation, nuclei 

counts were reported to the total area of the tentacle. For the 

bleaching experiment, these counts were reported to the tissue area 

of the ectodermis. The bleaching inducing algal loss and cell death in 

the gastrodermis, this method was therefore preferentially chosen to 

standardize our results. Diminution of Symbiodinium densities 

following bleaching was evaluated using Student t-test. Analyses of 

variance (one-way ANOVA) followed by Fisher’s post hoc were used to 

compare EdU-positive (EdU+) nuclei and mucocyte densities between 

the bleached groups and the control group. Analyses of variance and 

Student t-test were both used to evaluate the impact of the time of 

the day and the presence of light in the number of EdU+ nuclei. These 

analyses were performed using Statistica v10. 

Results 

Diel variations of cell proliferation 

Histological analyses highlighted variations of the number of 

EdU+ nuclei within healthy anemone tentacles (Fig. 16). Analyses of 

variance revealed that this variation is significantly correlated to the 

time of the day (ANOVA F(11,48) = 2.95 and p = 0.005). Exposure to 

light seemed to have no significant direct effect on EdU incorporation 

(p = 0.13). However, further analyses showed that the introduction of 

a 2 hours lag period, shifting the light period of one group in the data, 

reveals on significant impact of the light on EdU incorporation (p = 

0.0005). The density of EdU+ nuclei rises then significantly at 9:00 and 
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stays high during the day before reaching its maximum at 19:00 and 

decreasing. 

   

Figure 16 | Diel variations of EdU incorporation. The density of EdU+ nuclei within A. 
pallida tentacles increases significantly 2 hours after exposure to the daylight (red 
area) before returning to lower values during the night. 

Cold Stress and Symbiodinium density 

The cold stress treatment successfully bleached the anemones, as 

shown by their apparent loss of coloration. However, expulsion of 

algae only occurred during the 24 hours recovery period, anemones 

still showing their characteristic brown coloration after the 48 hours in 

the dark concluding the stress procedure. Control anemones showed 

a density of 620 ± 8.1 x 103 (mean ± S.E.M.) algae per mg of fresh 

tissue while this value dropped to 70 ± 36 x 103 after the recovery 

period (Student t-test, p < 0.0001)(Fig. 17). 
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Figure 17 | Loss of Symbiodinium following cold-shock stress. Symbiodinium density 
(mean ± S.E.M.) was lower in stressed anemones than in controls 24 hours after the 
stress. Asterisks represent values significantly different than controls (Student t test; p 
< 0.05). 

Cell proliferation in bleached tissues 

As for the study of circadian variations, EdU+ nuclei were 

observed in the tentacles of control anemones, within both the 

ectodermis and gastrodermis. However, this value differs greatly 

between the two tissues, with the ectodermis showing 20 times more 

EdU+ nuclei than the gastrodermis. The cold-stress treatment 

increased the cell proliferation in both tissues at both time points (Fig. 

18A and B). The analyses of variance showed a significant effect of the 

stress in the ectodermis (ANOVA: F(2,35) = 7.44 ; p = 0.002) where the 

number of EdU+ nuclei rose from 1001 ± 80 nuclei/mm2 before 

treatment to 1418 ± 75 after 48 hours of recovery (p = 0,0005). This 

value was still higher than controls after 7 days of recovery with 1289 

± 91 nuclei/mm2 (p = 0.024). The effect of the cold-stress was even 

more pronounced in the gastrodermis (F(2,35) = 10.89 ; p = 0.00001) 

where the number of EdU+ nuclei rose from 42 ± 24 nuclei/mm2 in 
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control anemones to 206 ± 22 nuclei/mm2 (p = 0.000013) after 48 

hours of recovery and 217 ± 27 nuclei/mm2 (p = 0.000024) after 7 days 

of recovery. 

 

Figure 18 | Increase of cell proliferation after cold-induced bleaching. Cell 
proliferation (mean ± S.E.M.) in the gastrodermis (A) and ectodermis (B) shows a 
rapid increase following the bleaching procedure. Asterisks represent values 
significantly different than controls following ANOVA and Fisher’s post hoc test (p < 
0.001). 
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Mucocytes 

The cold stress had a significant effect on the number of 

ectodermal mucocytes found within the tentacles (F(2,30) = 4.83)(Fig. 

19). This effect was however not significant until 7 days of recovery 

when mucocyte density rose substantially from 133 ± 22 cells/mm2 in 

controls to 240 ± 26 cells/mm2 (p = 0.005). 

   

Figure 19 | Increase of mucocyte density after cold-induced bleaching. Mucocyte 
density (mean ± S.E.M.) in the ectodermis shows a delayed increase following the 
bleaching procedure. Asterisks represent values significantly different than controls 
following ANOVA and Fisher’s post hoc test (p = 0.005). 

Discussion 

Scientists extensively use the thymidine analogues BrdU and EdU. 

To date, such molecules have proven their usefulness in tracking 

cellular proliferation in many types of organisms [97, 129, 300]. Our 

results showed that EdU was successfully incorporated within Aiptasia 

cells and attested, for the first time, of the efficacy of this newly 

developed technique in studying cnidarians. Being a thymidine 

analogue, EdU is incorporated in cell DNA as it replicates during the S-

phase of the cell cycle. Therefore, its detection, although indicating 



 

76 | Cold Stress and Circadian Proliferation 

that the labeled cell is mitotically active and proliferating, doesn’t 

highlight the mitotic event per se. After DNA replication and EdU 

incorporation, the cell will enter the G2 phase before ultimately 

dividing. The duration of this G2 phase seems to be quite variable. 

While some organisms or cancer cells did not present an apparent G2 

phase [151, 244], studies showed that this phase usually lasted only a 

few hours as demonstrated in cultured human cells [222]. Concerning 

cnidarians, information regarding the duration of the cell cycle phases 

are scarce and essentially focused on the Hydra model. Such studies 

demonstrated that the G2 phase could last from at least six hours for 

the stem cells to 12 hours for the committed precursors and even 24 

hours or more for epithelial cells [70, 170]. However, the very specific 

cell proliferation dynamics of the Hydra makes it difficult to compare 

to Aiptasia. Nonetheless, considering the time necessary for the 

completion of the S phase, it seems appropriate to note that while 

short EdU incubation times would likely label cells that barely finished 

DNA replication, longer incubation are more likely to label cells that 

effectively undergo mitosis. 

Our study of the circadian variations of EdU incorporation implied 

an incubation time of 2 hours. It is therefore very unlikely that these 

cells have undertaken mitosis or even finished their DNA replication. 

However, these results showed that DNA replication, and hence, the 

cycles of host cells were significantly affected by the time of the day as 

well as the diel light cycle. Light seemed indeed able to upregulate 

host cell DNA synthesis with a significant increase of this activity two 

hours after the beginning of light exposure. DNA synthesis stayed high 

during the day and progressively fell when the lights were shut off. 

The 2-hour latency between the beginning of the light period and the 

increase in EdU incorporation could be explained in two different 

ways. If the host cell reaction to the light is mediated by cellular 

mechanisms initiated in its own cytoplasm, then this lag could be 
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solely explained by the time needed for the progression of the cell 

from G1 to the S phase. Such circadian variations in host physiology 

have been demonstrated concerning the gene expression of the corals 

Acropora millepora [239] and Favia fragum [162] as well as the non-

symbiotic anemone N. vectensis [312]. Although sharing mammalian 

rhythm-inducing processes like the heterdimerization of the Clock and 

Cycle proteins, the cellular components triggering these light-

dependent, molecular clock mechanism are yet to be described. On 

the other hand, the detection of the light could be achieved within the 

symbiotic algae. The lag could then represent the time needed by 

light-induced mechanisms engaged by the algae as well as the 

response of the host cell to such mechanisms. This second hypothesis 

seems more likely as many studies reported influence of the diel light 

cycle over Symbiodinium algae. The influence of light seems then 

particularly important determining the progression of the algae 

through their cell cycle. A recent study demonstrated that cultured 

Symbiodinium isolated from coral undergo mitosis during the night 

and produce two flagellated daughter cells just before the beginning 

of the light period [390]. In symbiotic state however, only a small 

fraction of algae shows a mitotic activity. Studies performed on the 

anemone Aiptasia pulchella and the coral Astrangia poculata showed 

that 3 to 5 percent of Symbiodinium multiply within their host [78, 

352]. Although most of the newly produced algae seem to be expelled 

from the host cell [78, 101], they may also have some influence over 

its cell cycle progression. Such link between the mitosis of the host cell 

and its algae has been demonstrated in the green Hydra [254]. The 

presence of two Symbiodinium cells within the host gastrodermal cells 

at the beginning of the light period may therefore be an explanation 

for the increased EdU incorporation detected during the following 

hours. Moreover, the cell cycle of host cells could be influenced by the 

diel fluctuation of the translocation of photosynthates from the algae. 

The circadian variations of Symbiodinium derived energetic resources, 
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such as lipid bodies [58], could be a factor facilitating the progression 

of host cells from G1 to the S phase. This may be especially true in the 

ectodermis where the multiplication of the algae has no direct impact. 

Our bleaching experiment showed, similarly to the literature 

[358], that successive exposures to a water temperature of 4°C 

combined with incubation in darkness evoke rapid expulsion of 

Symbiodinium from Aiptasia. After a recovery period of 24 hours 

following the end of the treatment, anemones showed a striking loss 

of coloration accompanied by tenfold reduction of their algal density. 

Moreover, using EdU incorporation we also demonstrated that the 

rate of cell proliferation in both tissues was significantly affected by 

the bleaching treatment. In the gastrodermis of bleached anemones, 

this proliferation could be induced in order to mend the wounded 

tissue. Indeed, multiple studies demonstrated that, during bleaching, 

Symbiodinium loss is usually linked to the loss of its gastrodermal host 

cell, either through apoptosis or necrosis [6, 88, 373]. The relation 

between the bleaching treatment and the increased cell proliferation 

detected in the ectodermis is however more tricky to determine. This 

could be explained by the upregulation of the production of specific 

cell types that play a role in bleaching survival. With the breakdown of 

the symbiosis, the host loses most of its energy incomes and is 

threatened by starvation. The production of cells specialized in 

heterotrophic feeding and prey capture could then help the bleached 

host facing this menace. Our results also showing an increase in 

mucocyte density one week after the end of the stress support this 

hypothesis. Mucocytes and mucus production are indeed one of the 

key elements of heterotrophic feeding, accumulating particulate 

organic matter (POM) and carrying it to the mouth of the animal [42, 

174]. 
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The duration of this increased cell proliferation, being still 

significantly higher compared to control anemones after one week, 

casts doubt concerning the causes of such response. While the loss of 

algae is the main consequence of the cold stress treatment and is 

undoubtedly affecting the host, this treatment could also be directly 

affecting the host. These first results of the host histological response 

to bleaching are therefore promising but their interpretation is made 

difficult by the nature of the stress chosen for this first experiment. 

Further analyses using a bleaching inducing stress procedure that 

mimics environmental condition seem therefore essential in refining 

our interpretations. 





 

Chapter 3 

Increased cell proliferation and mucocyte 

density in the sea anemone Aiptasia pallida 

recovering from bleaching.2 

 

Introduction 

High sea surface temperature (SST) accompanied by high levels of 

solar irradiance are known to disrupt the symbiosis between 

scleractinian corals and endosymbiotic dinoflagellates of the genus 

Symbiodinium (aka coral bleaching). Studies have shown that these 

environmental factors can act both separately [44, 46, 125, 141, 186, 

237] and in combination [131, 167, 232, 235, 394]. Coral bleaching 

typically involves an impairment of algal photosynthesis and 

eventually loss of the algae from the host tissue [179, 192, 230, 392] 

and therefore deprives the host of its main energy source causing a 

disruption of symbiosis [265]. Consequently, during the weeks 

following this disruption the nutritional state of the coral is 

compromised. Depending on the symbiont/host association and the 

intensity of the stress, the coral could either die [255, 256, 373] or 

survive [46, 80, 113] through a process of recovery that until now is 

still poorly characterized.  

Cases of coral recovery have highlighted many cellular 

modifications occurring in the host tissue of the energetically 

                                                           
2
 This chapter has been published in PLOS one. (cf. [117]) 
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compromised coral. A number of studies have come to conflicting 

conclusions about the role of mucocytes and mucus secretion in 

particular. Some hypothesize that mucus production is dependent on 

Symbiodinium for energy supply and carbon input [276, 302]. Indeed a 

reduction of Symbiodinium cell density was induced by shading, 

eliciting a decrease in mucus production [267, 302]. Other studies 

have reported increases in mucus release [6, 223, 276] or mucocyte 

number [132, 223] following bleaching. This variation can be partially 

explained by inter-specific variation. For example, Lasker et al. [223] 

showed that mucocyte number could increase or decrease after 

bleaching depending on the coral species involved. 

The mucus has critical functions for coral protection and feeding 

[42, 138, 342] but also plays a fundamental role of energy carrier in 

reef ecology [52, 404]. It contains antimicrobial substances controlling 

the associated microbial community [321] and it stimulates planktonic 

or benthic microbial activity [104, 404]. Moreover, owing to its 

adhesive character, attached and/or secreted coral mucus acts as a 

particle trap and accumulates suspended inorganic and organic 

particles from the water column, thus supporting the retention and 

the recycling of essential nutrients within the reef ([404]; see Bythell 

and Wild [52] for review). Therefore, modifications of the mucus 

production caused by environmental stress factors related to climate 

change could have dramatic consequences in organic matter recycling 

and have the potential to affect the coral reef ecosystem [105, 321]. 

Although observations concerning mucocytes are important, 

post-bleaching recovery in hermatypic cnidarians is primarily 

characterized by the return of pigmentation due to the symbionts 

within the host tissue. While bleaching can be attributed to a decrease 

in chlorophyll concentration, it most often implies the loss of algae 

from host cells [156]. Many studies have focused on the mechanisms 
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involved in Symbiodinium loss [82]. Several scenarios like symbiont 

digestion via autophagy [85, 91], symbiont expulsion [336, 358] and 

host cell detachment [45, 127, 341] have been considered [394]. 

However, most recent findings argue for mechanisms implying the 

death of host cells either by necrosis or apoptosis [88, 93, 215, 299, 

373]. These apoptotic pathways induced by bleaching events were 

first reported in the zooxanthelate sea anemone Aiptasia pallida [93] 

which is often used as a model cnidarian [63, 229, 268].  

Several studies have documented the recovery of corals from 

bleaching [46, 80, 113], highlighting eventual modifications in the algal 

community of the host [17, 20, 46, 113, 156, 191]. Although 

understanding of re-infection mechanisms of healed host tissue is 

progressing [118], little is known concerning tissular mending [156] or 

regeneration processes that occur during this recovery. Most 

knowledge on tissue regeneration comes from studies on Hydra. In 

that model organism, tissue regeneration requires the cooperation of 

three stem cell populations: ectodermal epithelial stem cells, 

endodermal epithelial stem cells and interstitial stem cells. The latter 

provides cells committed to specific differentiation pathways leading 

to one class of somatic cells: neurons, nematocysts and secretory cells 

(of which gland cells are only detected in the body column and mucus 

cells in the head region), (for review see Bode [36] and Galliot and 

Ghila [121]). In Hydra mucus cells are replaced by at least two 

mechanisms: 1) proliferation of interstitial stem cells followed by their 

differentiation, and 2) transdifferentiation (no cell division) of gland 

cells of the body column combined with a translocation to the head 

region [36, 121]. Some of these pathways and mechanisms are 

generalized as tissue regeneration of sea anemones. However strong 

differences exist between these model organisms, among those is the 

presence of mucus cells in the tentacles of A. pallida but not in Hydra 

[36, 121]. 
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In the present study we try to clarify some of the histological 

modifications induced by bleaching stress in cnidarians. We 

hypothesize that new host cells rapidly replace cells lost during 

bleaching in order to regenerate the damaged gastrodermis. To 

address our hypothesis, we investigate the cellular proliferation 

following bleaching stress (high temperature combined with high 

irradiance) in the zooxanthelate sea anemone Aiptasia pallida. Our 

results provide insight in changes occurring in the gastrodermis and 

ectodermis as well as mucocyte dynamics following thermal stress and 

bleaching, with important potential insights into the response of reef-

building corals to similar challenges. 

Material and Methods 

Biological material 

Aiptasia pallida specimens were collected in the public aquarium 

of the University of Liège. Individuals were kept in artificial seawater 

(Reef Crystals, Aquatic systems, France) for several weeks providing a 

multi-clonal population of anemones. Light was provided on a daily 

cycle of 12 hours/day at an intensity of 30-50 μmol photons m-2 s-1. 

The temperature in the aquaria was electronically controlled with a 

Dupla T-Control Delta (Dohse Aquaristik, Germany) in combination 

with a cooling unit (Titan 150, Aqua Medic, Germany) to ensure a 

constant temperature of 26 ± 0.2 °C. A. pallida were fed weekly with 

frozen Artemia shrimps, except during experiments.  

Induction of bleaching by thermal/photic stress 

Twenty-four hours before the beginning of the experiment, sea 

anemones were placed in Petri dishes in which the water was 

constantly renewed by a flow-through mechanism using a peristaltic 

pump. Anemones were maintained at control conditions or subjected 
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to a stress treatment (adapted from Bhagooli and Hidaka [34]). The 

stress treatment consisted of a 30 hours exposure to 33°C and 

illumination of approximately 1900 μmol photons.m-2.s-1 (measured in 

the Petri dishes using a Submersible Spherical Micro Quantum Sensor 

(Walz, Germany) connected to a LI-250A Light Meter (Li-Cor, USA)) 

produced by led bulbs (12W, 6000K, Elix Belgium). Such light intensity 

has previously been detected in the field [43] and the combination of 

temperature and high irradiance is widely used to induce loss of 

symbionts or bleaching in cnidarian hosts [163, 298]. All anemones 

were then returned to delimited parts of the same experimental 

aquarium and allowed to recover under normal conditions (see 

Biological material). The first group of anemones (one day post-stress 

group) was incubated immediately after the stress in EdU-containing 

seawater for 24 hours, a second group (one week post-stress group) 

was incubated for 24 hours in EdU-containing seawater at the 6th day 

after the end of the stress, a third group at the 20th day (3 weeks post-

stress group) and the last group at the 55th day (8 weeks post-stress 

group). Anemones that were not subjected to stress were sampled 

and incubated in EdU-containing seawater for 24 hours at the same 

time points as the stressed groups (1 day, 1 week, 3 weeks and 8 

weeks post-stress) and served as controls (N = 10-17/time point). In 

addition, anemones (pre-stress group) were also sampled and 

incubated in EdU-containing seawater before stress conditions 

commenced. Sampling was performed at the same time of the day for 

each group. 

Symbiodinium identification and population density 

The dominant Symbiodinium type from our pool of A. pallida was 

identified as a clade B1 by denaturing gradient gel electrophoresis 

(DGGE) and sequencing of the internal transcribed spacer region 2 of 

the ribosomal DNA (ITS2 rDNA). Following DNA extraction with a 
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DNeasy Plant Mini Kit (Qiagen, Netherlands), the ITS2 rDNA region 

was amplified using the forward primer ‘ITSintfor 2’ (5’-

GAATTGCAGAACTCCGTG-3’) and a reversed primer with a GC-clamp 

‘ITS 2 clamp’ (5’-CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCC 

CCGCCCGGGATCCATATGCTTAAGTTCAGCGGGT-3’) producing a 

fragment size of 330-360 bp. Amplification products were screened 

for polymorphisms using DGGE (Biorad DCode system) and run on 

acrylamide gels (30-65 % gradient) following the manufacturer’s 

instructions (Biorad Laboratories). Dominant bands were excised, re-

amplified and subsequently sequenced at the Australian Genome 

Research Facility University of Queensland, Australia) using an ABI 

3730x/ sequencer in combination with BigDye Terminator sequencing 

reaction kits. Sequences were then examined using Codoncode 

Aligner version 3.5.3. (Codoncode Corporation) and identified by 

BLAST comparisons in GenBank.  

Bleaching was estimated in each set of experimental groups using 

a coral health chart, as usually done on coral reefs to grossly assess 

the health of coral colonies during diving. In addition, to confirm that 

bleaching resulted from a loss of Symbiodinium cells as previously 

described in Aiptasia sp. [93] we evaluated Symbiodinium density in 

tentacle sections of the pre-stress and bleached anemones during the 

recovery period (N = 3/time point).  

Tissue histology 

Histological techniques were used to evaluate the cellular 

proliferation and the number of mucocytes in control and bleached 

anemones isolated at each time point (N = 10-17/time point). Cell 

proliferation assays consisted of counting nuclei which incorporated 

thymidine analogue during DNA synthesis. To do so, each anemone 

was incubated for 24 hours in a solution of 1 μM EdU (5-ethynyl-2’-

deoxyuridine, thymidine analogue, Invitrogen, Eugene-Oregon-USA) in 
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seawater [291]. Anemones were then anesthetized for 15 minutes in a 

1:1 solution of seawater and 0.37 M MgCl2 before fixation in a 

solution of 4% paraformaldehyde in seawater. Fixed specimens were 

subsequently dehydrated, embedded in paraffin (paraplastXtra, 

Sigma), cut into 5 μm-thick slices and finally placed on silane-coated 

slides. After dissolution of the paraffin and re-hydration, the slides 

were washed 3 times for 5 minutes in Phosphate-Buffered Saline (PBS; 

3.82 g/L NaH2PO4.2H2O; 10.48 g/L Na2HPO4 in 0.45 M NaCl). Then the 

slides were incubated for 10 minutes in a blocking solution of 3% 

Bovine Serum albumin in PBS in order to prevent non-specific 

interactions. This was followed by a permeabilization procedure of 20 

minutes in a solution of 0.5% Triton x-100 in PBS prior to 3 PBS washes 

for 5 minutes and incubation for 30 minutes in the reaction mix made 

from the Click-iT EdU kit (Click-iT EdU Alexa Fluor 488 Imaging Kit, 

Invitrogen, Eugene, Oregon, USA). After 3 washes for 5 minutes in PBS 

the slides were incubated for 15 minutes in a 5 μM solution of WGA 

(wheat germ agglutinin + Alexa 594, Invitrogen, Eugene-Oregon-USA) 

in order to label the mucocytes [302]. Finally, the slides were washed 

3 times for 5 minutes in PBS, dried and mounted for microscopy 

(Vectashield + DAPI, Vektor labs, Burlingame CA, USA). Slides were 

examined under a fluorescence microscope (Nikon TE2000-U). 

Omission of Click-iT solution during the revelation step and detection 

of fluorescence in anemones that were not incubated in EdU were 

used to verify the specificity of fluorescent signals. Some sections 

were also observed following standard hematoxylin/eosin staining 

procedures to visualize Symbiodinium cells using transmitted light 

microscopy. 

Analyses and Statistics 

Mean densities of Symbiodinium, EdU+ nuclei and mucocytes 

were calculated from 5 counts made in randomly sampled tentacle 
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sections of each anemone using Nikon NIS software v3.1. The 

numbers of Symbiodinium, EdU+ nuclei and mucocytes were reported 

to the tissue area [6, 138, 302]. The ectodermal area, rather than the 

entire tissue area, was used to standardize counts because bleaching 

is known to affect the gastrodermis due to algal loss and cell death 

[93]. Counting the total number of ectodermal nuclei was not possible 

because nuclei were too tightly packed to distinguish individual nuclei. 

At each time point, cell proliferation was obtained by dividing the 

density of EdU+ nuclei of stressed anemones by that of control 

anemones. Statistical analyses were performed using Statistica v10. 

Symbiodinium densities were analyzed at each time point using 

Student t-test. Analyses of variance (one-way ANOVA) followed by 

Dunnett’s post hoc test were used to compare ratios of cell 

proliferation and mucocyte densities after stress to pre-stress ratio. 

Results 

Population density of Symbiodinium 

 

Figure 20 | Transient reduction of Symbiodinium density following photic/thermic 
stress. H&E stained transversal sections of tentacles illustrating Symbiodinium 
(arrows) density in the gastrodermis of anemones before the bleaching procedure (a) 
and after 1 week (b) and 8 weeks (c) of recovery. After 8 weeks, the gastrodermis has 
regained its normal appearance. 
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Figure 21 | Loss of Symbiodinium following photic/thermic stress. Symbiodinium 
density (mean ± S.E.M.) was lower in stressed anemones than in controls 24 hours 
and 3 weeks after the stress. No difference between groups was detected 8 weeks 
after stress. Asterisks represent values significantly different than controls (Student t 
test; p < 0.05). 

The light and temperature treatment successfully bleached 

anemones as observed by evaluating the color of anemones before 

and after the induced stress using the coral health chart (coral watch) 

as reference. Similarly variations of algal densities after stress were 

also detected in hematoxylin/eosin stained sections of tentacles (Fig. 

20). A quantitative confirmation that bleaching was caused by loss of 

algae was obtained by measuring Symbiodinium density before and 

after stress (Fig. 21). Control anemones showed a similar density 

(about 8 x 103 algae per mm2 of ectodermal area; mean ± S.E.M.) at 

each time point after photic/thermic stress. Twenty four hours after 

the stress, anemones of the stress group showed a density (1.1 ± 0.2 x 

103 algae.mm-2) significantly lower than controls (7.7 ± 1.0 x 103 algae. 

mm-2; Student t Test; p = 0.0003). Symbiodinium densities were still 
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lower (p = 0.00001) in stressed anemones 3 weeks after the stress 

ended (1.3 ± 0.5 x 103 and 8.9 ± 0.2 x 103 algae. mm-2, respectively). 

Symbiodinium densities were similar in control and stress groups 8 

weeks after the end of the stress (Fig. 2) with a density of 8.5 ± 0.3 x 

103 and of 8.8 ± 0.1 x 103 algae.mm-2, respectively (p = 0.16).  

Proliferation of cells within ectoderm and gastrodermal 

tissues. 

Histological analyses revealed that EdU was detected in tentacle 

tissues. Histological controls confirmed that fluorescent signals 

corresponded to EdU labeling in tentacle tissues and not to cellular 

autofluorescence or methodological artifacts due to the protocol of 

EdU revelation.  

             

Figure 22 | EdU and WGA labeling. Transversal section of a tentacle showing 
histological labeling of EdU

+
 nuclei (green) and mucocytes (arrow) stained with WGA 

(red). DAPI staining (blue) was used to visualize nuclei. E, endodermis; G, 
gastrodermis. 
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Figure 23 | Increase of cell proliferation after heat/light-induced bleaching. Cell 
proliferation (mean ± S.E.M.; EdU+ cell density in treated anemones divided by EdU+ 
cell density in controls) in the gastrodermis (a) and ectodermis (b) shows a rapid and 
transient increase following the bleaching procedure (N = 10-17/time point). Asterisks 
represent values significantly different than pre-stress values following ANOVA and 
Dunnett’s post hoc test (p < 0.001). 

Under normal conditions (i.e., in anemones of the pre-stress 

group) EdU+ cells were observed in both the gastrodermis and the 

ectodermis. However, the number of EdU+ cells strongly differed 

between these tissues (Fig. 22). The number of EdU+ cells in the 

ectodermis of control anemones was about 16-fold higher than in 
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their gastrodermis. Similarly, in stressed anemones, higher numbers of 

EdU+ cells were also observed in the ectodermis compared to the 

gastrodermis.  

To assess the effects of stress on cell renewal in the gastrodermis 

and the ectodermis, we determined the ratio of EdU+ cell densities 

between stressed and control tissues at each time point. In the 

gastrodermis of bleached anemones, a rapid increase of cell 

proliferation ratio was observed following the stress period (Fig. 23a). 

During the first day following the bleaching stress, cell proliferation 

increased to 905 ± 133 % of controls (mean ± S.E.M.). After 1 week, 

the ratio was down to 250 ± 54 % and remained low at 3 weeks and 8 

weeks after stress (177 ± 26 and 141 ± 21 % of controls, respectively). 

ANOVA (F(4,62) = 21.350) followed by Dunnett’s post hoc test 

confirmed that cell proliferation ratio was significantly higher 

immediately after stress, at the beginning of the recovery phase than 

before stress (p < 0.001). In the ectodermis, we observed the same 

trend as in the gastrodermis, that is, a transient increase in cell 

proliferation ratios after stress (Fig. 23b).  Immediately after the stress 

was induced the cell proliferation (317 ± 38 % of controls) was slightly 

higher than when measured before stress. One week, 3 weeks and 8 

weeks after stress, the ratios (158 ± 16, 158 ± 20 and 112 ± 13 % of 

controls, respectively) were close to those measured in anemones of 

the pre-stress group. Statistical analyses revealed that cell 

proliferation in the 1 day post-stress group was significantly higher 

than in the pre-stress group (F(4,62) = 14.628; Dunnett’s post hoc test, 

p < 0.0001). 

Mucocytes 

Although the number of ectodermal mucocytes varied between 

batches of anemones used for each experiment (73 ± 27 to 437 ± 154 

cells.mm-2), it remained similar in all control anemones (controls of 
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the pre-stress group as well as controls of 1 day, 1 week, 3 weeks and 

8 weeks post stress groups) within a given experiment. The ratios of 

mucocyte densities were similar in the ectodermis of anemones 

before stress, 1 day and 1 week after stress. However the ratio was 

higher 3 weeks after the end of the bleaching stress (184 ± 22 % of 

controls; F(4,60) = 7.822; p < 0.0001). No significant difference was 

observed 8 weeks after stress (Fig. 24). 

    

Figure 24 | Increase of mucocyte density after heat/light-induced bleaching. 
Mucocyte density (mean ± S.E.M.) in the ectodermis shows a delayed and transient 
increase following the bleaching procedure (N = 10-17/time point). Asterisks 
represent values significantly different than pre-stress values following ANOVA and 
Dunnett’s post hoc test (p < 0.0001). 

Discussion 

We explored an important step in tissue regeneration occurring 

in cnidarians following an exposure to high temperature and 

irradiance leading to a transient disruption of symbiosis with 

Symbiodinium algae. We focused on histological modifications taking 

place in Aiptasia pallida during this recovery period. 
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Recent studies on mechanisms involved in the loss of symbiotic 

dinoflagellates during coral bleaching highlighted that this loss is 

potentially related to loss of gastrodermal host cells, leaving the 

gastrodermis heavily damaged [127, 341]. Here, we show that cellular 

proliferation was significantly enhanced in the gastrodermis following 

bleaching in the sea anemone Aiptasia pallida. This suggests that a 

massive cellular proliferation rapidly occurs in response to stress. The 

exact timing of initiation of this response is uncertain. Cell 

proliferation could be triggered at the beginning, during or at the end 

of the induced stress, when conditions return to normal. In any case, 

cell proliferation returned to normal levels one week after the induced 

stress, suggesting that the gastrodermis has recovered from its stress 

induced cell loss. Indeed, a large part of the gastrodermis can remain 

healthy, despite the bleached state of anemones [93]. Therefore, a 

normal level of cell proliferation may suffice to rebuild the 

gastrodermal cell layer with time. Studies of cell turnover in the 

gastrodermis may clarify this suggestion.  

Cell proliferation increased immediately following bleaching in 

stressed anemones, most likely in order to regenerate the damaged 

tissue and eventually regain the symbiotic state with algae. New 

Symbiodinium cells in recovering anemones were sourced from the 

proliferation of those that remained in the bleached hosts or were 

recently expelled from them as the seawater used in our experiments 

was artificial, regularly renewed and thus lacked any live 

Symbiodinium. These observations complement results of other 

studies reporting on the loss of host cells during bleaching [88, 93, 

373] and suggest that gastrodermal regeneration may represent an 

important step in the recovery process of bleached cnidarians. 

Surprisingly, our results also show an increase in cell proliferation 

in the ectodermis of bleached anemones. Although this increase is less 



 

Photic/Thermic Stress | 95 

striking than that observed in the gastrodermis, with values 3 times 

higher in the ectodermis one day after bleaching stress than in the 

control experiment, this observation was unexpected because the 

ectodermis of A. pallida is reported to suffer only little damage 

following bleaching [93]. Cell proliferation in the ectodermis is 

generally relatively high, even under normal conditions, suggesting a 

large potential to recover from the relatively limited damage induced 

by stress. It is therefore unlikely that our observations are solely 

related to regeneration processes. A plausible additional explanation 

would be an augmentation in the production of cellular phenotypes 

that potentially improve the survival of the bleached host. Here, we 

focus on mucocytes, a cell type that has often been reported to be 

crucial for the holobiont (host animal and symbionts)[52], but whose 

response to bleaching is not yet completely understood and still 

subject to debate [132, 302].  

Although an increase in mucus release has been well 

documented in stressed corals following various environmental 

stressors, including heat stress and high irradiance [291] changes in 

the population density of mucocytes in bleached organisms remain 

unclear. Lasker et al. [223] found an augmentation of epidermal 

mucocyte cells in bleached samples of Favia fagrum. Glynn et al. [132] 

observed divergent results in bleached corals. Bleached samples of 

Pavona clavus presented an increase in mucous secretory cells of the 

epidermis but samples of P. gigantea and P. varians had fewer 

mucous secretory cells compared to the healthy samples. More 

recently Piggot et al. [302] reported that the number of epidermal 

mucocytes in Montastraea annularis diminished when shading 

increased and, conversely, was higher in samples obtained during a 

seasonal increase in sea surface temperature. Both conditions 

resulted in a reduction of algal density. All these observations suggest 
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that factors, such as host species identity and the nature of the stress, 

may influence the number of epidermal mucocytes.  

We found that mucocyte densities range between 70 to 440 

cells.mm-2 in A. pallida. These values seem relatively consistent with 

mucocyte density reported in the epidermis of coral species, ranging 

from 220 to 3000 cells.mm-2 depending on the host species and light 

conditions [138, 302]. The coral Mycetophyllia reesi harbors about 

3000 mucocytes.mm-2 of epidermis [138] while Montastraea annularis 

showed seasonal variation of mucocytes densities from 220 cells.mm-2 

during spring to 1750 cells.mm-2 during summer [302]. We found that 

epidermal mucocyte density was slightly low in the sea anemone 

Aiptasia pallida in absence of stress. This density may be explained by 

intrinsic differences between sea anemones and coral species or by 

the low level of light intensity used in culture (30-50 μmol photons m-2 

s-1) [302].  

The mucocyte density was affected by a combination of 

hyperthermia and increased irradiance. We did not observe a 

decrease in mucocyte density, which is to be expected if the host is 

energetically impaired immediately following stress. It is possible that 

such changes occurred during the induced stress and that by sampling 

one day after the stress such reduction in mucocyte density was 

overlooked if recovery was rapid. However, we observed a significant 

and transient augmentation of mucocyte density in the ectodermis 3 

weeks after bleaching. The lag period observed between the cell 

proliferation peak and mucocyte density peak could account for the 

time needed to produce mature mucocytes, that may even have been 

produced outside of the tentacle as secretory cell precursors as seen 

in Hydra [349]. Another plausible and non-exclusive explanation for 

this delay is that differentiation of new cells into mucocytes are only 

engaged after a certain threshold (depletion of lipid stores [11] or 
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other physiological signals [406]) that was not yet reached one week 

after bleaching induction. 

By producing and secreting mucus, mucocytes contribute to 

important roles in the holobiont such as: UV protection, microbial 

defense, sediment cleansing, energy carrying and particle trapping 

[11, 42, 52, 138, 241, 242, 276, 342]. In the bleached anemone, the 

ability of mucus to trap particles and carry them to the hosts’ mouth is 

highly profitable. Therefore, even if the host is energetically impaired, 

increased production of mucocytes and mucus are in fact a helpful 

strategy. Heterotrophic feeding can sustain the hosts’ energy incomes 

and compensate for a reduction of algal autotrophic contribution [42, 

149, 276]. This idea is corroborated by a recently developed model in 

which autotrophy significantly offsets effects of bleaching principally 

by restoring lipid stores inside host cells [11]. Augmentation of mucus 

production as such, potentially reflects a strategy to limit 

photoinhibition in algae and subsequent production of oxidative 

radicals [406] or help to protect the bleached, and thus more 

susceptible, host against UV radiation or pathogens [42, 276]. 

Conversely, when stressed anemones have recovered Symbiodinium 

densities similar to controls (at 8 weeks after stress), mucocyte 

densities in stressed anemones were also similar to controls, arguing 

for a relationship between mucocyte and Symbiodinium densities in 

Aiptasia.  

Mucocytes are not the only cell type derived from the increased 

proliferation in the ectodermis. Indeed, the density of EdU+ cells was 

several fold higher than the density of mucocytes (see Fig. 3). Among 

those EdU+ cells, a small number will differentiate and mature in 

mucocytes. Some of those newly produced ectodermal cells may 

differentiate into other cell types such as cnidocytes (aka nematocysts 

or stinging cells). Increased differentiation into cnidocytes is very likely 
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in bleached anemones considering their major role in heterotrophic 

feeding [174]. Some of the EdU+ cells may also migrate to the 

gastrodermis. Indeed, in Hydra, ectodermal cells committed to 

secretory cell lineages can migrate through mesoglea to the 

gastrodermis [36]. If similar mechanisms are present in A. pallida 

some new ectodermal cells may migrate to the gastrodermis to 

participate in gastrodermal regeneration after bleaching. 

The origin of new cells in the gastrodermis and ectodermis has 

yet to be identified. Since a short time of incubation in EdU-containing 

seawater suffices to label cells in both tissue types, it seems likely that 

cells are produced locally by division of either precursor cells (i.e. cells 

committed to a lineage) or multipotent stem cells (i.e. interstitial stem 

cells). Such multipotent stem cells located in the mesoglea have 

previously been reported during regeneration of damaged tissue [207, 

259, 319]. New cells could also differentiate from interstitial stem 

cells. These cells are located under the ectodermal surface between 

epithelia-muscular cells and are known to be stem cells producing 

gametes and other phenotypes, including secretory cells [319]. While 

EdU+ cells are most likely produced locally, the origin of mature 

mucocytes remains to be solved. Transdifferentiation and migration of 

precursor cells from another part of the anemone, such as the 

tentacle basis or the oral region, cannot be excluded. Further 

investigation with shorter incubation periods conducted during and 

directly after the stress treatment will help clarify the origin of 

proliferating cells as well as mucocytes. 

Finally, additional studies are needed to elucidate the trigger of 

cell proliferation (the induced stress or a consequence of a reduction 

in Symbiodinium density) as well as the nature of the signal itself. The 

latter question applies specifically to the ectodermis, which is not 

directly affected by the effects of algal loss.  



 

Chapter 4 

Impairment of symbiont photosynthesis 

increases cell proliferation in the ectodermis 

of the sea anemone Aiptasia pallida.3 

 

Introduction 

The ecological success of reef-building corals throughout tropical 

oligotrophic waters relies on the symbiosis between cnidarians and 

photosynthetic dinoflagellates of the genus Symbiodinium (commonly 

referred to as zooxanthellae). This mutualistic relationship is 

established following a multi-step process involving both partners (see 

[118] for review). Once in symbiosis, the symbiont is intracellularly 

located within gastrodermal host cells and provides up to 95% of its 

photosynthetic products to the host [265], thus contributing massively 

to: respiration, tissue growth, calcification, gamete production and 

survival [348]. In return, the host ensures protection of Symbiodinium 

from planktonic grazers, provides a source of inorganic nutrients (CO2, 

NH3 and PO4³
-; [411]) and a fixed position in the water column 

allowing an optimal harvesting of light [348]. This mutual relationship 

continuously adjusts to subtle changes in the environment to optimize 

the survival of the holobiont (the entity including the host and the 

symbionts). 

Nevertheless, over the last decades, reef-building corals have 

faced recurrent large-scale bleaching events compromising their 

                                                           
3
 This chapter is submitted for publication in Marine Biology. 
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survival [167, 177, 283]. Currently, it is widely accepted that high sea 

surface temperature accompanied by high levels of solar irradiance is 

responsible for the impairment of photosynthesis [392] and the 

induction of an oxidative stress that ultimately ends with the 

disruption of the symbiosis between cnidarians and Symbiodinium 

[394]. Among several proposed mechanisms for coral bleaching, the 

most supported one involves the death of the gastrodermal host cells. 

This could happen either by the regulated pathway of apoptosis or 

more abruptly by cell necrosis [93, 299, 373]. In both cases, the 

gastrodermis of the bleached host is left damaged and partly depleted 

of symbiont-containing cells.  

The loss of symbionts has drastic consequences on the symbiotic 

cnidarian, which relies on its photosynthetic partners for energy 

supply. Therefore, when photosynthesis is suppressed or lowered 

such as during bleaching, the host relies on its own energy reserves 

(proteins, carbohydrates and lipids) but also on its ability to modify its 

metabolism and feeding habits. It has been found that in such 

conditions, several temperate and tropical coral species were able to 

increase their feeding effort when preys were available [10, 106, 107, 

172]. Moreover, studies conducted on the scleractinian coral 

Montipora capitata reported that bleached and recovering specimens 

were able to meet their daily metabolic energy requirements by 

markedly increasing their feeding rates and their CHAR (per cent 

contribution of heterotrophically acquired carbon to daily animal 

respiration) from less than 20% to over 100% [148, 149]. Such increase 

in heterotrophy permitted M. capitata to maintain its energy income 

in absence of Symbiodinium and to survive during prolonged bleaching 

events and recovery. These changes in the nutritional balance 

necessarily involve significant cellular rearrangements. In a recent 

study, Fransolet et al. [117] have demonstrated that, following high 

seawater temperature combined with high light irradiance, stressed 
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sea anemones Aiptasia pallida showed an increase in cell proliferation 

in the gastrodermis, which had to recover from the host cell depletion 

caused by the stress, but also in the ectodermis. These observations 

led the authors to hypothesize that the increase in cell proliferation 

observed in the ectodermis could reflect an augmentation of the 

holobiont heterotrophic capacity due to the loss of endosymbionts 

[117]. Such modifications could be achieved by increasing the number 

of ectodermal cells specialized in the nutritional processes, such as 

cnidocytes and mucocytes [117, 172, 302].  

The comprehension of the cellular mechanisms induced by the 

host to maintain its energy balance is therefore critical to understand 

how the cnidarians can acclimate to lower autotrophic inputs and 

recover from bleaching. In this context, the present study aimed to 

investigate the impact of a reduction of energy supply provided by 

photosynthetic symbionts on cell proliferation in the tissues of A. 

pallida. To do so, A. pallida specimens were treated with 3-(3,4-

dichlorophenyl)-1,1-dimethylurea (DCMU), an herbicide that binds to 

the acceptor side of photosystem II (plastoquinone QB) and inhibits 

photosynthesis by blocking the electron transport between 

photosystems II and I (Hill reaction). Then, Symbiodinium densities, 

cell death and cell proliferation in both the ectodermis and 

gastrodermis were assessed using histological techniques. 

Material and Methods 

Biological material 

Sea anemones Aiptasia pallida (Verrill) were collected in the 

Dubuisson aquarium belonging to the University of Liège. Specimens 

were maintained in artificial seawater (Reef Crystals, Aquatic systems, 

France) for several weeks, and thus generated a multi-clonal 

population of A. pallida. Sea anemones were kept in a 12 h/12 h light 
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cycle at an intensity of 30-50 μmol photons m-2 s-1. The temperature in 

the aquaria was electronically controlled and maintained at 26 ± 0.2°C 

using a Dupla T-Control Delta (Dohse Aquaristik, Germany) in 

combination with a cooling unit (Titan 150, Aqua Medic, Germany). A. 

pallida were fed weekly with frozen Artemia shrimps, except during 

experimental treatments. 

Experimental treatments 

Twenty-four hours before the beginning of the experiment, A. 

pallida specimens were placed in individual beakers. Beakers were 

placed in a tank where water temperature was controlled with the 

same devices as in stock aquaria. Sea anemones were maintained at 

control conditions or exposed to seawater containing 20 mM DCMU 

(3-(3,4-dichlorophenyl)-1,1-dimethylurea; Sigma-Aldrich) for 1 week. 

Control and DCMU-containing seawater was renewed on a daily basis. 

During this period, both control and DCMU-treated samples were 

exposed to a light intensity of approximately 200 μmol photons m-2 s-1, 

provided by 12 W LED bulbs (6000 K, Elix Belgium) and measured in 

the bottom of the beaker using a Submersible Spherical Micro 

Quantum Sensor (Walz, Germany) connected to a LI-250A Light Meter 

(Li-Cor, USA). One week after the beginning of the experimental 

treatment, DCMU-treated samples were returned to control seawater 

and allowed to recover under normal conditions (recovery period; Fig. 

25). Five control and five DCMU-treated A. pallida specimens were 

sampled two days, one, two and four weeks after the beginning of the 

experimental treatments (Fig. 25).  
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Figure 25 | Experimental treatments and sampling strategy. 

Chlorophyll fluorescence measurements 

Chlorophyll fluorescence parameters of Symbiodinium sp. in 

hospite of A. pallida were measured using a diving-PAM chlorophyll 

fluorometer (Walz GmbH, Germany). Measurements were always 

made by placing the fiber-optic of the diving-PAM 1 to 2 centimeters 

above the apical part of the sample placed in a 3 mL plastic cuvette. 

After a dark adaptation of 20 min, the initial fluorescence level (F0) 

was determined by applying weak modulated pulses of red measuring 

light. A 1 second saturating pulse of actinic light (>3000 μmol photon 

m-2 s-1) was then applied to measure the maximum fluorescence level 

(FM). The maximal photochemical quantum yield was calculated as 

(FV/FM), where FV = FM-F0. Measures were made on samples of the 

DCMU-treatment groups before exposure to DCMU, 1 and 7 days 

after the beginning of the treatment, and 1, 7 and 21 days after the 

beginning of the recovery period (referred hereafter as 8 days, 2 

weeks and 4 weeks, respectively; Fig. 25). 

Tissue histology 

Histological techniques were used to evaluate Symbiodinium 

densities, the density of cells engaged in cell cycle, the number of 

mucocytes and the extent of cell death in control and DCMU-treated 
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sea anemones sampled at each time point. Assessment of mitotic cells 

consisted of counting nuclei which incorporated a thymidine 

analogue, 5-ethynyl-2´-deoxyuridine (EdU; Invitrogen, Eugene, 

Oregon, USA) during DNA synthesis. To do so, 24 hours before each 

sampling time point, 5 control and 5 DCMU-treated samples were 

incubated in 10 μM EdU-containing seawater [117, 291]. Samples 

were then processed for histological analyses as previously described 

[117]. Briefly, samples were anesthetized in a 1:1 solution of seawater 

and 0.37 M MgCl2 before fixation in seawater containing 4% 

paraformaldehyde. Fixed specimens were subsequently dehydrated, 

embedded in paraffin (paraplast Xtra, Sigma), cut into 5 μm-thick 

slices and finally mounted on silane-coated slides. After paraffin 

removal and re-hydration the slides were washed in Phosphate-

Buffered Saline (PBS; 3.82 g/L NaH2PO4.2H20; 10.48 g/L NaHPO4 in 

0.45 M NaCl). Then the slides were incubated for 10 minutes in 3% 

Bovine Serum Albumin made in PBS followed by 20 minutes in 0.5% 

Triton x-100 made in PBS. After PBS washes the slides were incubated 

for 30 minutes in the reaction mix made from the Click-iT EdU kit 

(Click-iT EdU Alexa Fluor 488 Imaging Kit, Invitrogen, Eugene, Oregon, 

USA). After 3 washes for 5 minutes in PBS, the slides were incubated 

for 15 minutes in PBS containing 5 μM WGA (wheat germ agglutinin + 

Alexa 594, Invitrogen, Eugene, Oregon, USA) in order to label 

mucocytes [117, 302]. Finally, the slides were washed 3 times in PBS, 

dried and mounted for microscopy (Vectashield + DAPI, Vektor labs, 

Burlingame-California-USA). Slides were examined under a 

fluorescence microscope (Nikon TE2000-U). Omission of Click-iT 

solution during the revelation step and detection of autofluorescence 

in A. pallida that were not incubated in EdU were used to verify the 

specificity of the fluorescent signal. 
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Some sections were also observed following standard 

hematoxylin/eosin staining procedures to visualize Symbiodinium cells 

by transmitted light microscopy and assess their densities. 

Another set of slides was used for the assessment of cell death 

using the TUNEL assay (ApopTag Plus Peroxidase In Situ Apoptosis 

Detection Kit, Millipore, Billerica, Massachusetts-USA) as previously 

used on coral [6]. Following paraffin removal and re-hydration, the 

slides were incubated for 10 minutes in PBS containing 10 μM 

Proteinase-K. They were subsequently washed 3 times in deionized 

water, exposed 5 minutes in a solution of 3% H2O2 in order to quench 

endogenous peroxidases and washed 2 times in PBS before 30 

minutes of incubation in equilibration buffer. Slides were then 

incubated for 1 hour at 37°C with the TdT cocktail. Reaction was then 

stopped by washing the slides for 10 minutes in the stop/wash 

solution and 3 times in PBS. After 30 minutes of incubation in Anti-

Digoxigenin Conjugage and 4 more washes in PBS, revelation was 

made using DAB Peroxidase Substrate. The slides were finally washed, 

counterstained with 0.5% methyl green and mounted for light 

microscopy using successive bathes of N-butanol and xylene. 

Counting and statistical analysis 

Mean densities of Symbiodinium, EdU+ nuclei and mucocytes 

were calculated from 5 counts made in randomly sampled tentacle 

sections of each anemone using Nikon NIS software v3.1. For each 

tentacle section, the numbers of Symbiodinium, EdU+ nuclei and 

mucocytes were reported to the tissue area according to Fransolet et 

al. [117]. At each time point, cell proliferation was obtained by 

dividing the density of EdU+ nuclei of DCMU-treated sea anemones by 

that of control sea anemones.  
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Statistical analyses of the data were performed in SigmaPlot 11.0 

(Systat Software, USA). The difference between treatments within 

time points was investigated by using a two-way analysis of variance 

(two-way ANOVA) followed by Tuckey’s post hoc test. Differences 

were considered statistically significant when p < 0.05. 

Results 

Treatment with DCMU inhibited the photosynthetic electron 

transport through PSII 

In order to suppress the energy supplies coming from the 

Symbiodinium, we treated A. pallida specimens with 20 mM DCMU, an 

herbicide that inhibits photosynthesis by blocking the electron 

transport between photosystems II and I. After 24 hours of treatment, 

we observed a drastic decrease in the maximal photochemical 

quantum (FV/FM) yield from 0.674 ± 0.003 to 0.051 ± 0.007 (mean ± 

S.E.M.; Fig. 26). This decrease was further more accentuated 7 days 

after the beginning of the exposure to DCMU and FV/FM values 

reached 0.0154 ± 0.005. After DCMU removal, FV/FM values recovered 

progressively and were similar to pre-treatment values, 2 and 4 weeks 

after the beginning of the experimental treatment (0.626 ± 0.007 and 

0.690 ± 0.003, respectively; Fig. 26). 
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Figure 26 | The maximal photochemical quantum yield (Mean ± S.E.M.) in 
Symbiodinium of the sea anemone Aiptasia pallida, before, during and after 
treatment with 20 mM DCMU. The maximal photochemical quantum yield was 
calculated as (FV/FM), where FV = FM-F0. 

The inhibition of photosynthesis led to bleaching 

While Symbiodinium density in control samples was similar 

throughout the experiment, and was comprised between 9.32 and 

11.45 x 10³ algae per mm² of tissue area, it drastically decreased in A. 

pallida specimens treated with DCMU (Fig. 27-28). Indeed, after 1 

week of DCMU exposure, Symbiodinium density was 5-fold lower than 

controls and reached 1.9 ± 0.6 x 10³ algae mm-2 (two-way ANOVA and 

Tuckey’s post hoc test; p < 0.001). Although Symbiodinium density 

partially recovered, it was still lower in DCMU-treated sea anemones 2 

weeks after the beginning of the DCMU treatment than in controls 

(5.1 ± 0.5 x 10³ and 9.9 ± 0.3 x 10³ algae mm-2, respectively; p < 0.001). 

Then, it fully recovered to control values at the end of the 

experimental treatment (10.7 ± 0.6 x 10³ algae mm-2; Fig. 27).  
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Figure 27 | Symbiodinium density (Mean ± S.E.M.) in control and DCMU-treated sea 
anemones Aiptasia pallida. Asterisk indicates statistically significant differences (two-
way ANOVA and Tuckey’s post hoc test; p < 0.001). 

TUNEL revealed the presence of a few apoptotic nuclei in both 

ectodermis and gastrodermis of control and DCMU-treated A. pallida 

(Fig. 28); particularly no difference in TUNEL was detected in the 

ectodermis 2 days and 1 week after DCMU treatment. Histological 

analysis also showed numerous healthy Symbiodinium in the 

gastrodermis of control A. pallida (Fig. 28A). After 2 days of incubation 

with 20 mM DCMU (Fig. 28B), most Symbiodinium were TUNEL-

positive. After 1 week of DCMU treatment, the gastrodermis was 

depleted of most Symbiodinium cells (Fig. 28C), thinning the 

gastrodermis cell layer. This observation on tentacle sections 

confirmed the Symbiodinium cell density determined tentacle sections 

(Fig. 27). It also suggested that the drastic loss of Symbiodinium was 

likely related to apoptotic cell death (Fig. 28C).  
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Figure 28 | Apoptotic cell death and Symbiodinium density in tentacles of Aiptasia 
pallida, before the treatment with 20 mM DCMU (A), after 2 days (B) and 1 week 
(C). Apoptotic nuclei, brown; counterstained nuclei, blue; E: epidermis, G: 
gastrodermis, S: Symbiodinium. 

Cells proliferated within ectodermal and gastrodermal tissues 

EdU+ cells were observed in both the gastrodermis and the 

ectodermis with a strong difference in their relative numbers. The 

number of EdU+ cells in the ectodermis of control samples was about 

11-fold higher than in the gastrodermis (data not shown). Similarly, in 

DCMU-treated A. pallida, higher numbers of EdU+ cells were also 

observed in the ectodermis compared to the gastrodermis (data not 

shown). To assess the effect of exposure to DCMU on cell proliferation 

in both tissues we determined the ratio of EdU+ cell densities 

between control and DCMU-treated samples at the different sampling 

time points (Fig. 29).  



 

110 | Photosynthesis Impairment 

 

Figure 29 | Cell proliferation (Mean ± S.E.M.) in the ectodermis (A) and the 
gastrodermis (B) of control and DCMU-treated sea anemones Aiptasia pallida. 
Asterisk indicates statistically significant differences (two-way ANOVA and Tuckey’s 
post hoc test; p < 0.001). 

In the ectodermis of DCMU-treated samples, EdU+ cell densities 

were similar to controls 2 days after the beginning of the DCMU 
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treatment. It increased significantly and reached 160 ± 5% of controls 

after 1 week of exposure (two-way ANOVA and Tuckey’s post hoc test; 

p < 0.001). But then, EdU+ cell density rapidly decreased during the 

recovery period, reaching values similar to controls after 1 and 4 

weeks of treatment. In the gastrodermis of A. pallida exposed to 

DCMU, EdU+ cell densities were similar to controls throughout the 

experimental treatment, excepted after 4 weeks where EdU+ cell 

density increased significantly to 155 ± 15% of controls (two-way 

ANOVA and Tuckey’s post hoc test; p < 0.05). 

Mucocyte density increased after DCMU treatment 

 
Figure 30 | Mucocyte density (Mean ± S.E.M.) in the ectodermis in control and 
DCMU-treated sea anemones Aiptasia pallida. 

Finally, we assessed the effect of DCMU exposure on the number 

of mucocytes in the ectodermis by determining their relative densities 

in control and DCMU-treated samples (Fig. 30). We observed that 

control values were similar at each time point (about 400 mucocytes 

per mm² of ectodermal area; data not shown) and that the mucocyte 
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density in the ectodermis was higher in DCMU-treated A. pallida than 

in controls. However, despite statistical analyses revealing an overall 

effect of treatment (two-way ANOVA and Tuckey’s post hoc test; p < 

0.05), at no time point a significant difference was observed.  

Discussion 

When photosynthesis in Symbiodinium cells fails, sea anemones, 

like other symbiotic cnidarians, likely implement alternative 

mechanisms to compensate for the lack of autotrophic energy income 

[149]. For example, sea anemones can change location to find a spot 

with a better light irradiance, metabolize stored energy reserves and 

modify their feeding strategy to favor heterotrophy. This latter 

mechanism takes place in the ectodermis and can involve several 

aspects of tissue re-organization involving cell recruitment (i.e.: 

migration, de-differentiation), cell maturation (i.e.: increase in mucus 

production, differentiation of precursor cells) and/or cell division (i.e.: 

stem cell division; [134]). Here, we examined how cell proliferation 

participated in the tissue response to a diminution of photosynthesis 

efficiency in the sea anemone A. pallida. 

Photosynthesis efficiency was reduced by tenfold 1 day after the 

beginning of the treatment with 20 mM DCMU and such reduction 

persisted for the entire duration of the treatment. One day after the 

end of the DCMU treatment, photosynthesis efficiency had already 

recovered about 50% of its pretreatment values (Fig. 26). DCMU 

treatment also induced a significant drop of Symbiodinium density 

(Fig. 27). This loss occurred after several days of DCMU treatment as 

illustrated by the same algal density in control sea anemones and 

samples treated for 2 days. At that time, although algae were still 

present in the gastrodermis, impairment of photosynthesis had 

already affected their physiology and many Symbiodinium cells were 
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committed to cell death as illustrated by TUNEL histology (Fig. 28B). 

After 1 week of DCMU treatment, Symbiodinium loss was obvious. 

Such bleaching effect was not surprising as coral bleaching has 

previously been reported after exposures to PSII herbicides [193, 194]. 

Transient inhibition of photosynthesis and the subsequent loss of 

Symbiodinium, placed host cells in a deficit of algae-derived energy 

input, drastically reducing autotrophic energy supply. In such 

conditions, bleached and recovering hosts need additional means to 

obtain their daily metabolic energy. Among these, are the use of 

stored energy supplies and the enhancement of food capture [149, 

172].  

We observed that cell proliferation was significantly increased in 

the ectodermis of DCMU-treated A. pallida (Fig. 29A). One week after 

DCMU treatment, when Symbiodinium density and photosynthesis 

efficiency were at the lowest, the density of EdU+ cells was maximal in 

the ectodermis. Considering that DCMU treatment did not modify the 

level of ectodermal cell death, it seems likely that the augmentation of 

EdU+ cells reflects a response to the reduction of energy supply rather 

than to a direct damage to the ectodermal tissue. We observed a 

150% increase of EdU incorporation within the ectodermis at the end 

of the stress treatment. This observation contrasts with a previous 

study where proliferation of ectodermal cells was detected as early as 

24 h after exposure to a combination of high temperature and light 

irradiance [117]. However, in that study, one cannot exclude a direct 

effect of seawater temperature on the ectodermis such as 

modifications of cell metabolism (i.e., [87]). However, in the study of 

Fransolet et al. [117], as in the present study, ectodermal cell 

proliferation was increased when autotrophic energy supplied by 

photosynthesis was at the lowest. Grottoli et al. [149] reported that 

when autotrophic energy supply is drastically reduced the coral 

Montipora capitata could sufficiently increase the rate of zooplankton 
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capture and the heterotrophic energy income to prevent depletion of 

energy reserves. Conversely, other coral species such as Porites 

compressa or Porites lobata were unable to modify the contribution of 

heterotrophically acquired carbon [149]. An increase in prey capture 

was also observed in Cladocora caespitosa when cultured in darkness 

[172]. Surprisingly, changes in heterotrophy efficiency could also occur 

in C. caespitosa placed in high light intensity [172]. In that case, 

feeding increase mostly served to augment supplies of nitrogen and 

phosphorus (to allow tissue growth) rather than carbon. To achieve 

these heterotrophic shifts, ectodermal tissue needs to change its 

heterotrophic ability through the production of cnidocytes to capture 

large preys and/or mucocytes to trap particulate food [42, 126, 174, 

321]. Our results support this hypothesis, showing that mucocyte 

density is significantly higher in stressed A. pallida following 

diminution of the photosynthesis efficiency (Fig. 30). Further analyses 

and study of cell population dynamics are still needed to determine 

the relative proportion of new cells committed to mucocytes and to 

cnidocytes as well as their lifespan.  

Cell proliferation also increased in the gastrodermis (Fig. 29B). 

Four weeks after DCMU treatment, EdU incorporation within the 

gastrodermis was increased by 150%. In this tissue, cell proliferation 

likely contributed to tissue regeneration following host cell damage 

due to bleaching. Indeed, many nuclei were positively stained for 

apoptosis 48 h and especially 1 week after the onset of the DCMU 

treatment. Such gastrodermal cell death has been observed 

after/during bleaching episodes in corals and other symbiotic 

cnidarians [93, 299, 373]. In the present study, Symbiodinium density 

partially recovered at 2 weeks, even before gastrodermal cell 

proliferation was increased. This suggested that some gastrodermal 

cells were able to host new algae at this time. Several possibilities 

exist: (1) some cells, although competent, did not host Symbiodinium 
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cells at the time of the stress and then remained healthy and available 

for Symbiodinium symbiosis ; (2) some cells might have expelled 

Symbiodinium cells before any injury [394] and remained competent 

to host new Symbiodinium; (3) or some cells, like nutritive cells, which 

are the main cell phenotype of Anthozoans gastrodermis, were able to 

undergo dedifferentiation and transformation into symbiotic host-cell 

when phagocyting competent Symbiodinium [71, 134]. Proliferation of 

these putative host cells would then depend on their encounter with 

new algae, whose presence within the water could only rely on the 

release and proliferation of the few that survived the stress. Further 

studies should examine the cellular origin of cells able to host new 

Symbiodinium cells after stress as well as the fate of new gastrodermal 

cells. 

In conclusion, sustained decrease in photosynthesis efficiency 

leading to bleaching induces tissue remodeling such as cell 

proliferation in the ectodermis and gastrodermis of A. pallida. 

Ectodermal cell increase may contribute to a heterotrophic shift to 

sustain energy demands, which are drastically reduced following the 

loss of autotrophic carbon source. Such shift could, in part, rely on an 

increased production of cells, such as mucocytes, that play a role in 

heterotrophic feeding.  





 

Chapter 5 

Trans-tissular migration and mucocyte 

differentiation of bleaching-induced 

proliferating cells. 

 

Introduction 

Bleaching in hermatypic cnidarians does not simply consist in the 

expulsion of Symbiodinium from its host. Multiple elements, related 

either to the stress causing the bleaching, the mechanisms involved in 

the loss of the symbiotic algae or the starvation resulting from the 

cessation of autotrophic incomes, profoundly alter and transform the 

host. Scientists demonstrated that bleached cnidarians are indeed 

heavily affected by the phenomenon, showing multiples signs of 

cellular death [93, 299, 373], as well as important modifications of 

their feeding habits [10, 149, 172]. In the previous chapters, we 

confirmed some of these observations and showed in A. pallida that 

the loss of Symbiodinium triggers an increase of cell proliferation in 

both tissues as well as an increase of ectodermal mucocyte density 

[117]. The origin and the fate of these newly produced mucocytes are 

however still to be clearly determined. 

Although being extensively studied in cnidarians, cell 

proliferation, either during growth or regenerative processes, is poorly 

understood in anthozoans. The production of new cells in cnidarians 

has, in fact, been essentially studied in hydrozoans and in particular in 

Hydra due its spectacular regenerative capacity [36, 39, 349]. These 

studies showed the existence of specific stem cells, or I-cells, which 
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are able to multiply in order to produce most of, if not every, other 

kinds of cells [134, 209, 263]. Anthozoans lack such I-cells but harbor 

similar wandering cells called amoebocytes. While amoebocytes have 

been identified to play a role in wound healing processes in the 

anemone Nematostella vectensis [380], the coral Porites cylindrica 

[288] or the gorgonians Plexaurella fusifera [259], this role is likely 

related to the innate immune system rather than tissue regeneration 

[287]. The capacity of amoebocytes to generate differentiated cell 

types is therefore very unlikely. Amoebocytes are most probably an 

artificial cellular type regrouping amorphous wandering cells with 

differing degrees of specialization [134]. Similarly to Hydra, whose 

epithelial cells are self-renewing, production of new cells in 

anthozoans seems, in fact, to be related to dedifferentiation of 

epithelio-muscular or nutritive-muscle cells [134]. Indeed, a recent 

experiment demonstrated in N. vectensis planulae that both 

ectodermal and gastrodermal epithelial cells are able to 

dedifferentiate and produce neurons [271]. Epithelial cells would 

therefore also have a stem-like function, assuming the development 

of tissues as well as their renewal and repair through a succession of 

mechanisms implying dedifferentiation, multiplication, migration and 

specialization [134]. Recent results showed in N. vectensis that this 

ability is not restricted to specific zones and is present throughout the 

body in both tissues [291].  

Following its dedifferentiation into a pluripotent progenitor, the 

epithelial cell will most likely undergo mitosis. Regeneration without 

mitosis, or morphallaxis, is also possible but, within cnidarians, has 

only been described in hydrozoans [121, 134]. Such division of stem 

cells is therefore usually organized in two categories depending on the 

nature of the daughter cells produced. A symmetrical division 

produces two similar cells that will both further differentiate into 

specific phenotypes while an asymmetrical division produces one 
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committed cell and one stem cell daughter, allowing self-renewal 

[121]. Although largely described in Hydra [69], this categorization 

may not be suited for anthozoans. Indeed, the notion of asymmetrical 

division and self-renewal of stem cell pool seem linked to “classical” 

stem cells such as Hydra’s I-cells, which are always undifferentiated 

and pluripotent, and not newly dedifferentiated cells. Self-renewal in 

the case of anthozoans could therefore be seen as a symmetrical 

division followed by the differentiation of one of the daughter cells 

back to the original epithelial phenotype. Although likely, this is 

however uncertain, just as the belonging of this phenomenon to such 

classification. 

Migration of these newly produced cells is well described in 

cnidarians. However, most observations are once again carried out in 

hydrozoans. The long-distance cell migration observed in hydrozoans 

is probably linked to the existence of specific proliferative sites [206, 

209, 263]. The detection of proliferating cells throughout the body of 

some anthozoans [291] suggests that these cells may migrate over 

shorter distances. The mesoglea seems to play a crucial role in such 

cell migration [343]. Some experiments showed that anthozoan cells 

dissociated from sea anemones (including Aiptasia), scleractinians or 

alcyonaceans and exposed to media of various compositions would 

only migrate in contact with pieces of mesoglea [320]. Further studies 

identified many mesogleal components, such as integrin [310], 

fibronectin [359] and laminin [340], to be necessary for this migration. 

Once at destination, the new cells will finish their differentiation. 

While they seem able to adopt many cell phenotypes [209], the 

majority of the studies addressing this matter documented the 

transformations taking place during the maturation of cnidocytes, 

ephemeral cells that present an intensive turnover [74, 197, 206]. 
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As we outlined here, most of the actual knowledge concerning 

cell proliferation, migration and differentiation in cnidarians derives 

from studies conducted in hydrozoans. Although providing important 

information, its extension to the results gathered on A. pallida 

presented in previous chapters is however hypothetical. We therefore 

decided to conduct some experiments in order to assess the origin of 

the bleaching-induced proliferating cells as well as their possible 

differentiation into mucocytes. First of all, we evaluated the cell 

proliferation in the whole individual (in toto) to confirm its 

homogeneous repartition. We then focused on the possible migration 

of cells from the ectodermis to the gastrodermis following heat and 

light-induced bleaching. Being previously described in Hydra [350], 

this phenomenon could accelerate the regeneration of the wounded 

gastrodermis and could also explain, in part, the increased 

proliferation in the undamaged ectodermis. To do so, we used an 

indirect technique: we counted EdU+ nuclei at different time intervals 

following incubation with hydroxyurea (HU), a molecule inhibiting the 

synthesis of nucleotides and therefore hindering mitosis [291]. We 

then estimated the stability of populations in the ectodermis and the 

gastrodermis. The mitosis being inhibited, changes in EdU+ cell 

densities within one tissue would therefore reflect a contribution from 

the other tissue (a cellular migration). Additionally, we evaluated the 

contiguity of mucocytes and proliferating cells 5 and 7 days following 

bleaching (Fig. 31). This allowed us to further confirm that the 

ectodermal newly produced cells participate in the increased number 

of mucocytes that we previously observed following bleaching-

inducing stresses. 
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Figure 31 | In toto labeling of mucocytes and proliferating cells. WGA (A), EdU (B) 
and merged (C) staining. (D) Close-up on mucocytes in a tentacle. 

Material and Methods 

Biological material 

Sea anemones Aiptasia pallida (Verrill), originating from the 

aquarium of the University of Liège, were maintained in our 

laboratory where they rapidly produced a multi-clonal population. Our 

aquariums were filled with artificial seawater (Reef Crystals, Aquatic 

systems, France) maintained at 26 ± 0.2°C. A Dupla T-Control Delta 

(Dohse Aquaristik, Germany) in combination with a cooling unit (Titan 

150, Aqua Medic, Germany) assured the stability of this temperature. 

Illumination following a 12 h/12 h light cycle was provided by 12 W 

LED bulbs (6000 K, Elix Belgium) producing 30-50 μmol photons m-2 s-1 

(measured on the bottom of the aquarium using a Submersible 

Spherical Micro Quantum Sensor (Walz, Germany)). Anemones were 
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fed every week with frozen Artemia shrimps, except during 

experimental treatments. 

In toto cell proliferation 

Healthy anemones were incubated for 24 hours in a 10 μM 

solution of 5-ethynyl-2´-deoxyuridine (EdU; Invitrogen, Eugene, 

Oregon, USA) in filtered seawater [117, 291]. They were subsequently 

anesthetized for 15 minutes in a 1:1 solution of 0,37 M MgCl2 and 

filtered seawater before fixation in a 4% solution of paraformaldehyde 

in filtered seawater. Specimens were then washed 3 times for 5 

minutes in Phosphate-Buffered Saline (PBS; 3.82 g/L NaH2PO4.2H20; 

10.48 g/L NaHPO4 in 0.45 M NaCl) and then incubated during 20 

minutes in a 0.5 % solution of Triton x-100 made in PBS. Following 3 

washes of 5 minutes in a 3 % solution of Bovine Serum Albumin made 

in PBS, specimens were incubated for 30 minutes in the reaction mix 

made from the Click-iT EdU kit (Click-iT EdU Alexa Fluor 488 Imaging 

Kit, Invitrogen, Eugene, Oregon, USA). Finally, anemones were washed 

3 times in PBS and kept in darkness in PBS before microscopic 

examination.  

Trans-tissular cell migration 

We used a thermal/photic stress treatment to bleach our 

anemones during this experiment (see chapter 3, [117]). Eighteen 

anemones of approximately 2 centimeters in height were isolated 

from the stock aquarium and transferred into 100 mL beakers. They 

were then exposed during 30 hours to a water temperature of 33°C 

and an illumination of approximately 1900 μmol photos.m-2.s-1 

(measured in the bottom of the beaker). They were then returned to 

normal conditions and allowed to recover for 2 hours before being 

incubated for 4 hours in a 10 μM solution of EdU in filtered seawater. 

Following this incubation, anemones were divided into 3 groups of 6 
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individuals: T0, T1+HU and T1-Ctrl. Anemones of the T0 group were 

immediately anesthetized for 15 minutes in a 1:1 solution of 0.37 M 

MgCl2 and seawater and fixed in a 4% solution of paraformaldehyde in 

seawater. Anemones of the T1+HU group were allowed to recover 

during 24 more hours in a 20 mM solution of HU (Sigma) in filtered 

seawater, preventing any further cell division, while anemones of the 

T1-Ctrl group recovered in normal seawater. During this period, 

anemones of the 2 groups were kept under normal conditions of light 

and temperature. Another anemone was incubated at the same time 

in both EdU and HU in order to attest the efficacy of HU in blocking 

mitosis. HU blocks mitosis by inhibiting the ribonucleotid reductase 

and therefore the synthesis of deoxyribonucleotides. HU efficiency 

decreasing over time, the solutions were renewed 3 times at 8-hour 

intervals. After the 24 hours, the anemones were also anesthetized in 

MgCl2 and fixed in paraformaldehyde. Following fixation, specimens 

were processed for histological analysis. They were dehydrated in a 

succession of alcohol solutions and imbedded in paraffin (paraplast 

Xtra, Sigma). Specimens were then cut into 5 μm-thick slices and 

mounted on silane-coated slides. Following paraffin removal and 

rehydration, the slides were washed and treated in order to label the 

EdU+ nuclei. To do so, we proceeded in the exact same manner as for 

the in toto revelation described above. After the last PBS washes, the 

slides were dried and mounted for microscopic observation 

(Vectashield + DAPI, Vektor labs, Burlingame-California-USA). 

WGA and EdU co-labeled cells 

For this experiment, 12 anemones were bleached using the same 

protocol of photic/thermic stress as described above. They were then 

pooled together and incubated for 24 hours in a 10 μM solution of 

EdU in filtered seawater. At the same time, 12 anemones isolated 

from the stock aquarium were incubated in the same way and served 
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as control group. Following the EdU incubation, the anemones were 

washed multiple times in seawater in order to clear out the EdU. On 

the fifth day following the stress treatment, 6 anemones of each 

group were anesthetized and fixed. The rest of the anemones were 

anesthetized and fixed on the seventh day. They were then all treated 

for paraffin embedding, cut into 2 μm-thick slices and processed for 

EdU revelation following the protocol described above. The slides 

were additionally incubated for 15 minutes in a 5 μM solution of WGA 

(wheat germ agglutinin + Alexa 594, Invitrogen, Eugene-Orgeon-USA) 

in order to label mucocytes and washed 3 times in PBS before being 

mounted for microscopy. 

Counting and statistics 

In toto anemones were observed under a fluorescence binocular 

microscope (Olympus SZX-16) and slides were examined under a 

fluorescence microscope (Nikon TE2000-U and Confocal Leica SP5). 

Mean densities of EdU+ nuclei were evaluated in transversal sections 

of tentacles randomly chosen for each anemone using Nikon NIS 

software v3.1. Each value was calculated from 5 counts that were 

reported to the ectodermal tissue area according to Fransolet et al. 

[117]. A cell was considered labeled by WGA and EdU when both 

stainings were at least partially overlapping. While this does not 

ensure that the new cells indeed matured into mucocytes, the 

thickness of the tissue slices and the criteria of analysis make it very 

likely. The numbers of WGA+EdU+ cells were reported to the total 

number of mucocytes. 

Statistical analyses of the data were performed using Statistica 

v10. Concerning cell migration, the difference between the three 

treatments was investigated by using a one-way analysis of variance 

(one-way ANOVA) followed by Fisher’s post hoc test. As to evaluation 

of the co-labeling, differences between control and stressed 
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anemones were assessed using Student t-test. Differences were 

considered statistically significant when p < 0.05. 

Results 

In toto cell proliferation 

Observations of EdU labeling in the whole anemone revealed that 

cell proliferation occurs throughout the body, from the pedal disk to 

the extremities of the tentacles. Density of EdU+ nuclei seems 

however to be a bit higher in the basal part of the column (Fig. 32). 

  

Figure 32 | In toto EdU labeling. Cell proliferation occurs throughout the whole body 
of the A. pallida with a higher density of dividing cells in the lower part of the column. 

Trans-tissular cell migration 

The efficacy of hydroxyurea in blocking mitosis was confirmed by 

the absence of EdU incorporation in the anemone incubated in both 
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solutions (data not shown). Measures performed at T0 revealed that, 

although incubation was limited to 4 hours during this experiment, a 

large amount of cells incorporated EdU. The number of EdU+ nuclei 

was significantly higher in the ectodermis (6010 ± 598 nuclei per mm2, 

Mean ± S.E.M.), with 30 times the density observed in the 

gastrodermis (184 ± 65 nuclei per mm2). 

  

Figure 33 |Cell proliferation (Mean ± S.E.M.) following photic/thermic stress and HU 
incubation in the ectodermis of A. pallida. The density of EdU+ nuclei does not differ 
from T0 values after 24 hours of incubation in HU. This value doubles in anemones not 
incubated with HU (T1-Ctrl). (ANOVA and Tuckey’s post hoc test; p < 0.001). 

After 24h of recovery, anemones treated with HU (T1+HU) 

showed no variation in the ectodermal density of EdU+ nuclei 

compared to T0. In the untreated group, however, ectodermal density 

of EdU+ nuclei increased dramatically to 12303 ± 305 nuclei per mm2 

and thus doubling compared to T0 and T1+HU (Fig. 33). ANOVA (F(2, 

15) = 32.621) followed by Tuckey’s post hoc test confirmed the 

significant difference between T1+HU and the other groups (p = 

0.0002). 
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Figure 34 |Cell proliferation (Mean ± S.E.M.) following photic/thermic stress and HU 
incubation in the gastrodermis of A. pallida. Densities of EdU+ nuclei were 4 and 6-
fold higher in the T1+HU and T1-Ctrl groups, respectively, compared to the T0 group 
(ANOVA and Tuckey’s post hoc test; p < 0.001). 

In the gastrodermis, the density of EdU+ nuclei increased at T1 in 

both groups compared to T0 (Fig. 34). This density reached 800 ± 92 

nuclei per mm2 in anemones exposed to HU and 1263 ± 163 nuclei per 

mm2 in untreated ones (increases of 400% and 600% respectively). 

ANOVA (F(2, 15) = 22.465) followed by Tuckey’s post hoc test 

confirmed that the T1+HU group was significantly different from the T0 

group (p = 0.005) and that the T1-Ctrl group was significantly different 

from the others (p = 0.0002 compared to T0 and p = 0.03 compared to 

T1+HU). 

EdU localization in WGA+ cells 

No significant difference in the number of WGA+EdU+ cells 

between control and stressed anemones could be observed five days 

following the bleaching treatment. At this time, approximately 40% of 

the mucocytes were EdU+ in both groups. A significant increase of 

WGA+EdU+ cells appeared in stressed anemones on the seventh day 
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following the bleaching treatment (Fig. 35). At this time, while only 

38% of the mucocytes in control anemones possessed EdU+ nuclei 

(Fig. 36), this value reached 52% in the stressed ones (Student t-test; p 

= 0.00004). 

          

Figure 35 | Confocal picture of a WGA+EdU+ cell (arrow) in the ectodermis of A. 
pallida 7 days after bleaching treatment. 
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Figure 36 | Ratio of EdU+ mucocytes (Mean ± S.E.M.) 5 and 7 days following 
photic/thermic stress in A. pallida. While no difference can be observed between 
control and stressed anemones after 5 days, the ratio of WGA+ cells possessing EdU+ 
nuclei in stressed anemones rises to approximately 50% after 7 days. 

Discussion 

In previous chapters, we demonstrated that, following different 

stress treatments, bleached cnidarians show an increase of their cell 

proliferation. This increased production in the gastrodermis 

corroborates previous studies showing that algal loss is, in part, 

operated through the death of the host cells [93, 299, 373]. In those 

chapters, we also highlighted an increased density of ectodermal 

mucocytes following bleaching and proposed that it could be part of a 

strategy engaged by the host to operate a heterotrophic shift. This 

shift was described in the literature as a viable option for the host to 

compensate the loss of autotrophic incomes [10, 149, 172]. The origin 

of the newly produced cells and their differentiation into mucocytes 

were, however, still to be explored.  
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In toto observations of EdU labeling confirmed that cell 

proliferation occurs throughout the whole body of A. pallida. Unlike 

hydrozoans, where cell proliferation takes place in specific regions of 

the animal and cell migration occurs over long distances [206, 209, 

263], new cells produced in A. pallida are likely to migrate over short 

distances to reach their final site. Moreover, cell mitosis seems more 

active in the basal region of the anemone. This is probably linked to 

the asexual mode a reproduction of A. pallida. This phenomenon, 

called pedolaceration, consists in the detachment of little fragments 

of tissues from the pedal disc and therefore requires active cell 

proliferation.  

While these observations argue for a limited migration of newly 

produced cells, trans-tissular migration was still a possible 

phenomenon that had to be investigated. To test this hypothesis, we 

used bleached A. pallida that we incubated in EdU and divided into 

three groups. Anemones of the first group were directly sacrificed 

while those of the second group were incubated for 24 hours in 

hydroxyurea, a mitosis inhibitor. Any change in the relative numbers 

of EdU+ nuclei in each tissue of these anemones compared to those 

sacrificed directly after the EdU incubation would then reflect trans-

tissular migratory events. The third group of anemones was sacrificed 

after 24 hours of incubation in regular seawater and served as control, 

showing normal increase of EdU+ nuclei. 

No change of EdU+ nucleus density was reported in the 

ectodermis of the HU-treated anemones. This indicates that, if some 

cells migrated from the ectodermis to the gastrodermis, they do not 

represent a significant number compared to the total amount of 

ectodermal proliferating cells. In the ectodermis of anemones 

incubated for 24 hours in seawater, the density of EdU+ nuclei 

doubled compared to the T0 group. Compared to the T1-HU group, this 
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observation confirms the efficacy of the HU in inhibiting the mitosis. 

This massive increase in EdU+ nucleus density is very unlikely related 

to a second mitotic event, which would take much more time. It is 

most probably caused by the division of the cells that incorporated 

EdU during the 4 hours incubation and had not yet time to undergo 

mitosis at T0. On the other hand, EdU+ nuclei located in the 

gastrodermis of the HU-treated anemones showed a 400% increase 

compared to T0. Since no cell could have divided following HU 

incubation, this observation has to be related to the migration of cells 

from the ectodermis. Even though this density augmentation is 

relatively important, the quantity of new cells only represents a tenth 

of the cells initially present in the ectodermis at T0. This would 

therefore explain why no diminution of EdU+ nucleus density could be 

measured in the ectodermis of HU-treated anemones. Finally, a 600% 

increase of EdU+ nucleus density was measured in the gastrodermis of 

anemones incubated for 24 hours in seawater. This most probably 

results from the division of the cells that were EdU+ at T0 combined 

with the migration of EdU+ cells from the ectodermis. 

These results highlight the existence of trans-tissular migratory 

events in bleached A. pallida. Already reported in Hydra [350], this 

phenomenon could bring an important amount of new cells to the 

bleached and wounded gastrodermis, which is largely depleted of its 

symbiotic host-cells and presents a reduced proliferative capacity due 

to the sustained stress. Moreover, the much larger quantity of cells in 

the ectodermis makes it a very effective production site for new cells. 

This mechanism could therefore accelerate the regeneration of the 

gastrodermis, allowing a faster replenishment of competent host-cells 

and a quick recovery of symbiotic algae. 

The experiment assessing the ratio of EdU+ cells in WGA+ cells 

brought new elements that complement the results gathered in 
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previous chapters. In this experiment, we highlighted a significant 

increase in WGA+EdU+ cells 7 days after the thermic/photic stress 

treatment. This suggests that, at least, some of the bleaching-induced 

proliferating cells transform into mucocytes. These newly produced 

mucocytes must have fully matured quite shortly before being 

observed since no increase in EdU+ mucocytes was observed 2 days 

earlier. So far, most of the studies concerning migration and 

differentiation of cells in cnidarians focused on cnidocytes [74, 197, 

206, 393]. This experiment is the first to date to assess the 

differentiation of cnidarian cells into mucocytes. These observations 

further strengthen our previous results showing increase in 

ectodermal cellular proliferation and linking it to the higher number of 

mucocytes following bleaching in A. pallida.  

Altogether, these results provide new elements concerning the 

fate of the new ectodermal cells produced following bleaching in A. 

pallida. Some of these cells migrate to the gastrodermis where they 

most probably participate in the regeneration of the damaged tissue 

in order to re-establish symbiosis. On the other hand, another fraction 

of the new cells also seems to differentiate into mucocytes. The 

increased mucus production that follows is believed to help the 

bleached host to survive, via protective properties as well as functions 

in prey capture and heterotrophy. 



 

Chapter 6 

General Discussion 

In this work, we investigated the histological modifications 

occurring in cnidarians following a bleaching event. While today’s 

research continues to primarily focus on the causes of bleaching, our 

knowledge about the events that follow the loss of algae is still very 

lacunar. Two major and recent discoveries led us to approach this 

overlooked subject from a histological point of view: 

Firstly, the mechanisms involved in Symbiodinium expulsion from 

the host’s gastrodermal tissue. Many publications demonstrated that 

this process implies the loss of the host cell either through cell death 

mechanisms [92, 93, 154, 215, 223, 299] or cell detachment [45, 127, 

341]. The regeneration of this wounded tissue, although being 

essential for the re-establishment of symbiosis, has so far, never been 

the subject of studies. We therefore decided to address this matter 

using some newly developed methods allowing detection of cell 

proliferation.  

Secondly, the ability of some coral species to cope with the 

drastic reduction of their autotrophic energy incomes. Multiple 

studies linked this aptitude to variations of their heterotrophic 

capacity, either following bleaching [149] or reduction of 

photosynthesis [10, 366]. However, none of them investigated the 

mechanisms implied in such a modification. The mucus layer covering 

corals playing a key role in heterotrophic feeding [42], we decided to 

evaluate the variations of mucocyte density following bleaching. We 

chose to perform all our experiments in the well-documented sea 

anemone model Aiptasia pallida [396].  
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Post-bleaching tissular modifications 

In all our experiments, whether bleaching was induced by cold 

and darkness, elevated temperature and light or a photosynthesis 

inhibitor, histological analyses revealed similar results. In every case, 

the bleached anemones presented an increase in cellular proliferation 

in both their gastrodermis and ectodermis. The respective delays of 

these responses varied depending on the stress protocol, which 

always occurred during the following days or weeks. Both these 

observations seem linked to the loss of Symbiodinium since the 

treatment with a photosynthesis inhibitor eluded the possible effect 

of the stress on the host.  

The higher cell proliferation rates observed in the gastrodermis of 

bleached anemones are most probably induced to regenerate the 

wounded tissue. As said earlier, the gastrodermis is depleted of most 

of its algae-hosting cells during the bleaching and has to recover in 

order to host new symbionts. Moreover, damages could have spread 

to non-symbiotic gastrodermal cells if the leakage of ROS from 

damaged host cells was not stanched in time [338]. The function of 

the increased cell proliferation measured in the ectodermis of the 

bleached anemones is however less evident. A small fraction of these 

new cells could, in part, contribute to the restoration of the 

gastrodermis. Indeed, our experiment highlighting the migration of 

newly produced ectodermal cells to the gastrodermis suggests that 

ectodermal cells contribute to the regeneration of the gastrodermal 

tissue. Another fraction of these new ectodermal cells could also be 

linked to the higher densities of ectodermal mucocytes that we 

measured in bleached anemones, regardless of the stress. Further 

experiments revealed that, following bleaching, a higher fraction of 

mucocytes incorporated the thymidine analogue EdU. This reinforces 

the hypothesis that some of the bleaching-induced ectodermal 
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proliferating cells differentiate into mucocytes. The higher quantity of 

mucus produced, in addition to providing protection against UV and 

pathogens, would enhance the heterotrophic feeding capacity of the 

host. This modification would last until the regeneration of the 

gastrodermis and the reestablishment of the symbiosis allow the 

return of autotrophic incomes back to a normal level.  

Although having been conducted in the sea anemone Aiptasia 

pallida, our results very likely reflect the events occurring during the 

bleaching of most hermatypic anthozoans. The value of A. pallida as a 

model for the study of coral bleaching has indeed been unanimously 

recognized [396]. Moreover, the use of such models is even 

recommended since progress moves faster when scientists focus their 

work on the same organism. This is due to the fact that model 

organisms allow easier comparisons and reproductions of results as 

well as development of new tools and genomic databases [396]. This 

kind of benefit is particularly relevant for studies, such as those 

deciphering the mechanisms of symbiosis, which are conducted on 

the cellular-scale. Altogether, the synergic efforts gravitating around 

model organisms ultimately enable quicker field applications, an 

advantage that reinforces even more their utility for the urgent study 

of coral bleaching.  

Once extrapolated to corals, the results we gathered with A. 

pallida will hopefully help us clarify some aspects of the pandemic 

bleaching phenomenon that threatens them [167]. These results 

especially invite us to try to understand the cellular events that follow 

bleaching and that, along with environmental factors [146], explain at 

least in part, the variable surviving rates observed between different 

coral species. 
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Cell proliferation and tissue regeneration 

So far, bleaching-related regenerative processes in corals have 

never been studied. The only information available comes from 

experiments evaluating re-epithelization of the gastrodermis following 

damages induced by ultraviolet-C radiations in acroporids [25] or 

wound-healing processes engaged after scrape injuries in bleached 

Montastraea annularis [252] and lacerating injuries in Porites 

cylindrica [288]. These studies suggest that anthozoans share, at least, 

some of the tissular plasticity and regenerative capacity of their close 

and extensively studied relative Hydra [38]. The first two studies bring 

however only little information aside from delays of regeneration and 

are not very relevant to the understanding of post-bleaching tissular 

modifications. The third study is more pertinent and, although 

inflicted wounds are very different from damage induced by 

bleaching, provides detailed observations of the healing process. The 

successive phases described by the authors are similar to those 

observed in other invertebrates and give a first insight on how 

regeneration could take place in the bleached gastrodermis. Except 

for the plug formation and the inflammation process, which are likely 

due to the open nature of the lesion, they also raise the existence of 

stem cells that would be stimulated by the injury. These newly 

produced cells would then infiltrate the lesion and further multiply to 

operate its regeneration [288]. 

Our results confirm the existence of similar processes during the 

regeneration that follows bleaching events. Moreover, we 

demonstrated that, contrary to Hydra, the new cells do not originate 

from specific niches but, instead, can be observed throughout the 

whole body of the anthozoan in both tissues. We also highlighted the 

existence of similar migratory events that are, in our case, likely to be 

operated on rather short distances. However, the identity of the stem 
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cells and thus the origin of the new cells still remain to be identified. 

In a recently published review, Gold and Jacobs proposed that 

production of new cells in anthozoans relies on the dedifferentiation 

of ectodermal epitheliomuscular cells and gastrodermal nutritive-

muscle cells [134]. Each of these two types of dedifferentiated cells 

could then adopt a variety of phenotypes depending on its origin. 

Differentiation into cnidocytes, for example, being restricted to cells 

dedifferentiated from epitheliomuscular cells. Our observations 

suggest the revision of this hypothesis. Newly produced cells seem 

indeed able to migrate, at least, from the ectodermis to the 

gastrodermis, and this, most likely to produce new symbiotic host 

cells. The dedifferentiated and mitotically active cells found in 

anthozoans are then believed to have a wider differentiation capacity, 

with less dependency on their original phenotype. This further raises 

the question of the differentiation potential of these cells 

(pluripotency vs. totipotency) and encourages for a deeper 

investigation of this matter in other specific mechanisms such as 

pedolaceration. 

In the gastrodermis, we observed that the delays between the 

peak of cellular proliferation and the complete replenishment of 

Symbiodinium density vary between the stress treatments. 

Comparison of these delays to other laboratory or environmental 

studies is very difficult considering the multitude of varying 

parameters such as the species utilized or observed, the type or 

duration of the stress and the amount of new Symbiodinium available 

for reinfection. Nonetheless, while some laboratory studies actively 

reinfected their bleached specimens with new algae [32], we here 

showed that replenishment of Symbiodinium density could solely rely 

on the few that escaped expulsion from their host. While not being 

one of the major results of this work, this observation, although never 

put forward in the literature, has important field consequences. Most 
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of the studies focused on the exogenous origin of new Symbiodinium 

following bleaching. They highlighted their presence in multiple 

habitats such as the water column and the sediments [4, 53, 59, 142, 

159, 246, 248, 305, 368, 409] or the surface of macroalgae [306], and 

underlined the similarities between the free-living populations and 

the symbiotic ones [248, 368, 409]. While there is no doubt that free-

living Symbiodinium are able to infect a bleached host [240], our 

results suggest that the reestablishment of the symbiosis can be 

operated without any external input. Furthermore, this corroborates 

the hypothesis that post-bleaching changes in Symbiodinium clade 

composition may be operated through a shuffle mechanism. This 

implies that some clades, initially present in little density within the 

host gastrodermis, could become dominant following bleaching. They 

owe this to their competitive advantage provided by their relative 

better fitness when exposed to stressful conditions [31, 280].  

Having demonstrated that, during bleaching, the new 

gastrodermal host cells have two different origins (ectodermal and 

gastrodermal), the question of their equality before the newly 

infecting algae seems legitimate. Considering the multitude and 

complexity of the cellular components involved in Symbiodinium 

recognition and selection [71, 118], dissimilarities may exist between 

the new cells derived from the ectodermis and the gastrodermis. 

Although both type of cells being naïve to symbiosis, they could share 

epigenetic characteristics of their lineage [35, 413]. The cells 

originating from the ectodermis could therefore have a different algal 

affinity, especially if their trans-tissular migration is a bleaching 

restricted process. With today’s increasing number of observations 

depicting Symbiodinium population shifts within corals and the rising 

interest they generate [16, 20, 189, 375], this hypothesis seems worth 

being investigated. 
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Cell proliferation and mucocyte density 

The second major modification that occurs within corals following 

bleaching is to be found on the metabolic and energetic level [11]. 

Once deprived of their autotrophic energy incomes, some coral 

species seem able to cope with the situation by increasing their 

heterotrophic capacity. Contrary to other species, which only rely on 

their energy reserves, this strategy spares these supplies and allows 

for maintained sexual reproduction as well as a better survival rate in 

case of prolonged or successive stresses [149]. However, the 

mechanisms underlying this heterotrophic shift, whether it happens 

during sediment-related shading [10, 366] or bleaching [149] events, 

are not yet entirely clarified. 

In our work, we propose that an increase in ectodermal mucocyte 

density could contribute to this acclimatization. This corroborates 

previous studies showing a similar increase in mucus production [276, 

406] or mucocyte number [223] following bleaching events in corals. 

Our results further expand our limited knowledge about the 

development of anthozoan mucocytes [42] and show that their 

maturation following cell division takes at least between six and seven 

days. Following this period, a higher number of mucocytes would not 

only result in a larger amount of mucus in a thicker layer, it would 

also, along with increased ciliary movements, enhance the transport 

and therefore the quantity of food particles brought to the mouth of 

the coral polyps [42]. These particles include detritical POM 

(particulate organic matter) as well as live POM, ranging in size from 

the pico, nano and microplankton to the larger invertebrates 

belonging to the mesoplankton [174].  

A major contribution of the carbon participating in mucine 

synthesis being initially derived from Symbiodinium photosynthates 
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[42, 276, 379, 404], increase in its production following bleaching has 

to imply some significant metabolic modifications. These may involve 

different pathways and could also result in subtle variations of mucine 

composition such as a reduction in the amount of oligosaccharide 

residues. The C:N ratio in the mucus, a highly variable characteristic as 

shown by multiple studies made of healthy corals [42], could 

therefore be strongly influenced by the loss of Symbiodinium. Overall, 

while investment of its remaining carbon resources in mucus 

production by the coral seem to be a gamble, it can ultimately lead to 

a net gain as illustrated by the salvaged lipid reserves observed in 

heterotrophy-shifting corals [149]. 

Along with food-particles capture, the thicker mucus layer that 

covers the bleached coral could also provide some other significant 

benefits. Thanks to the MAA’s it contains, the mucus may confer an 

increased protection against UV radiations [42]. This is not negligible 

since the damages they would cause to the weakened coral could be 

potentially fatal. In a same way, the mucus layer could also protect the 

bleached coral against pollutants or other toxics [42]. Moreover, the 

mucus having some antibacterial proprieties, it may strengthen the 

coral defense against pathogens [42]. This could be critical since many 

studies linked the presence of bacteria, such as Vibrio shiloi or Vibrio 

coralliilyticus, to bleaching [27, 211, 212]. A reinforced protective 

mucus layer would therefore limit the infection probabilities and 

increase the chances of coral survival until algae recolonisation. 

Having showed that an increase in mucocyte density could be induced 

solely by photosynthesis dysfunction and algal expulsion from the 

host, heterotrophy is therefore more likely the main purpose of this 

increase. The mucus benefits exposed above come thus handy after 

bleaching but have however to be considered as collateral 

advantages. 
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Implications of the increased mucus production go beyond the 

functions it plays for the bleached coral. The fraction that dissolves 

upon release in the water (up to 80% for some acroporids) as well as 

the particles and threads that detach from the surface of the coral 

play a major role in the coral reef ecosystems [404]. These carbon-rich 

molecules feed bacteria and enter the trophic chain where they 

generate a significant nutrient release. Mucus aggregates alone can 

represent as much as 20% of the organic carbon metabolized by the 

community living in the sediments [404]. Relatively speaking, this 

means that an increase of mucus production by the bleached corals 

populating a reef could significantly increase nutrient input to the 

water column. While this could be a benefit for the benthic and 

pelagic communities, it could also enhance the growth of macroalgae. 

Such phenomenon could therefore be a major drawback of increased 

mucus production since macroalgae can be dangerous competitors for 

corals, especially after bleaching events [77, 98, 167, 203, 221]. 

Perspectives 

Altogether, the results gathered by this work bring some new 

light to the still obscure events that take place in corals after 

bleaching. Although bringing conclusions that could be key elements 

to the comprehension of those events, they also open new leads for 

further research.  

Clear identification of the proliferating cells and confirmation of 

their epithelial phenotype seem particularly important to complete 

the picture that we have just sketched. This could be achieved for 

example by using in situ hybridization and co-localizing cell 

proliferation staining with mRNA sequences specific of epithelial cells. 

As we said above, it could also be interesting to verify if cellular 

migration from the ectodermis to the gastrodermis is a constant 
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phenomenon or if it is only triggered during bleaching. Interesting 

results could also come from the analysis of the cellular proliferation 

in the column of bleached A. pallida. In this part of the animal, the 

gastrodermis harbors very few Symbiodinium but is composed of 

numerous secretory cells that operate digestion and are therefore 

important in heterotrophic feeding. Increase in gastrodermal 

proliferation in the column could therefore be interpreted as another 

element corroborating a heterotrophic shift. Multiple other 

experiments could also be considered in order to confirm this 

hypothesis. The quantity of mucus released by the bleached 

anemones could be measured and compared to the healthy ones. 

Such comparisons could also be made with the speed of ciliary 

movements bringing food to the mouth. Likewise, a major 

improvement to the heterotrophic shift hypothesis could come from 

the assessment of the respective cnidocyte densities between healthy 

and bleached A. pallida. The main function of these cells residing in 

prey capture, their increased production would, with no doubt, 

indicate a rise in the feeding capacity of the bleached host. However, 

analysis of cnidocyte density involves overcoming some difficulties. In 

toto analyses seem essential since cnidocytes are often grouped in 

batteries and counts made in tentacle sections would therefore not 

represent an accurate estimation of their density. This gets even more 

complicated considering that the only immunoglobins engineered so 

far have been developed to detect Hydra’s cnidocytes and do not 

work properly with A. pallida. Other detection methods will therefore 

have to be elaborated in order to conduct such an experiment. 

Genetic analyses could then be particularly useful, as to further 

highlight bleaching influence on cell proliferation and migration. 

Contrary to most transcriptomic studies focusing on symbiosis or ROS-

related genes, they could be used to evaluate modifications in the 

expression of genes characteristic of heterotrophically active cells or 

cell-migration processes. Finally, even acknowledging the efficacy of 
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A. pallida as a model species, the extension of these experiments to 

some coral models would be of great interest. It would then be 

noteworthy to see if a similar increase in cellular proliferation can be 

observed in the tissues of the coenosarc, in particular in the 

calicoblastic epithelium, a tissue lacking in the anemone. 

Conclusion 

To conclude, even though this thesis brings only preliminary 

answers and barely lifts the veil on the events occurring during the 

days and weeks that follow bleaching in cnidarians, it reveals a 

promising field for future research. Today, as massive coral bleaching 

events become more and more frequent and as their intimate causes 

seem largely unraveled, it highlights the importance of post-bleaching 

mechanisms for the survival and recovery of reefs. It modestly bears 

optimism and lets us hope that, one day, a better comprehension of 

the regenerative processes and the modifications engaged to resist 

starvation will maybe help us to determine the key to bleaching 

survival and hence to the perpetuation of coral reef ecosystem. 
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