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Abstract : In this paper, an elastoplastic energy-based anisotropic damage
model for ductile fracture is described. A calibration method is also presented. The
potential applicability of this model is illustrated by numerical examples of tensile test
and Forming Limit Diagram establishment on a steel.
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1. Introduction

This model, initially developed by Zhu and Cescotto [1], is devoted to predict the
damage growth and fracture appearance in ductile materials. It has been developed in
the case of sheets, especially for deep drawing processes [2]. Important characteristics
of this macroscopic model are its easy parameters identification, the anisotropic

evolution of the damage and plastic surfaces computed from energy equivalence
assumptions.

2. Model description

This damage model takes place in the frame of the continuum theory of damage.
The damage in the material is represented by a variable D corresponding to an
average material degradation affecting stiffness, strength, anisotropy. It reflects
various types of damage at the micro-scale level such as nucleation, growth and
coalescence of voids and micro-cracks.

In the present model, D is a vector of three components, the damage in each
othotropic direction of the sheet. The well known concept of effective stress is used :
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The principle of energy equivalence is taken into account. It states that the
complementary elastic energy stored in the damaged material has the same form as
the one for a fictitious undamaged material except that the true stress tensor is
replaced by the effective stress tensor.
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The general structure of the constitutive equations is furnished by the thermodynamic
theory of irreversible processes. As the thermodynamic force ¢ (Cauchy or true stress



tensor) is associated to the elastic strain g, a thermodynamic force Y can be
associated to the damage tensor D thanks to the Helmholtz free energy py(e,T,D):
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Y is called the damage energy release rate. The forces associated to the cumulated
plastic strain o and cumulated damage B are respectively R and B, respectively the
plastic hardening and the damage strengthening thresholds.

With the hypotheses of uncoupling between mechanical plastic and damage
dissipations, the second law of thermodynamics yields for an isothermal process :
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This induces the existence of a plastic dissipative potential and a damage dissipative
potential, chosen in this associated theory frame, as the plastic yield criterion (F, = 0)
and a damage evolution criterion (Fq = 0).

2.1 Anisotropic elasticity and damage

When the material is damaged, the constitutive elastic law is given hereafter :
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is the elastic stiffness matrix of the damaged material. Using the principle of
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energy equivalence, we have :
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2.2 Anisotropic plastic yield surface

The plastic yield surface is chosen as the Hill’s one :
F,(6.D.R)=F,(g.R )= 0,5 ~Ro-R(e)= 0 (8)

with Ry the initial elastic stress threshold and o the effective anisotropic equivalent
stress :
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where ¥ is the back stress tensor and H the plastic characteristic Hill tensor for the

fictitious undamaged material :The components of this matrix (F, G, H, L, M and N)
are parameters characterising the current state of plastic anisotropy. For a strain-
hardening material, the uniaxial stress in one direction varies with increasing of
plastic strain, and therefore the anisotropic parameters should also vary, since they are
function of the current yield stress. To determine them for the current state, we



consider that the plastic work should be the same in each direction (three orthotropic
directions and three shear planes).

2.2 Damage evolution law and damage surface

By analogy to the plasticity, a damage criterion, chosen as a quadratic homogeneous
function of the damage energy release rate Y, is proposed [3] :

Ey =qu —BO—B(B)=0 (10)

with the equivalent damage energy release rate Y, defined thanks to the damage
characteristic tensor J :

1
1 2
Yoo - {311 x} (11
A suitable tensor J, simple enough to be applied and able to describe the damage
growth, has been proposed [1]:
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In the case of damage hardening materials, the equivalent damage energy release rate
increases with increasing of the total damage growth. As for the H matrix components,
the anisotropic parameters should also vary. Again, we suppose that for a current state

of damage, the damage work done in each direction should be the same. In the case of
a linear damage hardening characterised by its slope Dt, we have :
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with i =1 to 3 (the three principal direction of an orthotropic material)
In this model, the reference direction is the rolling direction and J;=1

3.Calibration of the model

The model needs to be provided in the initial elastic parameters, six effective stress-
strain curves and three damage curves.

The identification of all the parameters of this model can be realised only with tensile

tests. These tests are characterised by o, angle between the rolling direction of the
sheet and the axial direction of the sample.



3.1 Elastic parameters

The elastic parameters are deduced from tensile tests in the directions o = 0°, 45° and
90°. The following hypotheses have to be done :
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3.2 Plastic parameters

Uniaxial tensile tests are realised in the domain of large displacements, for o = 0°,
15°, 30°, 45°, 60°, 75° and 90°. A statistical method is used [4]. It consists, for a
given plastic work level, in minimising a functional of the corresponding stresses and
Lankford coefficients in the seven directions, leading to the Hill’s parameters F, G, H
and N (N = M = L for sheets). The stress-strain curves in the thickness direction and
in the shear plane 1-2 can so be deduced. The shear curves in the planes 1-3 and 2-3
are supposed to be equal to the one in the plane 1-2.

3.3 Damage parameters

Three damage curves are necessary. If the hypothesis of linear behaviour is done, they
are characterised by the an initial value of Y (damage starting with entrance in
plasticity), Yo, and the slope Dt. From the theory, we have the following relationship
for an uniaxial test in direction 1 :
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To find the effective curves, the damage values associated to a given stress value are
computed. It corresponds to the resolution of the system hereafter:
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This yields to a function o;(D;) presenting a maximum stress value for a precise value
of D;. Physically, o, ,,, must have the same value as the maximum of stress on the

real stress-strain curve. Therefore, Dt; can be easily deduced.
It leads to the conclusion that no particular damage test is necessary in the case of a
linear damage curve.

4 Validation

The model has been implemented in a non-linear finite element code

The two following figures show the damage effect on an uniaxial tensile loading. The
first figure illustrates how the damaging phenomenon acts on the material proprieties.
The elastic zone is reduced by the damage. The figure 2 compares the experimental
curve to the simulation. The simulated test, rather near the experimental one, presents
a decrease of the stress after a certain amount of strain, corresponding to a high
damage growth (striction appearance).



section of yield surfaces in the sig1-sig2 domain (SPXI 250 steel)
Influence of the damage (epseq = 10%)

—initial yield locus
== yvicld locus with damage
=== vield locus without damage

sig2/sigly

25 2 486 4 05 0 05 1 15 2 25
siglisigly

figure 1

mm
S
(o]
<

- Experience
+ Effective curve
— Model

sigll (N/
2
(=3

200

100

0 T T T T
[¢] 10 20 30 40
epsll (%)

figure 2

The third figure illustrates the Marciniak-Kuczynski approach [5] which is used to
predict FLD curves. An initial default is introduced by reducing the thickness of the
zone B. The prescribed ratio €;,/€;; is imposed by displacements on the finite element
edges. During stretching, the strain will grow faster in the thinner element. The FLD
corresponding point is recovered when (de;;)a/(d€xz)s is equal to 0.1 [6].
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figure 3



The figure hereafter illustrates the FLD curves obtained by this method. The
computed curves are raw curves, without optimisation on the default. Compared to the
experimental results, the simulated curve is rather pessimistic. A reason in it is the
strong hypothesis of a linear damage curve. The easy “theorical” determination of the
slope DT lead to a underestimated slope, leading to a too high damage growth. The
modified Model curve, with 25% higher damage slopes, gives more better results.
These modified values of slopes are in fact nearer from the reality for the tested steels.
A further step in the modelisation will be the introducing of multilinear damage
curves, with a damage evolution deduced from the apparent Young moduli evolution
during cycling tensile tests.
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