

Arthur Capet, Jean-Marie Beckers, Marilaure Grégoire

Seasonal **hypoxia** in the Black Sea northwestern Shelf.

Is there any recovery after eutrophication?

Seasonal Hypoxia in the Black Sea

Hypoxic thresold : $[O_2]$ < 62 mmol/m³ (2 mg/l)

Seasonal Hypoxia in the BS-NWS

Fig 15. Expansion of seasonal hypoxic and anoxic zones on the north-western shelf (from Zaitsev, 1992(a)).

Recovery?

1980-1987

1988-1995

1996-2002

2003-2009

Oxygen records

(World ocean atlas, Seadatanet, Black Sea Comission data)

Hypoxic records (<62 mmol O/m³)

Studying Hypoxia with a 3D model

River inputs (nutrients, freshwater, suspended matter)

Atmospheric model & data

River inputs (nutrients, freshwater, suspended matter)

Atmospheric model & data

Surface fluxes (heat , momentum , freshwater)

Hydrodynamics → Currents, mixing, T, S

try

River inputs (nutrients, freshwater, suspended matter)

36 state variables

3 phyto. Groups4 zoo groups.

Atmospheric model & data

Surface fluxes

(heat , momentum , nutrients, oxygen, freshwater)

Hydrodynamics → Vertical and lateral transport, T°

C, N, P, Si, O

River inputs (nutrients, freshwater, suspended matter)

Atmospheric model & data

Surface fluxes

(heat , momentum , nutrients, oxygen, freshwater)

Hydrodynamics → Vertical and lateral transport, T°

C, N, P, Si, O Light penetration

Photosynthesis, respiration, Bacterial loop, Chemistry

36 state variables

3 phyto. Groups 4 zoo groups.

Organic matter deposition.

Resuspension by waves and bottom stress.

Benthic diagenesis → Diffusive fluxes.

(Stanev and Kandilarov, 2012; Soetart, 2000)

Anoxic Chemistry

Benthic Model

Sedimenting variables (POM Diatoms)

(POM, Diatoms)

Resuspension

due to bottom stress from currents and (mainly) waves. (Stanev and Kandilarov, 2012)

Benthic remineralisation

Remineralised content (in mmolC/m²/s)
= [fast C stock] K f(T°)

= [fast C stock] . K_{fC} . f(T°)

+ [slow C stock] . K_{sC} . $f(T^{\circ})$

Dynamic fluxes of dissolved matter. (Soetart et al. 2000)

Slow Si Stock Fast

Slow Fast remin. remin.

Model Experiment: 1980 – 2009 Realistic forcings

- Atmospheric : ERAinterim (*ECMWF*)
- River inputs: Ludwig et al., 2009

Model Validation: Point-to-point

Merged by months → validation of the seasonal cycle

Interannual variability

Interannual

Interannual

Drivers of interannual variability

Eutrophication

N: riverine Nitrogen load

C: Accumulation of organic matter in the sediments

Climatic

Ts: Sea surface temperature in early spring

Tf: Sea surface temperature in late summer

Climatic

Ts: Sea surface temperature in early spring Tf: Sea surface temperature in late summer

Eutrophication

N: riverine Nitrogen load

C: Accumulation of organic matter in the sediments

Climatic

Ts: Sea surface temperature in early spring

Tf: Sea surface temperature in late summer

Hypoxia as a function of N

Includes the year specific influences of climatic and sediments drivers

Hypoxia as a function of N

Take-home Messages (3)

Take-home Messages (1/3)

Hypoxia is still ongoing in the Black Sea NWS

Monitoring should be focused on the area, months and depth of known hypoxia occurence

Take-home Messages (2/3)

Hypoxia is intensified by year-to-year accumulation of organic matter in the sediments

Systems with decreasing $N \rightarrow \text{ inertia in the recovery process.}$

Systems with increasing N \rightarrow increase of the H/N ratio. (Turner, 2008)

Take-home Messages (3/3)

Climate impacts almost as much as eutrophication.

Nutrient reduction policies should account for realistic climatic scenarios

Capet, A., Beckers, J.-M., and Grégoire, M.: Biogeosciences Discuss., 2012,

Seasonal hypoxia in eutrophic stratified coastal shelves: mechanisms, sensibilities and interannual variability from the North-Western Black Sea case,

Organic matter accumulates in the sediments

Model Validation: Point-to-point

$$D = \frac{1}{\max A(t)} \int_{year} A(t) dt, \qquad \qquad H = \frac{1}{\overline{D}} \int_{year} A(t) dt,$$

$$H = \frac{1}{\overline{D}} \int_{year} A(t)dt$$

$$D = \frac{1}{\max A(t)} \int_{year} A(t)dt,$$

$$H = \frac{1}{\overline{D}} \int_{year} A(t) dt,$$

Recovery?

Selection criteria	All data	Z > 17	Z > 17 $z > 15$
WOD (1981-2001)	14123	14088	7670
Aug., Sep., Oct.	3850	3847	2108
BSC (2000-2009)	636	382 57	86
Aug., Sep., Oct.	113		8

The Model

36 States variables

Monthly RIVERS fluxes and nutrients flows (from L. Wolfgang & A. Cociasu)

6h-atmospheric forcings from ECMWF (1.125°). (from ERA40)

Physics (5)

Currents, T°, Salinity, Surface elevation, Turbulence

Oxygen and Dissolved Inorganic Carbon (2)

Inorganic nutrients (5)

SiO,NO3,NH4,PO4,"Reducers"

3 Phytoplankton (6) (free C/N)

Diatoms, Flagellates, Small Flagellates

Zooplankton (2)

Micro-, Meso-.

Gelatinous zooplankton(2)

Omnivorous, Carnivorous

Detrital matter (8)

Particulate, Semi-labile and Labile forms Silicious Detritus, Aggregates

Bacteria(1)

Model's Specificity

- No data assimilation: Necessity to construct specific Bosphorus representation to ensure conservation of volume and total salt content.
- Anoxic waters: The biological model explicitely includes anoxic chemistry trough the use of a variable 'Oxygen demanding Units', as a proxy for reducers acting in the anoxic zone.
- Sediments compartiment
- Light absorption scheme

