Wildflower strips as a tool for conservation biological control and pollination service: Impact of functional diversity and mowing regime

Séverin HATT 1, Roel UYTtenBROECK 1, Sarah GARRE 1, Bernard BODSON 2, Arnaud MONTY 3, Frédéric FRANCIS 4

1 AgricultureIsLife, University of Liège, Gembloux Agro-BioTech, Passage des déportés 2, 5030 Gembloux, Belgium
2 Crop Science Unit and Experimental Farm, University of Liège, Gembloux Agro-BioTech, Passage des déportés 2, 5030 Gembloux, Belgium
3 Biodiversity and Landscape Unit, University of Liège, Gembloux Agro-BioTech, Passage des déportés 2, 5030 Gembloux, Belgium
4 Functional and Evolutionary Entomology Unit, University of Liège, Gembloux Agro-BioTech, Passage des déportés 2, 5030 Gembloux, Belgium

Contact: Séverin HATT (severin.hatt@ulg.ac.be), Roel UYTtenBROECK (roel.uyttenbroeck@ulg.ac.be)

Introduction

• Conventional practices are partly responsible for the loss of biodiversity in agricultural landscapes (Krebs et al., 1999).
• Biological control methods are studied as alternatives to chemical insecticide use (Landis et al., 2000; Haaland et al., 2011).
• Wild pollinators are important for many crops (Klein et al., 2007; Aizen et al., 2008).
• Wildflower strips at field margins are known to attract insects such as natural enemies and pollinators (Piffner et al., 2009; Haaland et al., 2011; Carrió et al., 2012).

General hypothesis

• Trophic relations built up by the insect diversity living in wildflower strips will help to limit pests in the adjacent crops (conservation biological control).
• Pollinator communities sustained by wildflower strips deliver a pollination service to the adjacent crops.
• Flower traits are determinants in the attraction of natural enemies and the composition of the pollinator community.
• Mowing regime impacts flower mixes and thus the entomofauna, which can in fine affect conservation biological control and pollination service.

How do functional diversity and mowing regime of wildflower strips affect conservation biological control and pollination service?

Experimental design & research questions

Zone 1A

How does functional diversity of wildflower mixes affect:
• the diversity and abundance of pests, natural enemies and pollinators?
• the induced trophic relations and pollination networks?
• the yield and the quality of the adjacent crops?

Zone 1B

How does mowing regime affect:
• the vegetation development and flower availability within the flower strips?
• the trophic relations induced by the insects living in the strips

Zone 1C

How does each flowering species in the mixes take part of the mechanisms observed?

Methods

• Insect trapping and observations of interactions on plants/flowers
• Vegetation monitoring with quadrats

Legend

- Control
- Very Low
- Low
- Very High
- 2 cuts
- Summer and Autumn
- 1 cut
- Summer
- 1 cut
- Autumn

Crop (succession : winter wheat, rapsseed)

References