A micro-meso model to predict van der Waals and capillary induced stiction in micro-structures

V. Hoang Truong, L. Noels, L. Wu (ULg)

3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework.
Introduction

• Stiction in MEMS
 – Reasons
 • Relatively high surface area: volume ratio (1,000:1 to 10,000:1 m⁻¹)
 – Adhesive forces
 • Electrostatic force,
 • Van der Waals force,
 • Capillary force
 • Hydrogen bridging…

• How can it be predicted / simulated?

Stiction failure in a MEMS sensor
(Jeremy A. Walraven Sandia National Laboratories. Albuquerque, NM USA)
Introduction

- Multiscale approach

Single asperity adhesive-micro contact

Adhesive elastic contact model between rough surfaces

Integration with FEM
Van der Waals forces

- **Asperity level: Adhesive-elastic contact (Hertz) theories**
 - Johnson, Kendall, and Roberts (JKR)
 - Short ranged surface forces
 - Act only inside the contact area
 - Soft, compliant materials with high adhesion energy

 - Derjaguin, Muller and Toporov (DMT)
 - Long-ranged adhesive forces
 - Outside of the contact area
 - Harder, less compliant materials with low adhesion energy and small asperity tip radius

- Maugis transition solution
 - Intermediate cases between JKR and DMT
 - For all elastic materials
Van der Waals forces

- Asperity level: Maugis – Dugdale semi-analytical solution
 - Approximate potential

 \[F_n \]

 \[a \neq 0 \]
 \[c \neq 0 \]

- Force-distance curve
 - Can be solved for given
 - Sphere radius
 - Adhesion energy
 - Sphere Young modulus

<table>
<thead>
<tr>
<th>Surface energy (\varpi)</th>
<th>Aperity Radii (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.54 J/m(^2)</td>
<td>260.5 nm</td>
</tr>
</tbody>
</table>
Van der Waals forces

• Rough surfaces
 - Representations
 - Parameters
 • Asperity height follows a Gaussian distribution
 \[\varphi(h) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{-h^2}{2\sigma^2}\right) \]
 • \(N \) asperities per square meters
 • Asperity radius \(R = \text{cst} \)
 - \(N, R, \sigma \) are calculated from real surface (AFM)
 • Variance of height \(m_0 \),
 • Variance of slope \(m_2 \),
 • Variance of curvature \(m_4 \),
Van der Waals forces

- Rough surfaces
 - Integrate the sphere responses

\[
F_s(d) = N \int_{\delta_{low}}^{-d+2.5\sigma} F(\delta) \frac{\phi(d + \delta)}{\Phi(d + 2.5\sigma)} d(\delta).
\]

- Cut-off effect
 - Gaussian tail distribution decreases slower than Hertz contact force increases
 - Effect of (much) higher asperities overvalued
Van der Waals forces

- Rough surfaces
 - Integrate the sphere responses

\[
F_s(d) = N \int_{\delta_{low}}^{-d+2.5\sigma} \frac{\phi(d + \delta)}{\Phi(d + 2.5\sigma)} d(\delta).
\]

<table>
<thead>
<tr>
<th>Surface energy σ</th>
<th>Asperity density N</th>
<th>Aperity Radii R</th>
<th>Standard derivation σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.54 J/m2</td>
<td>80×10^{12} /m2</td>
<td>260.5 nm</td>
<td>2.5 nm</td>
</tr>
</tbody>
</table>
Capillary effects

- Integration on the rough surface is modified
 - Meniscus
 - Size depends on Relative Humidity (RH)
 - Uniform Laplace pressure

 New adhesion energy

\[\omega_C = \Delta P \times h_C = 2\gamma_{LV} \cos(\theta) \]

- Interaction distance \(h_C \)
 - Depends on the relative humidity
 - Below 30% the height comparable to molecular height

- Absorbed surface layer
 - Modifies the interaction height
 - Height from literature (measures)
Capillary effects

- Force on a single asperity is modified*
 - At high humidity, meniscus are merged to create the continuous layer

- Saturation: to avoid duplication in the integration process h_C is reduced to d_a

Capillary effects

- Adhesive-contact curves
 - In air
 - For different humidity levels

<table>
<thead>
<tr>
<th>VDW surface energy σ</th>
<th>Asperity density N</th>
<th>Aperity Radii R</th>
<th>Standard derivation σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.167 J/m2</td>
<td>80×10^{12}/m2</td>
<td>260.5 nm</td>
<td>2.5 nm</td>
</tr>
</tbody>
</table>
Capillary effects

- **Validation**
 - De Boer’s experiments(*)
 - Apparent adhesion energy from the shortest S-shaped stuck beam
 - Can be compared to the model
 - Adhesive area of the rough surfaces curves

\[\Gamma = \frac{3}{2} E \frac{g^2 t^3}{s^4} \]

Beam multi-scale framework

- Design example: cantilevers
 - Finite element model
 - Timoshenko Beams
 - Interacting with pad

- Use adhesive micro-contact law at interface
Beam multi-scale framework

• Finite element model
 – Put into contact
 – Release the external forces

• After contacting, three final configurations are possible
Beam multi-scale framework

• Validation
 – De Boer’s experiments(*)
 • From shortest stuck beams
 – Can also be computed from FE solutions
 • Apparent adhesion energy from the shortest Arc-shaped stuck beam

\[\Gamma = \frac{3}{2} \frac{E g^2 t^3}{s^4} \]

\[\Gamma = \frac{3}{8} \frac{E g^2 t^3}{s^4} \]

Perspective: Plasticity effect

- **Surface impact: modification of asperity shapes**
 - Effect of maximum interference δ_{max} reached during loading
 - Material parameters: yield σ_Y, yield interference δ_{CP}

- **Model: new asperity profile**

\[
\delta_{\text{res}} = \delta_{\text{max}} (1 - (\frac{\delta_{\text{CP}}}{\delta_{\text{max}}})^{0.28}) (1 - (\frac{\delta_{\text{CP}}}{\delta_{\text{max}}})^{0.69})
\]

\[
R_{\text{res}} = R(1 + 1.275 (\frac{S_y}{E})^{0.216} (\frac{\delta_{\text{max}}}{\delta_{\text{CP}}} - 1))
\]

- **Loading/unloading curves differ**
 - Ruthenium surfaces
 - Model vs FEM*

Perspective: Plasticity effect

- Rough surfaces adhesive curves
 - Unloading curves depend on the maximum loading (impact energy)
 - Ruthenium surfaces

<table>
<thead>
<tr>
<th>VDW surface energy</th>
<th>Yield σ_Y</th>
<th>Aperity Radii R</th>
<th>Standard derivation σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 J/m²</td>
<td>3.42 GPa</td>
<td>4 nm</td>
<td>7.81 nm</td>
</tr>
</tbody>
</table>

- Cyclic loading
 - Unloading curves modified at each cycle
Perspective: Surfaces uncertainties

• Inside stiction model
 – Using descriptions of the surface to build the equivalent surface:
 • N asperities per square-meter,
 • Radius R, and
 • Standard derivation σ
 – These parameters are calculated from surface AFM measures

Surface 1: m_0, m_2, m_4
Surface 2: m_0, m_2, m_4
Eq. surface: N, R, σ

• Effect on the uncertainties
 – In: m_0, m_2, m_4
 – On the apparent energy Γ
Conclusions

• **Stiction model**
 – Capillary effects
 • Accounts for RH range
 – Cut-off distance?
 • New distribution

• **Surface uncertainties**
 – Ongoing work

• **Multi-scale approach**
 – To be coupled with BEM