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Introduction 

• Stiction in MEMS 

– Reasons 

• Relatively high surface 

area: volume ratio (1,000:1 

to 10,000:1 m-1) 

 

 

– Adhesive forces 

• Electrostatic force, 

• Van der  Waals force, 

• Capillary force 

• Hydrogen bridging… 

 

 

• How can it be predicted / 

simulated? 

 

 

Stiction failure in a MEMS sensor 
 ( Jeremy A.Walraven Sandia National Laboratories. 

Albuquerque, NM USA)   
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Introduction 

• Multiscale approach 

 

 

 

Integration with 

FEM 

Single asperity adhesive-micro contact    

Adhesive elastic contact model 

between rough surfaces  
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Van der Waals forces 

• Asperity level: Adhesive-elastic contact (Hertz) theories   

– Johnson, Kendall, and Roberts (JKR)  

• Short ranged surface forces  

• Act only inside the contact area  

• Soft, compliant materials with high adhesion energy 

 

– Derjaguin, Muller and Toporov (DMT) 

• Long-ranged adhesive forces  

• Outside of the contact area  

• Harder, less compliant materials with low adhesion energy 

and small asperity tip radius  

 

 

– Maugis transition solution 

• Intermediate cases between JKR and DMT  

• For all elastic materials  
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Van der Waals forces 

• Asperity level: Maugis – Dugdale semi-analytical solution 

– Approximate potential 

 

 

 

 

 

 

 

 

 

– Force-distance curve 

• Can be solved for given 

– Sphere radius 

– Adhesion energy 

– Sphere Young modulus 
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Van der Waals forces 

• Rough surfaces 

– Representations 

 

 

 

 

 

– Parameters 

• Asperity height follows a Gaussian distribution 

with std :  

• N asperities per square meters 

• Asperity radius R= cst 

 

 

– N, R,   are calculated from real surface (AFM)  

• Variance of height m0,  

• Variance of slope m2, 

• Variance of curvature m4,  
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Van der Waals forces 

• Rough surfaces 

– Integrate the sphere responses 

 

 

 

 

 

 

 

 

 

• Cut-off effect 

– Gaussian tail distribution decreases slower than Hertz contact force increases 

– Effect of (much) higher asperities overvalued 
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Van der Waals forces 

• Rough surfaces 

– Integrate the sphere responses 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surface 

energy  

Asperity 

density N 

Aperity Radii 

R 

Standard derivation 

   

2.54 J/m2  80 x 1012 /m2  260.5 nm  2.5 nm 

Apparent surface 

energy G 
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Capillary effects 

• Integration on the rough surface is modified 

 

– Meniscus 

• Size depends on  

     Relative Humidity (RH) 

• Uniform Laplace pressure 

         

     New adhesion energy 

 

 

• Interaction distance hC  

– Depends on  the relative  

 humidity 

– Below 30% the height  

 comparable to molecular height 

 

 

– Absorbed surface layer 

• Modifies the interaction height 

• Height from literature (measures) 

 

 

 

 

 

 

 

 

 

 

 

 

𝜔𝐶 = 𝛥𝑃 × ℎ𝐶 = 2𝛾𝐿𝑉 𝑐𝑜𝑠 𝜃   
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Capillary effects 

• Force on a single asperity is modified* 

– At high humidity, meniscus are merged to create the continuous layer 

 

 

 

 

 

 

 

 

 

 

 

 

– Saturation: to avoid duplication in the integration process hC is reduced to da   

 

 

 

 

 

 

 

 

 

 

 

* M.P. de Boer, “Capillary adhesion between elastically hard rough surfaces,” Experim. Mech., vol. 47, pp. 171–183, 2007 (Experiment) 

hC da 
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Capillary effects 

• Adhesive-contact curves 

– In air 

– For different humidity levels 

 

 

 

 

 

 

 

 

 

 

 

VDW surface 

energy  

Asperity 

density N 

Aperity Radii 

R 

Standard derivation 

   

0.167 J/m2  80 x 1012 /m2  260.5 nm  2.5 nm 
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Capillary effects 

• Validation 

– De Boer’s experiments(*) 

• Apparent adhesion energy from the 

shortest S-shaped stuck beam 

 

 

– Can be compared to the model 

• Adhesive area of the rough surfaces 

curves 

 

 

 

 

 

 

 

 

 

 

 
* M.P. de Boer, “Capillary adhesion between elastically hard rough surfaces,” Experim. Mech., vol. 47, pp. 171–183, 2007 (Experiment) 
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Beam multi-scale framework 

• Design example: cantilevers 

– Finite element model 

– Timoshenko Beams 

– Interacting with pad 

 

 

 

 

• Use adhesive micro-contact law 

at interface 
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Beam multi-scale framework 

• Finite element model 

– Put into contact 

– Release the external forces 

 

 

• After contacting, three final configurations are possible 
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Beam multi-scale framework 

• Validation 

– De Boer’s experiments(*) 

• From shortest stuck beams 

– Can also be computed from FE solutions 

• Apparent adhesion energy from the shortest Arc-shaped 

stuck beam 

 

 

 

 

 

 

 

 

 

 

 

* M.P. de Boer, “Capillary adhesion between elastically hard rough surfaces,” Experim. Mech., vol. 47, pp. 171–183, 2007 (Experiment) 
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Perspective: Plasticity effect 

• Surface impact: modification of asperity 

shapes 

– Effect of maximum interference d max 

reached during loading 

– Material parameters: yield Y, yield 

interference dCP  

 

• Model: new asperity profile  

 

 

 

 

 

• Loading/unloading curves differ 

– Ruthenium surfaces 

 

– Model vs FEM* 

 

))(1)()(1( 69.0

max

CP28.0

max

CP
max

d

d

d

d
dd res

))1()(275.11(
CP

max216.0

res 
d

d

E

S
RR

y

* 28Y. Du, L. Chen, N. McGruer, G. Adams, and I. Etsion, Finite element model of loading and unloading of an asperity contact with 

adhesion and plasticity," Journal of Colloid and Interface Science 312, 522 - 528 (August 2007) 
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Perspective: Plasticity effect 

• Rough surfaces adhesive curves 

 

– Unloading curves depend on the maximum 

loading (impact energy) 

– Ruthenium surfaces 

 

 

 

 

 

• Cyclic loading 

 

– Unloading curves modified at each cycle 
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Perspective: Surfaces uncertainties 

• Inside stiction model 

– Using descriptions of the surface to build the equivalent surface: 

• N asperities per square-meter,  

• Radius R, and  

• Standard derivation   

– These parameters are calculated from surface AFM measures 

 

 

 

 

 

 

 

 

• Effect on the uncertainties 

– In: m0, m2, m4 

– On the apparent energy G  

 

G ? 

Surface 1: m0, m2, m4 

Surface 2: m0, m2, m4 

Surface 1: N, R,   

Surface 2: N, R,   

Eq. surface: N, R,   
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• Stiction model 

– Capillary effects 

• Accounts for RH range 

 

– Cut-off distance? 

• New distribution 

 

• Surface uncertainties 

– Ongoing work 

 

 

• Multi-scale approach 

– To be coupled with BEM 

 

 

Conclusions 


