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Abstract

In this study, B cell function in protective TH2 immunity against N. brasiliensis infection was investigated. Protection against
secondary infection depended on IL-4Ra and IL-13; but not IL-4. Protection did not associate with parasite specific antibody
responses. Re-infection of B cell-specific IL-4Ra2/2 mice resulted in increased worm burdens compared to control mice,
despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-
13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo N. brasiliensis primed IL-4Ra
expressing B cells into naı̈ve BALB/c mice, but not IL-4Ra or IL-13 deficient B cells, conferred protection against primary N.
brasiliensis infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells
with CD4+ T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B
cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by
transfer experiments using antigen pulsed Myd882/2 B cells. These data suggest TLR dependent antigen processing by IL-
4Ra-responsive B cells producing IL-13 contribute significantly to CD4+ T cell-mediated protective immunity against N.
brasiliensis infection.
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Introduction

Parasitic nematode infections are a significant global public

health burden. Infections with Ascaris lumbricoides, Trichuris trichiura

and the hookworms Ancylostoma duodenale and Necator americanus

occur in a third of the world’s population [1]. Individuals

frequently suffer from repeated infections and do not develop

robust immunity against re-infection [2]. Such infections are

significant causes of morbidity, with hookworm infections, for

example, being a major cause of childhood anemia in many

endemic areas [3]. Effects on cognitive development, as a result of

repeated childhood infections have been reported [4], and

parasitic larval migrations through the host may exacerbate

chronic lung pathologies in endemic areas [5,6]. To date no

licensed vaccines exist against these parasites. To accelerate their

development a detailed understanding of host immunity is

essential, especially extra intestinal immunity against infective

stage larvae [7]. Studies in humans and experimental models of

infection have established that TH2 immune responses drive host

resolution of primary infections [8,9].

Key to effective expulsion of murine model parasites, such as

Nippostrongylus brasiliensis, Heligmosomoides polygyrus and Trichuris

muris, is host expression of IL-4Ra [10]. IL-4Ra is an essential

component of the heterodimeric receptors required for IL-4 and

IL-13 signalling, which ultimately drive host immune polarisa-

tion to TH2. Use of IL-4Ra2/2 mice has clearly demonstrated

an absolute requirement for IL-4Ra expression in resolving

primary nematode infections. This is dependent on IL-4Ra
expression on non-hematopoietic cells [11] including smooth

muscle cells [12] and epithelial cells [13,14]. However, IL-4Ra
expression on hematopoietic cells does impact on the magnitude

of the hosts TH2 response to N. brasiliensis. For example,

disruption of IL-4Ra expression on CD4+ T-cells results in a

significantly reduced TH2 response to primary N. brasiliensis

infection [15] and contributes to optimal control of secondary

infection [16]. However, it is not known how IL-4Ra expression
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on other hematopoietic cells contributes to protection from N.

brasiliensis re-infection.

Our understanding of cellular mechanisms underlying pro-

tective immunity to helminth re-infection has, until recently,

been limited. Protective immunity to nematode infection can

occur both in the intestine, in the case of primary N. brasiliensis

infection and both primary and secondary H. polygyrus infections,

while immunity to secondary N. brasiliensis infections occurs in

the lung. In the case of the strictly intestinal parasitic nematode

H. polygyrus, rapid resolution of re-infection requires alternatively

activated macrophages [17], CD4+ T cells [18], parasite specific

type 2 antibody responses [19,20] and B cell cytokine

production [21]. In human infections such as A. lumbricoides

and hookworms, which have some analogy to N. brasiliensis

infections, the parasites are not confined to the intestine. Here

larval migrations through the circulatory and pulmonary systems

have resulted in these sites playing important roles in infection

induced pathology and parasite killing [7]. Studies with N.

brasiliensis show host responses in the lung play a key role in the

rapid resolution of re-infection [7,22]. Furthermore, roles for

eosinophils [23], basophils [24] and CD4+ T cells [16,25], but

not B cells [20], in coordinating this immunity have also been

demonstrated.

The work we present here addresses how B cells in secondary

lymphoid organs (lymph nodes and spleen) can rapidly

contribute to the control of recall immunity to N. brasiliensis

re-infection. We then test if transfer of these potentially

protective B cells can confer protection in a naı̈ve mouse

against primary exposure to N. brasiliensis infection. Using this

approach, we identified key roles for B cells in immunity to the

parasite. Strikingly, this was associated with production of IL-13

by IL-4Ra-sufficient B cells and also required MHCII compat-

ibility and MyD88-expression. Thus, B cells can rapidly

contribute to immunity to pathogens through multiple effector

functions.

Results

IL-4Ra is essential for immunity against re-infection with
N. brasiliensis

To identify a possible role for IL-4Ra in generating protective

immunity IL-4Ra2/lox (IL-4Ra sufficient) and IL-4Ra2/2 mice

were infected with N. brasiliensis. Infection was subsequently

cleared by drug treatment before re-infection with 500 L3 larva.

Intestinal worm burden was quantified at different time points

post-secondary infection (Figure 1A). IL-4Ra2/2 mice had

significantly higher intestinal worm burdens compared to IL-

4Ra2/lox mice at day 5 or 7 post-secondary infection (Figure 1B).

Loss of IL-4Ra was associated with multiple defects in known

effectors of host TH2 immunity, including decreased mucus

production in the lung (Supplementary Figure S1A), decreased

IgG1 production and decreased IL-13 production by CD4 T cells

and B cells in the lung draining lymph node (Figure 1C–E).

IL-4Ra dependent immunity to N. brasiliensis re-infection
is driven by IL-13 signalling

To investigate whether resolution of secondary N. brasiliensis

infection was dependent on IL-4 and/or IL-13 signalling via IL-

4Ra re-infection studies were repeated in IL-42/2 and IL-132/2

mice. Here, the significantly higher intestinal worm burden at day

5 secondary infection in IL-132/2 mice compared to IL-42/2

mice (Figure 1F), demonstrated IL-13 signalling through IL-4Ra
is essential for immunity against re-infection with N. brasiliensis.

This higher worm burden could was also be associated with an

absence in goblet cell mucus production in IL-132/2 mice, but not

IL-42/2 mice (Figure 1G and Figure S1B). IL-132/2 mice

demonstrated equivalent N. brasiliensis specific IgG1 antibody titers

as IL-4Ra2/lox mice. Conversely, IL-42/2 mice demonstrated

reduced specific IgG1 responses (Figure 1H). Taken together,

these data (Figures 1) indicate that IL-4-depedent antigen specific

IgG1 antibody responses may not be required for optimal

immunity to re-infection, but that IL-4Ra-mediated IL-13

signalling is required.

IL-4Ra-responsive B cells producing IL-13 are required for
effective immunity to N. brasiliensis re-infection

IL-4Ra-mediated effects on B cell function during N. brasiliensis

re-infection were investigated in MB1CreIL-4Ra2/lox BALB/c

mice, which have B cell-specific abrogation of IL-4Ra expression

[26]. Secondary infection resulted in a significantly higher

intestinal worm burden in MB1CreIL-4Ra2/lox mice when

compared to IL-4Ra2/lox mice (Figure 2A). Whilst goblet cell

hyperplasia in MB1CreIL-4Ra2/lox mice was equivalent to that

seen in control IL-4Ra2/lox mice (Figure 2B and Figure S1C).

Antigen specific IgG1 was significantly drastically reduced

(Figure 2C). Interestingly, IL-13 cytokine production by T and

B cells was also reduced in MB1CreIL-4Ra2/lox mice, when

compared to IL-4Ra2/lox mice (Figure 2D and Figure S2).

Together, these studies show that a loss of IL-4Ra on B cells is

sufficient to impair immunity to N. brasiliensis re-infection.

To demonstrate if IL-4Ra responsive and IL-13 competent B

cells can directly confer protection against primary N. brasiliensis

infection, we adoptively transferred B cells isolated from infected IL-

4Ra2/lox, IL-132/2 or MB1CreIL-4Ra2/lox mice into naı̈ve

BALB/c mice (Figure 2E and Figure S3). Transfer of

antigen-experienced IL-4Ra-responsive B cells into naı̈ve

BALB/c mice (WT+WT B-cells) reduced intestinal worm burdens.

In contrast, transfer of primed B cells deficient for either the IL-

4Ra or IL-13 did not reduce intestinal worm burden (Figure 2F,

Author Summary

Parasitic nematode infections are an extremely important
global public health problem. Infections by hookworms
and roundworms for example cause anemia, widespread
developmental problems and devalued immunity against
bacterial infections such as salmonella and tuberculosis.
Although treatable with drugs, parasitic nematode re-
infections occur as humans do not develop protective
immunity. Ultimately, the public health burden caused by
these infections will be best controlled by the develop-
ment of vaccines against nematode infections. For these to
be effective, it is important to understand how the various
components of the immune system can respond to
infection. In this study, we show that B cells, which
typically protect against infection by producing antibodies,
can also protect against an experimental hookworm like
nematode infection by additional mechanisms. This form
of protection instead depended on B cells producing
cytokines associated with parasitic nematode expulsion
and also by providing T cells with specific instruction.
Together, these B cell driven responses lead to a rapid
resolution of the infection. These important findings
indicate that vaccination strategies against nematode
parasites such as hookworms need to understand immune
responses other than antibody to be optimally protective.

B Cell Immunity to N. brasiliensis
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G). These results support our previous observations (Figures 1 &
2A) that IL-4Ra-responsive and IL-13 competent B cells

contribute to protective immunity against N. brasiliensis.

Previous studies have shown that in the absence of B cells

control of N. brasiliensis re-infection is similar to WT mice [20].

Our experiments also found that the host’s ability to control N.

brasiliensis re-infection did not require B cells (Figure 3A).

Nevertheless, this does not exclude the possibility that antigen-

experienced B cells are able to modulate the response in normal

mice. To test this experimentally, we transferred B cells from

infected IL-4Ra2/lox or infected MB1CreIL-4Ra2/lox mice into

naive mMT mice (Figure 3B). Transferred N. brasiliensis primed

IL-4Ra responsive B cells augmented protection in mMT mice

(Figure 3B), whereas transferred B cells from infected MB1CreIL-

4Ra2/lox mice did not. This B cell IL-4Ra-dependent protection

correlated with significant increases in MST CD4+ T cell IL-13

production (Figures 3C). Together these results show that the

immune response can compensate for the absence of B cells, but

the introduction of pathogen-experienced IL-4Ra-responsive B

cells can accelerate protective immunity against N. brasiliensis.

Enhanced B cell ability to interact with T helper cells is
required for optimal immunity to N. brasiliensis re-
infection

Optimal host control of N. brasiliensis re-infection was associated

with B cell IL-13 production and enhanced CD4+ T cell TH2

responses. A further way B cells could contribute to T cell

responses is through cognate, physical interactions that are

associated with antigen-presentation through MHCII and co-

stimulatory molecule expression. As a first step in demonstrating, if

such an interaction is also a feature of IL-4Ra-dependent

immunity to N. brasiliensis re-infection, we initially assessed

expression of CD86 and MHCII on CD19+ B cells from naive

and N. brasiliensis re-infected mice. CD86 and MHCII expression

was equivalent between naive mice of both groups (Figure 4A,
lower panel). In re-infected mice, CD86 and MHCII surface

expression in MB1CreIL-4Ra2/lox mice was reduced when

compared with IL-4Ra2/lox mice (Figure 4B, lower panel).
CD4+ T cells showed no differences between the mouse strains in

expression of CD28 and TCR. (Figure 4A and B, upper
panel). Thus, IL-4Ra expression in B cells can help enhance the

expression of B cell markers of activation after N. brasiliensis

infection.

These findings indicated B cell cognate interactions with T cells

and also antigen presentation may contribute to optimal immunity

against N. brasiliensis re-infection. Our data presented in Figures 1

and 2 also indicates that B cell immunity may be independent of

antibody class switching. This may exclude involvement of highly

specific clonally expanded populations of B cells. We therefore

hypothesized that protection may instead be mediated by a rapidly

modified B cell antigen presenting response to N. brasiliensis

infection. To demonstrate the possible role for antigen presenta-

tion, we adoptively transferred MHCII2/2 B cells from 1 day N.

brasiliensis infected mice (Figure 4C) into naive mice. At the next

day, mice were infected and days 5 post infection, recipients of

MHCII2/2 B cells showed significantly higher worm burdens

than mice, which received control WT B cells (Figure 4D).

Protection was associated with increased IL-13 production by both

B and T cell populations in the mediastinal lymph node

(Figure 4E). To further control MHCII dependency, similar

infection experiments were carried out in BALB/b mice, which

are unable to present antigen via MHCII to BALB/c B cells.

BALB/c recipients of adoptively transferred N. brasiliensis-experi-

enced BALB/b B cells showed also significantly higher worm

burdens, when compared to mice which received BALB/c B cells

from N. brasiliensis infected mice (Figure 4F). These results further

support that MHCII-dependent antigen presentation by B cells

does contribute to host immunity to N. brasiliensis. Again,

protection was associated with increased IL-13 production by

both B and T cell populations in the mediastinal lymph node

(Figure 4G). Together, these results suggest that MHCII

expression contributes to the B cell protective response to N.

brasiliensis re-infection.

B cells can rapidly launch protective antigen-dependent
responses to N. brasiliensis infection

Our results presented in Figure 4 suggested that antigen-

experienced B cells can rapidly contribute to protection. We

therefore tested in vivo whether immunity induced early in infection

with N. brasiliensis is dependent on IL-4Ra-responsive B cells.

Adoptive transfer of IL-4Ra responsive B cells from IL-4Ra2/loxp

mice isolated from mice 1 day post N. brasiliensis infection into wild

type mice (Figure 4C) [27,28] enhanced protection (Figure 5A),

but not adoptive transfer of IL-4Ra unresponsive B cells from

MB1creIL-4Ra2/loxp mice. Furthermore, only transfer of IL-4Ra
responsive B cells enhanced B and CD4+ T cell IL-13 responses in

the lung (Figure 5B, C) and mediastinal lymph node

(Figure 5D), strengthen the necessity of IL-4Ra-responsive B

cells for protective immunity.

This ability of B cells to confer protection so rapidly after

parasite exposure further supports this response being independent

of BCR. Other mechanisms of more rapid and possibly less

stringent/polyfunctional antigen recognition by B cells may

therefore play a role. Initial analysis does not support these

transferred B cells conferring protection via an early production of

IL-13 (Figure S5). However, rapid antigen processing and

presentation may be mediated by B cells directly loading soluble

peptide onto MHCII [29,30] or via antigen internalisation and

processing by Toll like receptors (TLR) [31,32,33].

To assess if rapid TLR mediated antigen processing contributed

to reduced worm burdens, we repeated transfer experiments using

B cells isolated from MyD882/2 mice at one day post infection.

Mice, which received MyD882/2 B cells displayed significantly

higher worm burdens than those which received B cells from WT

1 day infected recipients (Figure 6A). Protection was associated

with increased IL-13 production by T cell populations in the

mediastinal lymph node (Figure 6B). We then examined whether

these effects were due to direct exposure of antigen by B cells by

pulsing naive WT or MyD882/2 B cells overnight with

N. brasiliensis antigen (Figure 6C). Transfer of B cells from

MyD882/2 mice into naive mice resulted in impaired control of

infection (Figure 6D), associated with lower IL-13 production by

Figure 1. Protective immunity to N. brasiliensis re-infection is IL-13 and IL-4Ra dependent. IL-4Ra2/2 and IL-4Ra2/lox mice were infected
for 5 or 7 days post-secondary N. brasiliensis infection (A). Intestinal worm burdens were then quantified (B). Pulmonary mucus production was
established by PAS staining (C). Serum Antibody titers of N. brasiliensis specific IgG1 were determined by ELISA (D). Mediastinal lymph node IL-13
responses were established by intracellular FACS staining in CD4+ T-cell and B220+ B-cell populations (E). IL-42/2, IL-132/2 and IL-4Ra2/lox mice were
infected for 5 days post-secondary N. brasiliensis infection and intestinal worm burdens were then quantified (F). Pulmonary mucus production was
established by PAS staining (G). Serum Antibody titers of N. brasiliensis specific IgG1 were determined by ELISA (H). Data is representative of 3–4
independent experiments. n = 4–6 mice per group.
doi:10.1371/journal.ppat.1003662.g001
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T cells in the mediastinal lymph node (Figure 6E). To rule out

non-specific effects, we also pulsed wild type B cells with a range of

antigens. We found that only B cells pulsed with N. brasiliensis

antigen conferred a reduction in host intestinal worm burdens.

Recipients of B cells pulsed with LPS (a potential bacterial

contaminant during N. brasiliensis infection), ovalbumin and soluble

Leishmania major antigen did not show any reduction in intestinal

worm burden when compared to wild type controls (Figure S6).

This data indicated that the reduction in worm burden that we see

in recipients of N. brasiliensis pulsed B cells is pathogen specific.

Moreover, pulsing of MHCII2/2 B cells with N. brasiliensis also

resulted in impaired reduction in worm burdens (Figure 6F).

Together these data suggest an association between rapid

pathogen specific MyD88 dependent antigen processing and

MHCII antigen presentation by B cells underlying the accelerated

host immunity to N. brasiliensis infection.

Discussion

This study demonstrated that IL-4Ra responsive B cells co-

ordinate optimal immunity to secondary N. brasiliensis infection.

This was related to B cell IL-13 expression, not IL-4 expression. B

cell IL-4Ra mediated protection was associated with increased B

cell and CD4 T cell IL-13 production. MHCII dependent B cell

priming of T cells associated with this effect. Our data also

demonstrated a rapid poly-functional antigen processing associat-

ed with B cell Myd88 expression.

B cell responses to N. brasiliensis have been suggested to be

largely redundant [20]. Both our current study and that of Liu et al

(18) demonstrate an absence of B cells per se does not alter host

ability to control N. brasiliensis infection. However, we now show

that a molecular change in B cell function, such as cell specific

disruption of IL-4Ra expression on B cells, significantly impairs

host ability to resolve N. brasiliensis infection. These findings also

demonstrate important differences between B cell dependent

immunity to N. brasiliensis and H. polygyrus. B cell Be2 immunity to

H. polygyrus is dependent on B cell IL-4 production, B cell IL-4Ra
expression and antigen presentation. As with H. polygyrus, N.

brasiliensis re-infection is also dependent on B cell IL-4Ra
expression and antigen presentation, however, B cell IL-13

production appears to play a functional role and not IL-4.

The protective B cell response we demonstrate may be

independent of antibody and instead mediated through a B

effector response. Such responses are particularly important in

controlling CD4+ T cell driven immunity [34] via direct B and T

cell interactions [35] as well as B cell cytokine production [36].

These B effector responses have an equivalent diversity in immune

polarisation as T cells; producing Be1 (TH1) [35], Be2 (TH2) [36]

and Breg (Treg) [37,38] effector B cells respectively. Functionally

Be1 cells contribute significantly to immunity to bacterial

infections, such as Salmonella [39,40,41]. In helminth infections

Be2 cells have been demonstrated to be important for immunity to

H. polygyrus [21], although humoral contributions also play a

significant role [19,20]. Evidence of Bregs induced by both

Figure 2. B cell IL-4Ra expression is required for optimal immunity to N. brasiliensis re-infection. MB1CreIL-4Ra2/lox and IL-4Ra2/lox mice
were infected for 5 or 7 days post-secondary N. brasiliensis infection and intestinal worm burdens were then quantified (A). Pulmonary mucus
production was established by PAS staining (B). Serum Antibody titers of N. brasiliensis IgG1 were determined by ELISA (C). Mediatstinal lymph node
IL-13 responses were established by intracellular FACS staining in CD4+ T-cell and B220+ B cell populations (D). B cells were isolated from N.
brasiliensis infected BALB/c, MBcreIL-4Ra2/lox and IL-132/2 and transferred into naı̈ve BALB/c mice (E). Mice were then infected with 500xL3 N.
brasiliensis larvae and worm burdens were then established at day 5 post infection (F & G). The results shown represent 2–4 independent
experiments. n = 4–7 mice per group.
doi:10.1371/journal.ppat.1003662.g002

Figure 3. Transfer of N. brasiliensis experienced B cells enhances immunity to N. brasiliensis independently of endogenous B cell
populations. N. brasiliensis infected mMT and BALB/c mice were re-infected with 500xL3 larvae and at day 5 post-secondary infection, the intestinal
worm burdens was quantified (A). The possible role for IL-4Ra expressing B cells in boosting immunity independently of endogenous B cells was
determined by transfer of B cells isolated from N. brasiliensis infected IL-4Ra2/lox (WT B cells) or MB1Cre IL-4Ra2/lox (IL-4Ra2/2 B cells) into naı̈ve mMT
mice. These mice were then infected with 500xL3 N. brasiliensis and worm burdens quantified at day 5 post infection (B). Mediastinal lymph node
CD3+CD4+ T cell populations IL-13 responses (C) were established by FACS staining. Results shown represent 2 independent experiments. n = 4–7
mice per group.
doi:10.1371/journal.ppat.1003662.g003
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Heligmosomoides polygyus and Schistosoma mansoni infection have

elegantly shown helminth elicited B cell control of allergy [38,42].

In this study we show that B cells develop a rapid and potent

protective response against N. brasiliensis infection. This rapid

protection precludes BCR-dependent clonal expansion following

antigen exposure. Instead, it appears B cells are capable of

responding to antigen via less stringent mechanisms than the BCR,

such as direct peptide loading and Toll like receptors [29,30].

Antigen binding by TLRs is established as an important regulator

of B cell function [32]. TLR-dependent B cell responses can

increase BCR-dependent antigen presentation [31], B cell

cytokine production [39,40] and play pivotal roles in B cell ability

to interact with T cells [33]. These TLR mediated responses to

antigen by B cells can be rapid and may not require clonal

expansion of B cells [27].

In addition to antigen presentation we also demonstrate IL-

4Ra-dependent increases in IL-13 production by endogenous B

cells to be associated with control of secondary infection. This

along with B cell-dependent induction of IL-13 production by

endogenous CD4+ T cell and B cells would provide an important

source of IL-13 to activate potential effector cell populations,

including epithelial [13,43], smooth muscle [12,44] and innate

immune cells [24,45,46].

In summary this study demonstrates IL-4Ra-responsive B cells

playing an important role resolving secondary N. brasiliensis

infection. We suggest the protective role played by B cells develops

from antigen encounter with TLR driving an increase in CD86

and MHCII dependent interactions with CD4 T cells. This drives

increased IL-13 production by CD4 T cells and B cells, facilitating

host launching of protective mechanisms against N. brasiliensis

infection.

Methods

Animals used
In this study the following BALB/c background mice were

used: BALB/c, BALB/b, IL-4Ra2/2 [described as Il4ratm1Fbb/

Il4ratm1Fbb], IL-132/2, IL-42/2and mMT. BALB/c background B

cell specific IL-4Ra deficient MB1CreIL-4Ra2/lox [described as

Il4ratm1Fbb/Il4ratm2FbbTg (Cd79atm1(cre)Reth)] were generated as previ-

ously described [26]. MHCII2/2, MyD882/2 and C57BL/6 mice

were on C57BL/6 genetic background. Mice were bred and

housed in specific pathogen–free conditions at the University of

Cape Town, South Africa, and used in accordance with University

Ethical Committee guidelines. All experimental mice were sex

matched and used between 6–12 weeks of age with appropriate

littermate controls of the same generation.

Ethics statement
All studies were carried out under protocol 008/019 approved

by the University of Cape Town Faculty of Health Sciences

Animal Ethics Committee in accordance national guidelines laid

down by the South African Board of Standards.

N. brasiliensis infection
Mice were initially inoculated subcutaneously with 500 N.

brasiliensis L3 larvae. At day 7 post infection worms were cleared

by treatment with 10 mg/ml Ivermectin in drinking water for 7

days. Mice were then shelved for 21 days prior to a secondary

subcutaneous infection with 500 N. brasiliensis L3 larvae. Mice

were killed at day 5 post-secondary infection by CO2 inhalation.

Adult worm burdens were determined as previously described

[12]. Briefly, intestines were removed from infected mice and

the lumen exposed by dissection. Intestines were then incubated

at 37uC for 4 h in 0.65% NaCl. Intestinal tissue was then

removed and the worms in the remaining saline solution

counted.

Histology
Tissue samples were fixed in a neutral buffered formalin

solution. Following embedding in paraffin, samples were cut into

5 mm sections. Sections were stained with periodic acid-Schiff

reagent (PAS) in order to visualise goblet cell hyperplasia [15]. The

Histological Mucus Index (HMI) was used to quantify PAS

positive airway epithelial cells. Sections photographed at 1006
were overlaid with a standard grid. The number of grid units

containing PAS positive epithelial goblet cells were divided by all

units containing epithelial cells to establish the HMI.

Determination of antibody titres
Parasite specific serum antibody levels from infected animals were

determined as previously described [15]. Briefly, flat-bottom 96-well

plates were coated overnight with 10 mg/ml of N. brasiliensis antigen.

The plates were then washed and incubated in PBS containing 2%

milk powder v/v for 1 h at 37uC. Following this, the plates were

washed, samples loaded and incubated overnight at 4uC. Appro-

priate biotinylated secondary antibodies were then added following

further washing and incubated overnight at 4uC. The plates were

then washed, and antibody titres were determined using streptavi-

din-coupled horseradish peroxidase. The plates were developed

with the TMB microwell peroxidase substrate system, and the

reaction was stopped with 1 M H3PO4. The absorbance at 450 nm

was determined with a Versamax microplate spectrophotometer

(Molecular Devices, Germany).

FACS analysis
The expression of surface receptors involved in B and T cell

interactions were measured on mediastinal lymph node cells.

Essentially, CD40-PE (clone 3/23), CD28-PE (clone 37.51) and

TCRb-biotin (clone H57-597) antibodies were used to detect

receptors on CD4+ (clone GK1.5) T cells, while CD40L-PE (clone

MR1), CD86-PE (clone GL1) and MHCII-bio (clone M5/114)

were used to detect receptors on CD19+ (clone 1D3) B cells in

IL-4Ra2/lox and mb1CreIL-4Ra2/lox mice. Biotin-labeled anti-

bodies were detected by streptavidin-APC, anti-FcR (clone 2.4G2)

was used to block non-specific binding of immunoglobulins to the

Figure 4. B cell MHCII antigen presentation mediates optimal immunity to N. brasiliensis. Surface expression of CD28 and TCR on CD4+ T
cells and CD86 and MHCII on B cells in naive (A) and N. brasiliensis re-infected (B) IL-4Ra2/lox mice and MB1CreIL-4Ra2/lox mice was established by
FACS analysis. Histograms: filled gray: isotype control, thin line: IL-4Ra2/lox, thick black line: MB1CreIL-4Ra2/lox. Contributions by MHCII dependent
antigen presentation were demonstrated by isolating WT or MHCII2/2 B cells from naive or infected mice then adoptively transferring into naive
C57BL/6 mice (C). Mice were then infected with 500xL3 N. brasiliensis larvae and worm burdens were established at day 5 post infection (D).
Mediastinal lymph node IL-13 responses were established by intracellular FACS staining in CD4+ T-cell and B220+ B cell populations (E). MHC
dependent antigen presentation was confirmed by isolating WT and BALB/b B cells from naive or infected mice adoptively transferring into naive
BALB/c mice. Mice were then infected with 500xL3 N. brasiliensis larvae and worm burdens were established at day 5 post infection (F). Mediastinal
lymph node IL-13 responses were established by intracellular FACS staining in CD4+ T-cell and B220+ B cell populations (G). Data is representative of 2
independent experiments. n = 4–6 mice per group.
doi:10.1371/journal.ppat.1003662.g004
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FccII/III receptors and dead cells were excluded from analysis by

7-AAD staining (Sigma). Antibodies were from BD Pharmingen

(San Diego, CA). Cells were acquired using a FACSCalibur

(Beckton-Dickinson, Ferndale, South Africa) and data were

analysed with Flowjo software (Treestar).

Intracellular cytokine staining was performed on mediastinal

lymph node cells re-suspended in complete media (IMDM

(GIBCO/Invitrogen; Carlsbad, CA), 10% FCS, P/S) at

2.56107/ml and stimulated with 10 mg/ml of N. brasiliensis antigen

and GolgiStop (as per manufacturer’s protocol; BD Pharmingen)

Figure 5. Rapid IL-Ra dependent B cell mediated protection against N. brasiliensis occurs in the lung. MBcreIL-4Ra2/lox and IL-4Ra2/lox

mice were infected for 1 day with N. brasiliensis before spleen B cells were isolated and transferred into naive wild type mice (As in Figure 4C).
These were infected with 500xL3 N. brasiliensis and intestinal worm burdens were quantified at day 5 post infection (A). Lung CD3+CD4+ and
CD3+CD4+CD44hi T cell populations were analysed by FACS staining (B). Lung CD4+ T cell (C) and mediastinal lymph node CD4+ T cell and B220+ B
cell population (D) IL-13 responses were established by intracellular FACS staining. Data is representative of 2 independent experiments. n = 4–6 mice
per group.
doi:10.1371/journal.ppat.1003662.g005
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at 37uC for 4 hours. After re-stimulation, cells were surface

stained for CD3 (clone 500A2), CD4 (clone GK1.5) and B220

(clone RA3-6B2), then fixed and permeabilized with Cytofix/

Cytoperm Plus (as per manufacturer’s instructions; BD Pharmin-

gen). Intracellular staining was performed by staining cells with

IL-13-PE (ebio 13a) or appropriately labelled isotype control

(eBioscience) [47].

Sorting of B cells for adoptive transfer
Single cell suspensions from spleen were surface labelled with

CD19 and B220 antibodies described above, re-suspended at

16107 cells/ml in media and sorted with a BD FACSARIA cell

sorter (Supplementary Figure S3A). The purity of the isolated

population was confirmed by flow cytometry, and samples

showing ,95% positive cells were discarded (Supplementary

Figure 6. B cell MyD88 expression dependent protection against N. brasiliensis infection. B cells were isolated from WT or MyD882/2 mice
24 hours post N. brasiliensis infection and adoptively transferred into naive WT mice (As in Figure 4C). 24 hours later these mice were infected with
500xL3 N. brasiliensis and subsequently killed 5 days post infection and worm burdens were counted (A). The mediastinal lymph node CD4+ T-cell IL-
13 response was established (B). B cells were isolated from naive C57/BL6, MyD882/2 or MHCII2/2 mice and pulsed with N. brasiliensis antigen
overnight. These were then washed and transferred into naive C57/BL6 mice 24 h prior to infection (C). D5 PI intestinal worm counts are shown (D &
F). The mediastinal lymph node CD4+ T-cell IL-13 response was established (E). Data is representative of 2 experiments, n = 5–7 mice per group.
doi:10.1371/journal.ppat.1003662.g006
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Figure S3B). Then the isolated B cells from naı̈ve or infected

mice were adoptively transferred to naive mice. The cells were re-

suspended at 2.56106 cells/ml in media. Each mouse received

0.56106 B cells injected intravenously into the tail vein 24 h prior

to infection with N. brasiliensis.

In vitro B cell antigen pulsing
Naı̈ve B cells were isolated from a single splenocyte suspension

by FACSARIA as described above. Purity was confirmed by flow

cytometry, samples showing ,95% B220 positive cells were

discarded (Supplementary Figure S3). Cells were incubated

(pulsed) with 10 mg/ml N. brasiliensis antigen, ovalbumin, LPS or

soluble Leishmania antigen for 16 h at 37uC. Cells were then

washed 36 in media by centrifugation and then re-suspended in

media at 2.56107/ml. 0.56106 cells were then transferred

intravenously into naı̈ve mice 24 h prior to infection with N.

brasiliensis [27,28].

Generating N. brasiliensis somatic antigen
L3 larvae were washed from filter paper into H2O/50 mg/ml

Penicillin+Streptomycin and allowed to stand for an hour during

which the larvae settle to the bottom of the container, after which

the larvae washed once more in H2O/Pen./Strep and once in

H2O. Then the larvae were concentrated into 2 ml of distilled

H2O and snap frozen in liquid nitrogen. Following this the

preparation was homogenized for 5 to 10 minutes before the

whole solution is centrifuged at 10 000 rpm for 10 minutes. The

supernatant contains the soluble fraction of the L3 larvae proteins

which is measured and standardised using a BCA protein assay

(Pierce; Chicago, IL). Antigen was added to the cells in solution at

10 mg/ml.

Statistics
Values are expressed below as means 6 standard deviations and

significant differences were determined using either Mann-

Whitney U test or ANOVA (GraphPad Prism4).

Supporting Information

Figure S1 Lung epithelial mucous production is reduced
in IL-4Ra2/2 and IL-132/2 mice but not in IL-42/2 or
MB1creIL-4Ra2/lox mice. IL-4Ra2/2, IL-42/2, IL-132/2,

MB1creIL-4Ra2/lox and IL-4Ra2/lox mice were infected for 5 days

post-secondary N. brasiliensis infection. Pulmonary mucus produc-

tion was established by PAS staining (Figure 1 and 2). The

Histological Mucus Index (HMI) [15] was used to quantify the

numbers of PAS positive epithelial cells.

(TIF)

Figure S2 Spleen B cell IL-13 production is reduced in
MB1creIL-4Ra2/lox mice. Naı̈ve MB1CreIL-4Ra2/lox and IL-

4Ra2/lox mice were infected with N. brasiliensis. Splenic B cell IL-

13 responses at day 10 post infection were established by

intracellular FACS staining in B220+CD19+ populations.

(TIF)

Figure S3 Gating strategy for isolation and establishing
purity of B cells. The purity of B cells was established by flow

cytometry using the gating strategy shown (A). Purity was over

95% in all cases (B). Briefly, lymphocytes were identified according

to forward scatter vs. side scatter profile. CD11cneg, CD3neg,

CD4neg and GR-1neg and B220+CD19+ cells were then isolated

and used for further analysis..

(TIF)

Figure S4 Transfer of naı̈ve B cells does not confer
protection against N. brasiliensis infection. B cells isolated

from naı̈ve BALB/c mice were pulsed with antigen and

transferred into naı̈ve BALB/c mice. Mice were then infected

with 500xL3 N. brasiliensis larvae and worm burdens were then

established at day 5PI.

(TIF)

Figure S5 B cell IL-13 cytokine responses at 1 day post
N. brasiliensis infection. Mice were infected with 500xL3 N.

brasiliensis larvae and killed 1 day post infection. Splenic B cell IL-

13 production was established by flow cytometry.

(TIF)

Figure S6 B cell mediated immunity to N. brasiliensis is
antigen specific. B cells isolated from naı̈ve BALB/c mice were

pulsed with antigen and transferred into naı̈ve BALB/c mice.

Mice were then infected with 500xL3 N. brasiliensis larvae and

worm burdens were then established at day 5PI. Antigen specific

protection by B cells was established by pulsing B cells with N.

brasiliensis, L. major or Ova antigens or LPS then adoptively

transferring into naive BALB/c mice.

(TIF)
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